• PUDN用户
    了解作者
  • matlab
    开发工具
  • 263KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 6
    下载次数
  • 2012-08-30 22:47
    上传日期
神经网络源程序集合,关于一群算法和小波神经网络的论文,比较有学术价值
Neural-network.rar
  • 81404598one4
  • NNDESIGN
  • NND9SD.M
    6.7KB
  • NND10LC.M
    15KB
  • NNDSHUNT.M
    366B
  • NND14CL.M
    15.3KB
  • NNTITLEF.M
    2.1KB
  • NND12SD1.M
    12.5KB
  • NND8TS1.M
    6.1KB
  • NND9NM.M
    5.8KB
  • NND16A1.M
    12.2KB
  • NND.M
    1.1KB
  • NNCOLOR.M
    225B
  • NNLTBLUE.M
    92B
  • NNMDLIN.M
    816B
  • NNSTUDED.M
    226B
  • EEGDATA.MAT
    3.2KB
  • NNSHRINK.M
    2.8KB
  • NND4PR.M
    18.5KB
  • NND15GL2.M
    11.6KB
  • NND14FM2.M
    12KB
  • NND15SN.M
    11.5KB
  • NND12VL.M
    15.6KB
  • NND16AL1.M
    13.5KB
  • NND8DD.M
    5.5KB
  • NNPIN.M
    466B
  • NNDHOP.M
    261B
  • NNBG.M
    1.5KB
  • NNTFNMS.M
    337B
  • NNDBP1.MAT
    10.1KB
  • NNICON.M
    3.7KB
  • NNDALAY2.M
    558B
  • NNBLACK.M
    117B
  • NNDTOC.M
    9.3KB
  • NNDBPM.M
    2.6KB
  • NND11NF.M
    18.1KB
  • NND16AL2.M
    13.3KB
  • NNDADAPT.M
    636B
  • NNLINE.M
    1.6KB
  • NNFGFLAG.M
    505B
  • NND15GL1.M
    12KB
  • NND15LI.M
    8.9KB
  • NND6EG.M
    13.3KB
  • NNDRWCIR.M
    417B
  • NNDBP2.MAT
    10KB
  • NND14LV1.M
    13.3KB
  • NNSOUND.M
    1KB
  • NND12MO.M
    14.4KB
  • NND15AW.M
    10.6KB
  • NNTXTCHK.M
    230B
  • NNDEMOF2.M
    2.2KB
  • NND7SH.M
    9.6KB
  • NND13EDR.M
    9.6KB
  • NND13OS.M
    26.8KB
  • NNDEMOF.M
    2.2KB
  • NND5RB.M
    7.3KB
  • NND13HD.M
    22.7KB
  • NNDHOPI.M
    251B
  • NNLTGRAY.M
    201B
  • NND9SDQ.M
    5.8KB
  • NND6LT.M
    12.3KB
  • NNGREEN.M
    208B
  • NND13H.M
    22.1KB
  • NND14LV2.M
    14.1KB
  • NNDBP3.MAT
    10KB
  • NND8QF.M
    8.6KB
  • NND12CG.M
    14.7KB
  • NNRED.M
    188B
  • NNLMARQ.M
    482B
  • NND12M.M
    13.8KB
  • NND13GIS.M
    8.5KB
  • NND2N1.M
    13.6KB
  • NND9MC.M
    5.4KB
  • NNAXCLIK.M
    569B
  • NND5GS.M
    4.6KB
  • CONTENTS.M
    4KB
  • NNDSICON.M
    3KB
  • NNWHITE.M
    205B
  • NNDRAWAX.M
    740B
  • NNGETCLK.M
    436B
  • NND13UH.M
    22.7KB
  • NND10EEG.M
    12.5KB
  • NNARROW.M
    1.4KB
  • NND18HN.M
    12KB
  • NNCHKFS.M
    478B
  • NNSFO.M
    3.9KB
  • NNPAUSE.M
    242B
  • NNCENTXT.M
    385B
  • NND16OS.M
    12.4KB
  • NNFEXIST.M
    2.1KB
  • NNSETTXT.M
    1011B
  • NNCALLBK.M
    282B
  • NND11GN.M
    10.5KB
  • NNGRAYBX.M
    968B
  • NND14CC.M
    23.5KB
  • NND4DB.M
    17.6KB
  • NND2N2.M
    14KB
  • NND13IS.M
    25.7KB
  • NND12MS.M
    12.3KB
  • NNDRWREC.M
    491B
内容介绍
