<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/622b6b4615da9b288ba7078c/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622b6b4615da9b288ba7078c/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">RLS<span class="_ _0"> </span><span class="ff2 sc1">自适应算法分析及仿真</span></div><div class="t m0 x2 h4 y3 ff3 fs1 fc0 sc0 ls0 ws0"> <span class="_ _1"></span> <span class="_ _1"></span> RLS<span class="_ _2"> </span><span class="ff2">自适<span class="_ _1"></span>应算<span class="_ _1"></span>法是<span class="_ _1"></span>为了<span class="_ _1"></span>设计<span class="_ _1"></span>自适<span class="_ _1"></span>应<span class="_ _1"></span>的横<span class="_ _1"></span>向滤<span class="_ _1"></span>波器<span class="_ _1"></span>把最<span class="_ _1"></span>小二<span class="_ _1"></span>乘法<span class="_ _1"></span>推广<span class="_ _1"></span>为一<span class="_ _1"></span>种自<span class="_ _1"></span>适应<span class="_ _1"></span>算法<span class="_ _1"></span>。</span></div><div class="t m0 x2 h4 y4 ff2 fs1 fc0 sc0 ls0 ws0">使<span class="_ _1"></span>得在<span class="_ _1"></span>已知<span class="_ _3"> </span><span class="ff3">n-1<span class="_"> </span></span>时刻<span class="_ _1"></span>横向<span class="_ _1"></span>滤波<span class="_ _1"></span>器<span class="_ _1"></span>抽头<span class="_ _1"></span>系<span class="_ _1"></span>数的<span class="_ _1"></span>情<span class="_ _1"></span>况吓<span class="_ _1"></span>,<span class="_ _1"></span>能够<span class="_ _1"></span>通<span class="_ _1"></span>过简<span class="_ _1"></span>单<span class="_ _1"></span>的更<span class="_ _1"></span>新<span class="_ _1"></span>,求<span class="_ _1"></span>出<span class="_ _4"> </span><span class="ff3">n<span class="_ _2"> </span></span>时<span class="_ _1"></span>刻的</div><div class="t m0 x2 h4 y5 ff2 fs1 fc0 sc0 ls0 ws0">滤<span class="_ _1"></span>波<span class="_ _1"></span>器<span class="_ _1"></span>抽<span class="_ _1"></span>头<span class="_ _1"></span>权系<span class="_ _1"></span>数<span class="_ _1"></span>。<span class="_ _1"></span>这<span class="_ _1"></span>样<span class="_ _1"></span>一<span class="_ _1"></span>种<span class="_ _1"></span>自<span class="_ _1"></span>适<span class="_ _1"></span>应<span class="_ _1"></span>的<span class="_ _1"></span>最<span class="_ _1"></span>小<span class="_ _1"></span>二乘<span class="_ _1"></span>法<span class="_ _1"></span>称<span class="_ _1"></span>为<span class="_ _1"></span>递<span class="_ _1"></span>推<span class="_ _1"></span>最<span class="_ _1"></span>小<span class="_ _1"></span>二<span class="_ _1"></span>乘<span class="_ _1"></span>法<span class="_ _1"></span>,<span class="_ _1"></span>简<span class="_ _1"></span>称<span class="_ _5"> </span><span class="ff3">RLS<span class="_"> </span></span>算法<span class="_ _1"></span>。</div><div class="t m0 x2 h4 y6 ff3 fs1 fc0 sc0 ls0 ws0">RLS<span class="_ _2"> </span><span class="ff2">自<span class="_ _1"></span>适应<span class="_ _1"></span>算<span class="_ _1"></span>法<span class="_ _1"></span>使用<span class="_ _1"></span>的确<span class="_ _1"></span>定<span class="_ _1"></span>性线<span class="_ _1"></span>性<span class="_ _1"></span>回归<span class="_ _1"></span>模<span class="_ _1"></span>型<span class="_ _4"> </span></span>Ka<span class="_ _1"></span>lman<span class="_ _2"> </span><span class="ff2">滤<span class="_ _1"></span>波算<span class="_ _1"></span>法的<span class="_ _1"></span>一<span class="_ _1"></span>种<span class="_ _1"></span>特殊<span class="_ _1"></span>的无<span class="_ _1"></span>激<span class="_ _1"></span>励<span class="_ _1"></span>的状<span class="_ _1"></span>态</span></div><div class="t m0 x2 h4 y7 ff2 fs1 fc0 sc0 ls0 ws0">空间模型。</div><div class="t m0 x2 h4 y8 ff2 fs1 fc0 sc0 ls0 ws0">一、<span class="_ _6"> </span><span class="ff3">RLS<span class="_ _2"> </span></span>算法步骤:</div><div class="t m0 x3 h4 y9 ff2 fs1 fc0 sc0 ls0 ws0">步骤一:</div><div class="t m0 x4 h4 ya ff2 fs1 fc0 sc0 ls0 ws0">初始化:<span class="_ _7"> </span>,<span class="_ _8"> </span>,其中<span class="_ _9"> </span>是一个很小的值。</div><div class="t m0 x5 h4 yb ff2 fs1 fc0 sc0 ls0 ws0">步骤二:</div><div class="t m0 x5 h4 yc ff3 fs1 fc0 sc0 ls0 ws0"> <span class="ff2">更新:</span> n=1,2,<span class="ff4">……</span></div><div class="t m0 x5 h5 yd ff3 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x5 h5 ye ff3 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x5 h5 yf ff3 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x2 h5 y10 ff3 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x2 h4 y11 ff3 fs1 fc0 sc0 ls0 ws0"> <span class="ff2">其中,<span class="_ _a"> </span>,<span class="_ _9"> </span>是一个很小的正数。</span></div><div class="t m0 x2 h4 y12 ff2 fs1 fc0 sc0 ls0 ws0">二、<span class="_ _6"> </span>仿真结果:</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
</body>
</html>