• PUDN用户
    了解作者
  • Fortran
    开发工具
  • 1.8MB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 2
    下载次数
  • 2013-11-22 22:04
    上传日期
2D Elastic Pseudospectral Method
2D-EPM.rar
  • Debug
  • ps_main.obj
    5.6KB
  • PS2D.pdb
    609KB
  • ps_output.obj
    9.3KB
  • ps_check.obj
    19.7KB
  • PS2D.exe
    452.1KB
  • ps_evolution.obj
    27.2KB
  • ps_input.obj
    9.8KB
  • ps_oper.obj
    8KB
  • DF60.PDB
    25KB
  • ps_model.obj
    8.9KB
  • ps_deriv.obj
    26.8KB
  • ps_init.obj
    12.2KB
  • ps_init.f
    2.1KB
  • ps_deriv.f
    25KB
  • PS2D.dsw
    533B
  • _gauss
    272KB
  • common.h
    1KB
  • 使用说明.docx
    11.9KB
  • ps_main.f
    720B
  • ps_output.f
    1.1KB
  • params.h
    162B
  • Wave propagation in three-dimensional spherical sections by the.pdf
    1.5MB
  • ps_check.f
    2.4KB
  • PS2D.plg
    1.2KB
  • _src
    0B
  • PS2D.dsp
    3.4KB
  • ps_oper.f
    1.1KB
  • ps_evolution.f
    3.1KB
  • ps_input.f
    881B
  • ps_model.f
    794B
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/622b67d33d2fbb0007481ba1/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622b67d33d2fbb0007481ba1/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">W<span class="_ _0"></span>ave<span class="_ _1"> </span>propagation<span class="_ _1"> </span>in<span class="_ _2"> </span>three-dimensional<span class="_ _2"> </span>spherical<span class="_ _1"> </span>sections<span class="_ _2"> </span>by<span class="_ _1"> </span>the</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls1 ws0">Chebyshev<span class="_ _1"> </span>spectral<span class="_ _2"> </span>method</div><div class="t m0 x1 h3 y3 ff2 fs1 fc0 sc0 ls2 ws0">Heiner<span class="_ _1"> </span>I<span class="_ _0"></span>gel</div><div class="t m0 x1 h4 y4 ff3 fs2 fc0 sc0 ls3 ws0">Institute<span class="_ _3"> </span>of<span class="_ _3"> </span>Theoretical<span class="_ _3"> </span>Geophysics,<span class="_ _3"> </span>Department<span class="_ _3"> </span>of<span class="_ _3"> </span>Ear<span class="_ _0"></span>th<span class="_ _3"> </span>Sciences,<span class="_ _3"> </span>Cambridge,<span class="_ _3"> </span><span class="ff2 ls2">CB2<span class="_ _4"> </span>3EQ,<span class="_ _4"> </span></span><span class="ls4">UK.<span class="_ _3"> </span>E-mail:<span class="_ _3"> </span>heiner@esc.cam.ac.uk</span></div><div class="t m0 x1 h4 y5 ff2 fs2 fc0 sc0 ls2 ws0">Accept<span class="_ _5"></span>ed<span class="_ _3"> </span>1998<span class="_ _4"> </span>Sept<span class="_ _5"></span>ember<span class="_ _4"> </span>1<span class="_ _0"></span>7<span class="_ _0"></span>.<span class="_ _3"> </span>Rece<span class="_ _5"></span>ived<span class="_ _3"> </span>1998<span class="_ _4"> </span>August<span class="_ _4"> </span>24;<span class="_ _4"> </span>in<span class="_ _4"> </span>orig<span class="_ _5"></span>inal<span class="_ _4"> </span>form<span class="_ _3"> </span>1998<span class="_ _4"> </span>February<span class="_ _4"> </span>1<span class="_ _0"></span>6</div><div class="t m0 x2 h5 y6 ff1 fs3 fc0 sc0 ls5 ws0">SUMMAR<span class="_ _0"></span>Y</div><div