ArduPlane-src-3.7.1

所属分类:其他
开发工具:C/C++
文件大小:44765KB
下载次数:1
上传日期:2019-01-15 14:31:51
上 传 者TNkernel
说明:  PX4的ArduPlane-src-3.7.1版本的源码
(Open source code for ArduPlane-src-3.7.1 version of PX4)

文件列表:
ArduPlane (0, 2016-12-04)
ArduPlane\afs_plane.cpp (4701, 2016-11-27)
ArduPlane\altitude.cpp (23444, 2016-11-27)
ArduPlane\APM_Config.h (478, 2016-11-27)
ArduPlane\APM_Config.h.reference (38020, 2016-11-27)
ArduPlane\ArduPlane.cpp (33895, 2016-11-27)
ArduPlane\arming_checks.cpp (4069, 2016-11-27)
ArduPlane\Attitude.cpp (55732, 2016-11-27)
ArduPlane\avoidance_adsb.cpp (7074, 2016-11-27)
ArduPlane\avoidance_adsb.h (1221, 2016-11-27)
ArduPlane\capabilities.cpp (596, 2016-11-27)
ArduPlane\commands.cpp (4850, 2016-11-27)
ArduPlane\commands_logic.cpp (37188, 2016-11-27)
ArduPlane\config.h (11730, 2016-11-27)
ArduPlane\control_modes.cpp (5603, 2016-11-27)
ArduPlane\createTags (2266, 2016-11-27)
ArduPlane\defines.h (6452, 2016-11-27)
ArduPlane\events.cpp (4513, 2016-11-27)
ArduPlane\failsafe.cpp (3944, 2016-11-27)
ArduPlane\GCS_Mavlink.cpp (83385, 2016-11-27)
ArduPlane\GCS_Mavlink.h (596, 2016-11-27)
ArduPlane\geofence.cpp (15212, 2016-11-27)
ArduPlane\is_flying.cpp (12506, 2016-11-27)
ArduPlane\landing.cpp (17672, 2016-11-27)
ArduPlane\Log.cpp (18352, 2016-11-27)
ArduPlane\make.inc (1528, 2016-11-27)
ArduPlane\Makefile (24, 2016-11-27)
ArduPlane\Makefile.waf (47, 2016-11-27)
ArduPlane\motor_test.cpp (4250, 2016-11-27)
ArduPlane\navigation.cpp (10733, 2016-11-27)
ArduPlane\parachute.cpp (1317, 2016-11-27)
ArduPlane\Parameters.cpp (89254, 2016-11-27)
ArduPlane\Parameters.h (18782, 2016-11-27)
ArduPlane\Parameters.pde (97, 2016-11-27)
ArduPlane\Plane.cpp (1144, 2016-11-27)
ArduPlane\Plane.h (42890, 2016-11-27)
ArduPlane\px4_mixer.cpp (17227, 2016-11-27)
ArduPlane\quadplane.cpp (73891, 2016-11-27)
ArduPlane\quadplane.h (10029, 2016-11-27)
ArduPlane\radio.cpp (13094, 2016-11-27)
... ...

