2016_super_resolution-master

所属分类图形图象
开发工具:C-C++
文件大小:2117KB
下载次数:0
上传日期:2018-07-10 16:53:57
上 传 者bababa123
说明:  深度学习的超分辨率处理算法,多图像超分处理,亲测可用
(Deep learning super-resolution algorithm, multi image super processing, pro test available.)

文件列表
2016_super_resolution-master, 0 , 2018-01-10
2016_super_resolution-master\2014_data_url_onlycolor.mat, 32520212 , 2018-01-10
2016_super_resolution-master\3.jpg, 140922 , 2018-01-10
2016_super_resolution-master\3_bicubic.jpg, 55715 , 2018-01-10
2016_super_resolution-master\3_srnet.jpg, 67532 , 2018-01-10
2016_super_resolution-master\4.jpg, 141686 , 2018-01-10
2016_super_resolution-master\4_bicubic.jpg, 36513 , 2018-01-10
2016_super_resolution-master\4_srnet.jpg, 39977 , 2018-01-10
2016_super_resolution-master\Copying, 1070 , 2018-01-10
2016_super_resolution-master\EPELoss.m, 825 , 2018-01-10
2016_super_resolution-master\EPELossH.m, 977 , 2018-01-10
2016_super_resolution-master\HuberLoss.m, 979 , 2018-01-10
2016_super_resolution-master\README.md, 2202 , 2018-01-10
2016_super_resolution-master\SRnet.m, 936 , 2018-01-10
2016_super_resolution-master\SRnet_gray.m, 936 , 2018-01-10
2016_super_resolution-master\cpu_compile.m, 119 , 2018-01-10
2016_super_resolution-master\data, 0 , 2018-01-10
2016_super_resolution-master\data\SRnet-128-gray, 0 , 2018-01-10
2016_super_resolution-master\data\SRnet-128-gray\SRnet.m, 936 , 2018-01-10
2016_super_resolution-master\data\SRnet-128-gray\net-epoch-7.mat, 124782 , 2018-01-10
2016_super_resolution-master\data\SRnet-128-gray\net-train.pdf, 7459 , 2018-01-10
2016_super_resolution-master\data\SRnet-color-128, 0 , 2018-01-10
2016_super_resolution-master\data\SRnet-color-128\SRnet.m, 881 , 2018-01-10
2016_super_resolution-master\data\SRnet-color-128\net-epoch-15.mat, 187727 , 2018-01-10
2016_super_resolution-master\data\SRnet-color-128\net-train.pdf, 8131 , 2018-01-10
2016_super_resolution-master\examples, 0 , 2018-01-10
2016_super_resolution-master\examples\cifar, 0 , 2018-01-10
2016_super_resolution-master\examples\cifar\cnn_cifar.m, 5435 , 2018-01-10
2016_super_resolution-master\examples\cifar\cnn_cifar.m~, 5378 , 2018-01-10
2016_super_resolution-master\examples\cifar\cnn_cifar_init.m, 3453 , 2018-01-10
2016_super_resolution-master\examples\cifar\cnn_cifar_init_nin.m, 5626 , 2018-01-10
2016_super_resolution-master\examples\cnn_train.m, 16159 , 2018-01-10
2016_super_resolution-master\examples\cnn_train_dag.m, 11150 , 2018-01-10
2016_super_resolution-master\examples\cnn_train_daga.m, 12905 , 2018-01-10
2016_super_resolution-master\examples\imagenet, 0 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet.m, 7112 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_camdemo.m, 1677 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_deploy.m, 5871 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_evaluate.m, 5144 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_get_batch.m, 3463 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_googlenet.m, 831 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_init.m, 14727 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_minimal.m, 1016 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_setup_data.m, 7311 , 2018-01-10
2016_super_resolution-master\examples\imagenet\cnn_imagenet_sync_labels.m, 593 , 2018-01-10
2016_super_resolution-master\examples\mnist, 0 , 2018-01-10
2016_super_resolution-master\examples\mnist\cnn_mnist.m, 4528 , 2018-01-10
2016_super_resolution-master\examples\mnist\cnn_mnist_experiments.m, 758 , 2018-01-10
2016_super_resolution-master\examples\mnist\cnn_mnist_init.m, 2985 , 2018-01-10
2016_super_resolution-master\examples\vggfaces, 0 , 2018-01-10
2016_super_resolution-master\examples\vggfaces\cnn_vgg_faces.m, 946 , 2018-01-10
2016_super_resolution-master\gpu_compile.m, 233 , 2018-01-10
2016_super_resolution-master\matlab, 0 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn, 0 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN, 0 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\DagNN.m, 12364 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\addLayer.m, 1157 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\eval.m, 4558 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\fromSimpleNN.m, 7112 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\getVarReceptiveFields.m, 3549 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\getVarSizes.m, 1295 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\initParams.m, 2481 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\loadobj.m, 1832 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\move.m, 793 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\print.m, 11627 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\rebuild.m, 3103 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\removeLayer.m, 528 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\renameVar.m, 1356 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\reset.m, 392 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\saveobj.m, 1336 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\setLayerInputs.m, 324 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\setLayerOutputs.m, 336 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\@DagNN\setLayerParams.m, 329 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\BatchNorm.m, 1421 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Concat.m, 1555 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Conv.m, 1638 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\ConvTranspose.m, 2600 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Crop.m, 1729 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\DropOut.m, 1100 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\ElementWise.m, 516 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Filter.m, 1283 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\LRN.m, 478 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Layer.m, 8456 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Loss.m, 1315 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\NormOffset.m, 476 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Pooling.m, 1205 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\ReLU.m, 2061 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Sigmoid.m, 336 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\SoftMax.m, 411 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\SpatialNorm.m, 479 , 2018-01-10
2016_super_resolution-master\matlab\+dagnn\Sum.m, 1323 , 2018-01-10
2016_super_resolution-master\matlab\compatibility, 0 , 2018-01-10
2016_super_resolution-master\matlab\compatibility\parallel, 0 , 2018-01-10
2016_super_resolution-master\matlab\compatibility\parallel\gather.m, 171 , 2018-01-10
2016_super_resolution-master\matlab\compatibility\parallel\labindex.m, 32 , 2018-01-10
2016_super_resolution-master\matlab\compatibility\parallel\numlabs.m, 31 , 2018-01-10
2016_super_resolution-master\matlab\simplenn, 0 , 2018-01-10
2016_super_resolution-master\matlab\simplenn\vl_simplenn.m, 16701 , 2018-01-10
2016_super_resolution-master\matlab\simplenn\vl_simplenn_diagnose.m, 2923 , 2018-01-10
2016_super_resolution-master\matlab\simplenn\vl_simplenn_display.m, 12389 , 2018-01-10

近期下载者

相关文件

评论我要评论

收藏者