class="t m0 x2 h6 y7 ff2 fs3 fc0 sc0 ls2 ws0">Th<span class="_ _5"></span>e<span class="_ _2"> </span>e<span class="_"> </span>l<span class="_ _5"></span>ast<span class="_ _5"></span>ic<span class="_ _6"> </span>wave<span class="_ _2"> </span>e<span class="_ _5"></span>quati<span class="_ _5"></span>on<span class="_ _6"> </span>in<span class="_ _6"> </span>sp<span class="_ _5"></span>her<span class="_ _5"></span>ica<span class="_ _5"></span>l<span class="_ _2"> </span>c<span class="_ _5"></span>oord<span class="_ _5"></span>inat<span class="_ _5"></span>es<span class="_ _6"> </span>is<span class="_ _6"> </span>so<span class="_"> </span>lve<span class="_ _5"></span>d<span class="_ _6"> </span>by<span class="_ _2"> </span>a<span class="_ _6"> </span>Cheby<span class="_ _5"></span>shev<span class="_ _6"> </span>sp<span class="_ _5"></span>ect<span class="_ _5"></span>ral</div><div class="t m0 x2 h6 y8 ff2 fs3 fc0 sc0 ls2 ws0">me<span class="_ _5"></span>thod.<span class="_ _7"> </span>In<span class="_ _7"> </span>the<span class="_ _7"> </span>algo<span class="_"> </span>r<span class="_ _5"></span>ith<span class="_ _5"></span>m<span class="_ _8"> </span>pre<span class="_ _5"></span>sen<span class="_ _5"></span>ted<span class="_ _7"> </span>the<span class="_ _8"> </span>s<span class="_ _5"></span>ing<span class="_ _5"></span>ula<span class="_ _5"></span>riti<span class="_ _5"></span>es<span class="_ _8"> </span>in<span class="_ _8"> </span>t<span class="_ _5"></span>he<span class="_ _8"> </span>gove<span class="_ _5"></span>rn<span class="_ _5"></span>ing<span class="_ _8"> </span>e<span class="_ _5"></span>quati<span class="_ _5"></span>ons<span class="_ _7"> </span>are</div><div class="t m0 x2 h6 y9 ff2 fs3 fc0 sc0 ls2 ws0">avoide<span class="_ _5"></span>d<span class="_ _9"> </span>by<span class="_ _9"> </span>ce<span class="_ _5"></span>ntr<span class="_ _5"></span>ing<span class="_ _9"> </span>t<span class="_ _5"></span>he<span class="_ _9"> </span>phys<span class="_ _5"></span>ical<span class="_ _a"> </span>do<span class="_ _5"></span>mai<span class="_ _5"></span>n<span class="_ _9"> </span>around<span class="_ _a"> </span>the<span class="_ _a"> </span>equato<span class="_ _5"></span>r.<span class="_ _8"> </span>T<span class="_ _5"></span>he<span class="_ _9"> </span>hig<span class="_ _5"></span>hly<span class="_ _9"> </span>ac<span class="_ _5"></span>curat<span class="_ _5"></span>e</div><div class="t m0 x2 h6 ya ff2 fs3 fc0 sc0 ls6 ws0">pseudospectral<span class="_ _8"> </span>(PS)<span class="_ _7"> </span>der<span class="ls2">ivative<span class="_ _9"> </span>op<span class="_ _5"></span>erator<span class="_"> </span>s<span class="_ _9"> </span>reduc<span class="_ _5"></span>e<span class="_ _7"> </span>the<span class="_ _9"> </span>requi<span class="_ _5"></span>red<span class="_ _9"> </span>grid<span class="_ _7"> </span>s<span class="_ _5"></span>ize<span class="_ _7"> </span>c<span class="_ _5"></span>omp<span class="_ _5"></span>are<span class="_ _5"></span>d<span class="_ _8"> </span>to</span></div><div class="t m0 x2 h6 yb ff2 fs3 fc0 sc0 ls6 ws0">&#162;nite<span class="_ _4"> </span>di&#161;<span class="_ _0"></span>erence<span class="_ _b"> </span>(FD)<span class="_ _b"> </span>algorithms.