README ====== This README discusses issues unique to NuttX configurations for the Shenzhou IV development board from www.armjishu.com featuring the STMicro STM32F107VCT MCU. As of this writing, there are five models of the Shenzhou board: 1. Shenzhou I (STM32F103RB) 2. Shenzhou II (STM32F103VC) 3. Shenzhou III (STM32F103ZE) 4. Shenzhou IV (STM32F107VC) 5. Shenzhou king ((STM32F103ZG, core board + IO expansion board)). Support is currently provided for the Shenzhou IV only. Features of the Shenzhou IV board include: - STM32F107VCT - 10/100M PHY (DM9161AEP) - TFT LCD Connector - USB OTG - CAN (CAN1=2) - USART connectos (USART1-2) - RS-485 - SD card slot - Audio DAC (PCM1770) - SPI Flash (W25X16) - (4) LEDs (LED1-4) - 2.4G Wireless (NRF24L01 SPI module) - 315MHz Wireless (module) - (4) Buttons (KEY1-4, USERKEY2, USERKEY, TEMPER, WAKEUP) - VBUS/external +4V select - 5V/3.3V power conversion - Extension connector - JTAG Contents ======== - STM32F107VCT Pin Usage - Development Environment - GNU Toolchain Options - IDEs - NuttX EABI buildroot Toolchain - NuttX OABI buildroot Toolchain - NXFLAT Toolchain - Shenzhou-specific Configuration Options - LEDs - Shenzhou-specific Configuration Options - Configurations STM32F107VCT Pin Usage ====================== -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 23 PA0 WAKEUP Connected to KEY4. Active low: Closing KEY4 pulls WAKEUP to ground. 24 PA1 MII_RX_CLK RMII_REF_CLK 25 PA2 MII_MDIO 26 PA3 315M_VT 29 PA4 DAC_OUT1 To CON5(CN14) 30 PA5 DAC_OUT2 To CON5(CN14). JP10 SPI1_SCK To the SD card, SPI FLASH 31 PA6 SPI1_MISO To the SD card, SPI FLASH 32 PA7 SPI1_MOSI To the SD card, SPI FLASH 67 PA8 MCO To DM9161AEP PHY 68 PA9 USB_VBUS MINI-USB-AB. JP3 USART1_TX MAX3232 to CN5 69 PA10 USB_ID MINI-USB-AB. JP5 USART1_RX MAX3232 to CN5 70 PA11 USB_DM MINI-USB-AB 71 PA12 USB_DP MINI-USB-AB 72 PA13 TMS/SWDIO 76 PA14 TCK/SWCLK 77 PA15 TDI -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 35 PB0 ADC_IN1 To CON5(CN14) 36 PB1 ADC_IN2 To CON5(CN14) 37 PB2 DATA_LE To TFT LCD (CN13) BOOT1 JP13 89 PB3 TDO/SWO 90 PB4 TRST 91 PB5 CAN2_RX 92 PB6 CAN2_TX JP11 I2C1_SCL 93 PB7 I2C1_SDA 95 PB8 USB_PWR Drives USB VBUS 96 PB9 F_CS To both the TFT LCD (CN13) and to the W25X16 SPI FLASH 47 PB10 USERKEY Connected to KEY2 48 PB11 MII_TX_EN Ethernet PHY 51 PB12 I2S_WS Audio DAC MII_TXD0 Ethernet PHY 52 PB13 I2S_CK Audio DAC MII_TXD1 Ethernet PHY 53 PB14 SD_CD There is confusion here. Schematic is wrong LCD_WR is PB14. 54 PB15 I2S_DIN Audio DAC -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 15 PC0 POTENTIO_METER 16 PC1 MII_MDC Ethernet PHY 17 PC2 WIRELESS_INT 18 PC3 WIRELESS_CE To the NRF24L01 2.4G wireless module 33 PC4 USERKEY2 Connected to KEY1 34 PC5 TP_INT JP6. To TFT LCD (CN13) module MII_INT Ethernet PHY 63 PC6 I2S_MCK Audio DAC. Active low: Pulled high *** PC7 PCM1770_CS Audio DAC. Active low: Pulled high 65 PC8 LCD_CS TFT LCD (CN13). Active low: Pulled high 66 PC9 TP_CS TFT LCD (CN13). Active low: Pulled high 78 PC10 SPI3_SCK To TFT LCD (CN13), the NRF24L01 2.4G wireless module 79 PC11 SPI3_MISO To TFT LCD (CN13), the NRF24L01 2.4G wireless module 80 PC12 SPI3_MOSI To TFT LCD (CN13), the NRF24L01 2.4G wireless module 7 PC13 TAMPER Connected to KEY3 8 PC14 OSC32_IN Y1 32.768Khz XTAL 9 PC15 OSC32_OUT Y1 32.768Khz XTAL -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 81 PD0 CAN1_RX 82 PD1 CAN1_TX 83 PD2 LED1 Active low: Pulled high 84 PD3 LED2 Active low: Pulled high 85 PD4 LED3 Active low: Pulled high 86 PD5 485_TX Same as USART2_TX but goes to SP3485 USART2_TX MAX3232 to CN6 87 PD6 485_RX Save as USART2_RX but goes to SP3485 (see JP4) USART2_RX MAX3232 to CN6 88 PD7 LED4 Active low: Pulled high 485_DIR SP3485 read enable (not) 55 PD8 MII_RX_DV Ethernet PHY RMII_CRSDV Ethernet PHY 56 PD9 MII_RXD0 Ethernet PHY 57 PD10 MII_RXD1 Ethernet PHY 58 PD11 SD_CS Active low: Pulled high (See also TFT LCD CN13, pin 32) 59 PD12 WIRELESS_CS To the NRF24L01 2.4G wireless module 60 PD13 LCD_RS To TFT LCD (CN13) 61 PD14 LCD_WR To TFT LCD (CN13). Schematic is wrong LCD_WR is PB14. 