function [ret1,ret2,ret3,ret4]=nnd11bc(cmd,arg1,arg2,arg3,arg4,arg5) %NND11BC Backpropagation calculation demonstration. % % This demonstration requires the Neural Network Toolbox. % % NND11BC runs this demo. % % NND11BC('set',W1,b1,W2,b2) % sets the network's weight and bias values. % % [W1,b1,W2,b2] = NND11BC('get') % gets the network's weight and bias values. % First Version, 8-31-95. %================================================================== % CONSTANTS me = 'nnd11bc'; max_t = 0.5; w_max = 10; p_max = 2; box_len = 40; box_x = [0 1 1 0 0]*box_len; box_y = [-1 -1 1 1 -1]*10; pause_time = 1; % FLAGS change_func = 0; % DEFAULTS if nargin == 0, cmd = ''; else cmd = lower(cmd); end % FIND WINDOW IF IT EXISTS fig = nnfgflag(me); if length(get(fig,'children')) == 0, fig = 0; end % GET WINDOW DATA IF IT EXISTS if fig H = get(fig,'userdata'); fig_axis = H(1); % window axis desc_text = H(2); % handle to first line of text sequence W1_ptr = H(3); b1_ptr = H(4); W2_ptr = H(5); b2_ptr = H(6); p_name = H(7); W11_box = H(8); W11_text = H(9); W11_name = H(10); W12_box = H(11); W12_text = H(12); W12_name= H(13); b11_box = H(14); b11_text = H(15); b11_name = H(16); b12_box = H(17); b12_text = H(18); b12_name = H(19); a11_name = H(20); a12_name = H(21); W21_box = H(22); W21_text = H(23); W21_name = H(24); W22_box = H(25); W22_text = H(26); W22_name = H(27); b2_box = H(28); b2_text = H(29); b2_name = H(30); a2_name = H(31); t_name = H(32); e_name = H(33); vars = H(34+[0:10]); vals = H(45+[0:10]); fp1_marker = H(56); fp2_marker = H(57); fp3_marker = H(58); bp1_marker = H(59); bp2_marker = H(60); W1_marker = H(61); b1_marker = H(62); W2_marker = H(63); b2_marker = H(64); p_marker = H(65); t_marker = H(66); state_ptr = H(67); p_ptr = H(68); a1_ptr = H(69); a2_ptr = H(70); e_ptr = H(71); s1_ptr = H(72); s2_ptr = H(73); t_ptr = H(74); go_button = H(75); s11_name = H(76); s12_name = H(77); s2_name = H(78); blip_ptr = H(79); bloop_ptr = H(80); blp_ptr = H(81); state1 = H(82); state2 = H(83); state3 = H(84); state4 = H(85); go_box = H(86); last_text = H(87); p_edit = H(88); state = get(state_ptr,'userdata'); blip = get(blip_ptr,'userdata'); bloop = get(bloop_ptr,'userdata'); blp = get(blp_ptr,'userdata'); end %================================================================== % Activate the window. % % ME() or ME('') %================================================================== if strcmp(cmd,'') if fig figure(fig) set(fig,'visible','on') else feval(me,'init') end %================================================================== % Close the window. % % ME() or ME('') %================================================================== elseif strcmp(cmd,'close') & (fig) delete(fig) %================================================================== % Initialize the