<span class="_ _3"> </span>The<span class="_ _4"> </span>non-staggered<span class="_ _b"> </span>grid<span class="_ _4"> </span>scheme<span class="_ _b"> </span>allows<span class="_ _4"> </span>easy<span class="_ _4"> </span>extension</div><div class="t m0 x2 h6 yc ff2 fs3 fc0 sc0 ls7 ws0">to<span class="_ _2"> </span>general<span class="_ _2"> </span>material<span class="_ _2"> </span>anisotropy<span class="_ _2"> </span>without<span class="_ _2"> </span>additional<span class="_ _2"> </span>interpolations<span class="_ _2"> </span>being<span class="_ _6"> </span>required<span class="_ _2"> </span>as<span class="_ _2"> </span>in</div><div class="t m0 x2 h6 yd ff2 fs3 fc0 sc0 ls2 ws0">stag<span class="_ _5"></span>ger<span class="_ _5"></span>ed<span class="_ _9"> </span>FD<span class="_ _7"> </span>s<span class="_ _5"></span>chem<span class="_ _5"></span>es.<span class="_ _8"> </span>Th<span class="_ _5"></span>e<span class="_ _7"> </span>bou<span class="_ _5"></span>nda<span class="_ _5"></span>ry<span class="_ _7"> </span>c<span class="_ _5"></span>ond<span class="_ _5"></span>itio<span class="_ _5"></span>ns<span class="_ _9"> </span>previ<span class="_ _5"></span>ously<span class="_ _7"> </span>d<span class="_ _5"></span>er<span class="_"> </span>ive<span class="_ _5"></span>d<span class="_ _7"> </span>for<span class="_ _9"> </span>cur<span class="_ _5"></span>vil<span class="_ _5"></span>ine<span class="_ _5"></span>ar</div><div class="t m0 x2 h6 ye ff2 fs3 fc0 sc0 ls8 ws0">coordinate<span class="_ _3"> </span>systems<span class="_ _4"> </span>can<span class="_ _4"> </span>be<span class="_ _4"> </span>applied<span class="_ _4"> </span>directly<span class="_ _3"> </span>to<span class="_ _4"> </span>the<span class="_ _4"> </span>velocit<span class="_ _0"></span>y<span class="_ _4"> </span>vect<span class="_ _0"></span>or<span class="_ _4"> </span>and<span class="_ _4"> </span>stress<span class="_ _4"> </span>tensor<span class="_ _4"> </span>in<span class="_ _4"> </span>the</div><div class="t m0 x2 h6 yf ff2 fs3 fc0 sc0 ls2 ws0">sph<span class="_ _5"></span>eri<span class="_ _5"></span>cal<span class="_ _9"> </span>basi<span class="_ _5"></span>s.<span class="_ _6"> </span>Th<span class="_ _5"></span>e<span class="_ _8"> </span>a<span class="_ _5"></span>lgor<span class="_ _5"></span>ith<span class="_ _5"></span>m<span class="_ _8"> </span>i<span class="_ _5"></span>s<span class="_ _7"> </span>appl<span class="_ _5"></span>ied<span class="_ _7"> </span>to<span class="_ _9"> </span>the<span class="_ _7"> </span>p<span class="_"> </span>robl<span class="_ _5"></span>em<span class="_ _7"> </span>o<span class="_ _5"></span>f<span class="_ _8"> </span>a<span class="_ _7"> </span>d<span class="_"> </span>ou<span class="_ _5"></span>ble<span class="_ _5"></span>-<span class="_ _5"></span>coup<span class="_ _5"></span>le<span class="_ _7"> </span>sou<span