62 PD15 LCD_RD To TFT LCD (CN13) -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 97 PE0 DB00 To TFT LCD (CN13) *** PE1 DB01 To TFT LCD (CN13) 1 PE2 DB02 To TFT LCD (CN13) 2 PE3 DB03 To TFT LCD (CN13) 3 PE4 DB04 To TFT LCD (CN13) 4 PE5 DB05 To TFT LCD (CN13) 5 PE6 DB06 To TFT LCD (CN13) 38 PE7 DB07 To TFT LCD (CN13) 39 PE8 DB08 To TFT LCD (CN13) 40 PE9 DB09 To TFT LCD (CN13) 41 PE10 DB10 To TFT LCD (CN13) 42 PE11 DB11 To TFT LCD (CN13) 43 PE12 DB12 To TFT LCD (CN13) 44 PE13 DB13 To TFT LCD (CN13) 45 PE14 DB14 To TFT LCD (CN13) 46 PE15 DB15 To TFT LCD (CN13) -- ---- -------------- ------------------------------------------------------------------- PN NAME SIGNAL NOTES -- ---- -------------- ------------------------------------------------------------------- 73 N/C 12 OSC_IN Y2 25Mhz XTAL 13 OSC_OUT Y2 25Mhz XTAL 94 BOOT0 JP15 (3.3V or GND) 14 RESET S5 6 VBAT JP14 (3.3V or battery) 49 VSS_1 GND 74 VSS_2 GND 99 VSS_3 GND 27 VSS_4 GND 10 VSS_5 GND 19 VSSA VSSA 20 VREF- VREF- Development Environment ======================= Either Linux or Cygwin on Windows can be used for the development environment. The source has been built only using the GNU toolchain (see below). Other toolchains will likely cause problems. Testing was performed using the Cygwin environment because the development tools that I used only work under Windows. GNU Toolchain Options ===================== Toolchain Configurations ------------------------ The NuttX make system has been modified to support the following different toolchain options. 1. The CodeSourcery GNU toolchain, 2. The Atollic Toolchain, 3. The devkitARM GNU toolchain, 4. Raisonance GNU toolchain, or 5. The NuttX buildroot Toolchain (see below). Most testing has been conducted using the CodeSourcery toolchain for Windows and that is the default toolchain in most configurations. To use the Atollic, devkitARM, Raisonance GNU, or NuttX buildroot toolchain, you simply need to add one of the following configuration options to your .config (or defconfig) file: CONFIG_STM32_CODESOURCERYW=y : CodeSourcery under Windows CONFIG_STM32_CODESOURCERYL=y : CodeSourcery under Linux CONFIG_STM32_ATOLLIC_LITE=y : The free, "Lite" version of Atollic toolchain under Windows CONFIG_STM32_ATOLLIC_PRO=y : The paid, "Pro" version of Atollic toolchain under Windows CONFIG_STM32_DEVKITARM=y : devkitARM under Windows CONFIG_STM32_RAISONANCE=y : Raisonance RIDE7 under Windows CONFIG_STM32_BUILDROOT=y : NuttX buildroot under Linux or Cygwin (default) If you change the default toolchain, then you may also have to modify the PATH in the setenv.h file if your make cannot find the tools. NOTE: the CodeSourcery (for Windows), Atollic, devkitARM, and Raisonance toolchains are Windows native toolchains. The CodeSourcery (for Linux) and NuttX buildroot toolchains are Cygwin and/or Linux native toolchains. There are several limitations to using a Windows based toolchain in a Cygwin environment. The three biggest are: 1. The Windows toolchain cannot follow Cygwin paths. Path conversions are performed automatically in the Cygwin makefiles using the 'cygpath' utility but you might easily find some new path problems. If so, check out 'cygpath -w' 2. Windows toolchains cannot follow Cygwin symbolic links. Many symbolic links are used in Nuttx (e.g., include/arch). The make system works around these problems for the Windows tools by copying directories instead of linking them. But this can also cause some confusion for you: For example, you may edit a file in a "linked" directory and find that your changes had no effect. That is because you are building the copy of the file in the "fake" symbolic directory. If you use a Windows toolchain, you should get in the habit of making like this: make clean_context all An alias in your .bashrc file might make that less painful. 