window. % % ME('init') %================================================================== elseif strcmp(cmd,'init') & (~fig) % CHECK FOR NNT if ~nntexist(me), return, end % CONSTANTS W1 = [-0.27; -0.41]; b1 = [-0.48; -0.13]; W2 = [0.09 -0.17]; b2 = [0.48]; %%%%%%%% Copied from NNDEMOF2 s2 = 'DESIGN'; s3 = 'Backpropagation Calculation'; s4 = ''; s5 = 'Chapter 11'; fig = nnbg(me); set(fig,'nextplot','add') H = get(fig,'userdata'); h1 = H(1); text(25,380,'Neural Network', ... 'color',nnblack, ... 'fontname','times', ... 'fontsize',16, ... 'fontangle','italic', ... 'fontweight','bold'); text(135,380,s2, ... 'color',nnblack, ... 'fontname','times', ... 'fontsize',16, ... 'fontweight','bold'); text(415,380,s3,... 'color',nnblack, ... 'fontname','times', ... 'fontsize',16, ... 'fontweight','bold',... 'HorizontalAlignment','right'); nndrwlin([0 415],[365 365],4,nndkblue); h2 = text(390,315,'',... 'color',nnblack, ... 'fontname','helvetica', ... 'fontsize',10); text1 = h2; for i=1:30 text2 = text(390,315-6*i,'',... 'color',nnblack, ... 'fontname','helvetica', ... 'fontsize',10); set(text1,'userdata',text2); text1 = text2; end set(text1,'userdata','end'); text(410,54,s4, ... 'color',nnblack, ... 'fontname','times', ... 'fontsize',12, ... 'fontweight','bold'); text(410,38,s5, ... 'color',nnblack, ... 'fontname','times', ... 'fontsize',12, ... 'fontweight','bold'); nndrwlin([410 501],[24 24],4,nndkblue); set(fig,'userdata',[h1 h2]) set(fig,'color',nndkgray,'color',nnltgray) %%%%%%%% set(fig, ... 'windowbuttondownfcn',nncallbk(me,'down'), ... 'BackingStore','off'); H = get(fig,'userdata'); fig_axis = H(1); desc_text = H(2); % ICON nndicon(11,458,363,'shadow') % NETWORK POSITIONS x1 = 30; % input x2 = x1+85; % 1st layer sum x3 = x2+70; % 1st layer transfer function x4 = x3+125; % 2nd layer sum x5 = x4+55; % 2nd layer transfer function x6 = x5+50; % output y1 = 305; % top neuron y2 = y1-20; % input & output neuron y3 = y1-40; % bottom neuron sz = 15; % size of icons wx = 50; % weight horizontal offset (from 1st layer) wy = 40; % weight vertical offset (from middle) % NETWORK INPUT p_name = nndtext(x1-10,y2,'p'); set(p_name,'fontsize',10); % TOP NEURON: WEIGHT plot([x1 x1+20],[y2 y1],'linewidth',2,'color',nnred); W11_box = fill(x1+20+box_x,y1+box_y,nnltgray,... 'linewidth',2,... 'edgecolor',nnred,... 'erasemode','none'); W11_text = nndtext(x1+20+box_len/2,y1,sprintf('%5.3f',W1(1))); set(W11_text,'fontsize',10); plot([x1+20+box_len x2-sz],[y1 y1],'linewidth',2,'color',nnred); W11_name = nndtext(x2-wx,y2+wy,'W1(1,1)'); set(W11_name,'fontsize',10); % TOP NEURON: BIAS plot([x2 x2 x3],[y1+sz*2 y1 y1],'linewidth',2,'color',nnred); b11_box = fill(x2-box_len/2+box_x,y1+sz*2+10+box_y,nnltgray,... 'linewidth',2,... 