3. Dependencies are not made when using Windows versions of the GCC. This is because the dependencies are generated using Windows pathes which do not work with the Cygwin make. MKDEP = $(TOPDIR)/tools/mknulldeps.sh The CodeSourcery Toolchain (2009q1) ----------------------------------- The CodeSourcery toolchain (2009q1) does not work with default optimization level of -Os (See Make.defs). It will work with -O0, -O1, or -O2, but not with -Os. The Atollic "Pro" and "Lite" Toolchain -------------------------------------- One problem that I had with the Atollic toolchains is that the provide a gcc.exe and g++.exe in the same bin/ file as their ARM binaries. If the Atollic bin/ path appears in your PATH variable before /usr/bin, then you will get the wrong gcc when you try to build host executables. This will cause to strange, uninterpretable errors build some host binaries in tools/ when you first make. The Atollic "Lite" Toolchain ---------------------------- The free, "Lite" version of the Atollic toolchain does not support C++ nor does it support ar, nm, objdump, or objdcopy. If you use the Atollic "Lite" toolchain, you will have to set: CONFIG_HAVE_CXX=n In order to compile successfully. Otherwise, you will get errors like: "C++ Compiler only available in TrueSTUDIO Professional" The make may then fail in some of the post link processing because of some of the other missing tools. The Make.defs file replaces the ar and nm with the default system x86 tool versions and these seem to work okay. Disable all of the following to avoid using objcopy: CONFIG_RRLOAD_BINARY=n CONFIG_INTELHEX_BINARY=n CONFIG_MOTOROLA_SREC=n CONFIG_RAW_BINARY=n devkitARM --------- The devkitARM toolchain includes a version of MSYS make. Make sure that the the paths to Cygwin's /bin and /usr/bin directories appear BEFORE the devkitARM path or will get the wrong version of make. IDEs ==== NuttX is built using command-line make. It can be used with an IDE, but some effort will be required to create the project. Makefile Build -------------- Under Eclipse, it is pretty easy to set up an "empty makefile project" and simply use the NuttX makefile to build the system. That is almost for free under Linux. Under Windows, you will need to set up the "Cygwin GCC" empty makefile project in order to work with Windows (Google for "Eclipse Cygwin" - there is a lot of help on the internet). Native Build ------------ Here are a few tips before you start that effort: 1) Select the toolchain that you will be using in your .config file 2) Start the NuttX build at least one time from the Cygwin command line before trying to create your project. This is necessary to create certain auto-generated files and directories that will be needed. 3) Set up include pathes: You will need include/, arch/arm/src/stm32, arch/arm/src/common, arch/arm/src/armv7-m, and sched/. 4) All assembly files need to have the definition option -D __ASSEMBLY__ on the command line. Startup files will probably cause you some headaches. The NuttX startup file is arch/arm/src/stm32/stm32_vectors.S. With RIDE, I have to build NuttX one time from the Cygwin command line in order to obtain the pre-built startup object needed by RIDE. NuttX EABI buildroot Toolchain ============================== A GNU GCC-based toolchain is assumed. The files */setenv.sh should be modified to point to the correct path to the Cortex-M3 GCC toolchain (if different from the default in your PATH variable). If you have no Cortex-M3 toolchain, one can be downloaded from the NuttX SourceForge download site (https://sourceforge.net/projects/nuttx/files/buildroot/). This GNU toolchain builds and executes in the Linux or Cygwin environment. 1. You must have already configured Nuttx in /nuttx. cd tools ./configure.sh shenzhou/ cd .. make context 2. Download the latest buildroot package into 3. unpack the buildroot tarball. The resulting directory may have versioning information on it like buildroot-x.y.z. If so, rename /buildroot-x.y.z to /buildroot. 4. cd /buildroot 5. cp configs/cortexm3-eabi-defconfig-4.6.3 .config 6. make oldconfig 7. make 8. Edit nuttx/.config to select the buildroot toolchain as described above and below: -CONFIG_STM32_CODESOURCERYW=y +CONFIG_STM32_BUILDROOT=y 9. Edit setenv.h, if necessary, so that the PATH variable includes the path to the newly built binaries. -export TOOLCHAIN_BIN="/cygdrive/c/Program Files (x86)/CodeSourcery/Sourcery G++ Lite/bin" +#export TOOLCHAIN_BIN="/cygdrive/c/Program Files (x86)/CodeSourcery/Sourcery G++ Lite/bin" -#export TOOLCHAIN_BIN="${WD}/../misc/buildroot/build_arm_nofpu/staging_dir/bin" +export TOOLCHAIN_BIN="${WD}/../misc/buildroot/build_arm_nofpu/staging_dir/bin" See the file configs/README.txt in the buildroot source tree. That has more detailed PLUS some special instructions that you will need to follow if you are building a Cortex-M3 toolchain for Cygwin under Windows. NOTE: Unfortunately, the 4.6.3 EABI toolchain is not compatible with the the NXFLAT tools. See the top-level TODO file (under "Binary loaders") for more information about this problem. If you plan to use NXFLAT, please do not use the GCC 4.6.3 EABI toochain; instead use the GCC 4.3.3 OABI toolchain. See instructions below. NuttX OABI "buildroot" Toolchain ================================ The older, OABI buildroot toolchain is also available. To use the OABI toolchain: 1. When building the buildroot toolchain, either (1) modify the cortexm3-eabi-defconfig-4.6.3 configuration to use EABI (using 'make menuconfig'), or (2) use an exising OABI configuration such as cortexm3-defconfig-4.3.3 2. Modify the Make.defs file to use the OABI conventions: +CROSSDEV = arm-nuttx-elf- +ARCHCPUFLAGS = -mtune=cortex-m3 -march=armv7-m -mfloat-abi=soft +NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-gotoff.ld -no-check-sections -CROSSDEV = arm-nuttx-eabi- -ARCHCPUFLAGS = -mcpu=cortex-m3 -mthumb -mfloat-abi=soft -NXFLATLDFLAGS2 = $(NXFLATLDFLAGS1) -T$(TOPDIR)/binfmt/libnxflat/gnu-nxflat-pcrel.ld -no-check-sections NXFLAT Toolchain ================ If you are *not* using the NuttX buildroot toolchain and you want to use the NXFLAT tools, then you will still have to build a portion of the buildroot tools -- just the NXFLAT tools. The buildroot with the NXFLAT tools can be downloaded from the NuttX SourceForge download site (https://sourceforge.net/projects/nuttx/files/). This GNU toolchain builds and executes in the Linux or Cygwin environment. 1. You must have already configured Nuttx in /nuttx. cd tools ./configure.sh lpcxpresso-lpc1768/ 2. Download the latest buildroot package into 3. unpack the buildroot tarball. The resulting directory may have versioning information on it like buildroot-x.y.z. If so, rename /buildroot-x.y.z to /buildroot. 4. cd /buildroot 5. cp configs/cortexm3-defconfig-nxflat .config 6. make oldconfig 7. make 8. Edit setenv.h, if necessary, so that the PATH variable includes the path to the newly builtNXFLAT binaries. LEDs ==== The Shenzhou board has four LEDs labeled LED1, LED2, LED3 and LED4 on the board. These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is defined. In that case, the usage by the board port is defined in include/board.h and src/up_leds.c. The LEDs are used to encode OS-related events as follows: SYMBOL Meaning LED1* LED2 LED3 LED4**** ------------------- ----------------------- ------- ------- ------- ------ LED_STARTED NuttX has been started ON OFF OFF OFF LED_HEAPALLOCATE Heap has been allocated OFF ON OFF OFF LED_IRQSENABLED Interrupts enabled ON ON OFF OFF LED_STACKCREATED Idle stack created OFF OFF ON OFF LED_INIRQ In an interrupt** ON N/C N/C OFF LED_SIGNAL In a signal handler*** N/C ON N/C OFF LED_ASSERTION An assertion failed ON ON N/C OFF LED_PANIC The system has crashed N/C N/C N/C ON LED_IDLE STM32 is is sleep mode (Optional, not used) * If LED1, LED2, LED3 are statically on, then NuttX probably failed to boot and these LEDs will give you some indication of where the failure was ** The normal state is LED1 ON and LED1 faintly glowing. This faint glow is because of timer interupts that result in the LED being illuminated on a small proportion of the time. *** LED2 may also flicker normally if signals are processed. **** LED4 may not be available if RS-485 is also ... ...

近期下载者

相关文件


收藏者