'edgecolor',nnred,... 'erasemode','none'); b11_text = nndtext(x2,y1+sz*2+10,sprintf('%5.3f',b1(1))); set(b11_text,'fontsize',10); b11_name = nndtext(x2+25,y1+sz*2+10,'b1(1)','left'); set(b11_name,'fontsize',10); % TOP NEURON: BODY nndsicon('sum',x2,y1,sz) n11_name = nndtext(x2+sz+20,y1+10,'n1(1)'); set(n11_name,'fontsize',10); nndsicon('logsig',x3,y1,sz) s11_name = nndtext(x2+sz+75,y1+40,'s1(1)'); set(s11_name,'fontsize',10); plot(x2+sz+[30 60],y1+[18 32],'--',... 'color',nnred,... 'linewidth',2,... 'erasemode','none') a11_name = nndtext(x3+sz+20,y1+10,'a1(1)'); set(a11_name,'fontsize',10); % BOTTOM NEURON: WEIGHT plot([x1 x1+20],[y2 y3],'linewidth',2,'color',nnred); W12_box = fill(x1+20+box_x,y3+box_y,nnltgray,... 'linewidth',2,... 'edgecolor',nnred,... 'erasemode','none'); W12_text = nndtext(x1+20+box_len/2,y3,sprintf('%5.3f',W1(2))); set(W12_text,'fontsize',10); plot([x1+20+box_len x2-sz],[y3 y3],'linewidth',2,'color',nnred); W12_name = nndtext(x2-wx,y2-wy,'W1(2,1)'); set(W12_name,'fontsize',10); % BOTTOM NEURON: BIAS plot([x2 x2 x3],[y3-sz*2 y3 y3],'linewidth',2,'color',nnred); b12_box = fill(x2-box_len/2+box_x,y3-sz*2-10+box_y,nnltgray,... 'linewidth',2,... 'edgecolor',nnred,... 'erasemode','none'); b12_text = nndtext(x2,y3-sz*2-10,sprintf('%5.3f',b1(2))); set(b12_text,'fontsize',10); b12_name = nndtext(x2+25,y3-sz*2-10,'b1(2)','left'); set(b12_name,'fontsize',10); % BOTTOM NEURON: BODY nndsicon('sum',x2,y3,sz) n12_name = nndtext(x2+sz+20,y3-10,'n1(2)'); set(n12_name,'fontsize',10); nndsicon('logsig',x3,y3,sz) s12_name = nndtext(x2+sz+75,y3-40,'s1(2)'); set(s12_name,'fontsize',10)
评论
    相关推荐
    • 图像数字水印的方案毕业论文.rar
      图像数字水印的方案毕业论文,基于dct和dwt的算法
    • wxxiiaobo2a.rar
      小波变换实现图像增强内含mattlab源程序源码
    • python数据分析随书代码
      10.10 神经网络 249 10.11 决策树 251 10.12 结 253 第 11章 Python生态系统的外部环境和云计算 255 11.1 与MATLAB/Octave交换信息 256 11.2 Installing rpy2安装rpy2 257 11.3 连接R 257 11.4 为Java传递...
    • 改进的状态空间模型遗传算法代码
      “改进的状态空间模型遗传算法及全局收敛性分析”论文MATLAB源码,下载文件解压后,主程序为“MAINGABS”,打开运行即可。两个mat文件为两种构造状态进化矩阵G的构造结果,程序里直接调用即可。还提供了论文中提及的...
    • 数学建模讲义
      梁满发的数学建模讲义:第一讲 数学建模导言 1 一、数学模型及分类 1 1.模型与数学模型 1 2.数学模型特点 1 3.数学模型分类 2 二、数学建模示例 4 示例一:四足体重估计的经验公式 4 示例二:代表名额的公平...
    • 具有皮肤和动作分析的人脸检测C ++库
      本文展示了针对肤色和灰度数据的人脸检测SSE优化C ++库,具有皮肤检测功能,运动估计功能可加快处理速度,尺寸SVM和NN粗糙人脸预过滤,PCA / LDA / ICA /任何降维/投影和最终NN分类
    • 具有皮肤和动作分析的人脸检测C ++库
      本文演示了针对肤色和灰度数据的人脸检测SSE优化的C ++库,具有皮肤检测功能,运动估计功能可加快处理速度,尺寸SVM和NN粗糙人脸预过滤,PCA / LDA / ICA /任何降维/投影和最终NN分类
    • JAVA上百实例源码以及开源项目代码
      Java目录监视器源程序 9个目标文件 内容索引:JAVA源码,综合应用,目录监视 用JAVA开发的一个小型的目录监视系统,系统会每5秒自动扫描一次需要监视的目录,可以用来监视目录中文件大小及文件增减数目的变化。...
    • matlab与vb混合编程
      matlab与vb混合编程的论文集,你遇到的问题,这里可以作为参考
    • matlabcnhelp.rar
      matlab中文帮助很难找的,快速下载