class="_ _5"></span>rce</div><div class="t m0 x2 h6 y10 ff2 fs3 fc0 sc0 ls2 ws0">lo<span class="_"> </span>c<span class="_ _5"></span>ated<span class="_ _2"> </span>in<span class="_ _1"> </span>a<span class="_ _2"> </span>hig<span class="_ _5"></span>h-ve<span class="_"> </span>l<span class="_ _5"></span>ocity<span class="_ _1"> </span>r<span class="_ _5"></span>egi<span class="_ _5"></span>on<span class="_ _1"> </span>at<span class="_ _1"> </span>t<span class="_ _5"></span>he<span class="_ _1"> </span>to<span class="_ _5"></span>p<span class="_ _1"> </span>of<span class="_ _1"> </span>th<span class="_ _5"></span>e<span class="_ _1"> </span>ma<span class="_ _5"></span>ntl<span class="_ _5"></span>e<span class="_ _1"> </span>(slab).<span class="_ _b"> </span>T<span class="_ _5"></span>he<span class="_ _1"> </span>sy<span class="_ _5"></span>nth<span class="_ _5"></span>eti<span class="_ _5"></span>c<span class="_ _1"> </span>se<span class="_"> </span>i<span class="_ _5"></span>smo<span class="_ _5"></span>-</div><div class="t m0 x2 h6 y11 ff2 fs3 fc0 sc0 ls2 ws0">gra<span class="_"> </span>m<span class="_ _5"></span>s<span class="_ _1"> </span>show<span class="_ _1"> </span>azimu<span class="_ _5"></span>th<span class="_ _5"></span>-de<span class="_ _5"></span>pe<span class="_ _5"></span>nde<span class="_ _5"></span>nt<span class="_ _1"> </span>travelti<span class="_ _5"></span>me<span class="_ _1"> </span>and<span class="_ _1"> </span>waveform<span class="_ _1"> </span>e&#161;ects<span class="_ _1"> </span>whi<span class="_ _5"></span>ch<span class="_ _b"> </span>a<span class="_ _5"></span>re<span class="_ _1"> </span>like<span class="_ _5"></span>ly<span class="_ _1"> </span>to<span class="_ _b"> </span>be</div><div class="t m0 x2 h6 y12 ff2 fs3 fc0 sc0 ls2 ws0">obse<span class="_ _5"></span>rvabl<span class="_ _5"></span>e<span class="_ _1"> </span>in<span class="_ _2"> </span>reg<span class="_ _5"></span>ion<span class="_ _5"></span>s<span class="_ _1"> </span>whe<span class="_ _5"></span>re<span class="_ _1"> </span>s<span class="_ _5"></span>ubdu<span class="_ _5"></span>cti<span class="_ _5"></span>on<span class="_ _1"> </span>t<span class="_ _5"></span>akes<span class="_ _2"> </span>pla<span class="_ _5"></span>ce.<span class="_ _1"> </span>Su<span class="_ _5"></span>ch<span class="_ _1"> </span>t<span class="_"> </span>e<span class="_ _5"></span>chni<span class="_ _5"></span>que<span class="_"> </span>s<span class="_ _2"> </span>ar<span class="_ _5"></span>e<span class="_ _1"> </span>im<span class="_ _5"></span>por<span class="_ _5"></span>tan<span class="_ _5"></span>t<span class="_ _1"> </span>in</div><div class="t m0 x2 h6 y13 ff2 fs3 fc0 sc0 ls2 ws0">mod<span class="_ _5"></span>ell<span class="_ _5"></span>ing<span class="_ _6"> </span>t<span class="_ _5"></span>he<span class="_ _6"> </span>full<span class="_ _5"></span>-wave<span class="_ _6"> </span>chara<span class="_ _5"></span>cter<span class="_ _5"></span>ist<span class="_ _5"></span>ics<span class="_ _6"> </span>o<span class="_ _5"></span>f<span class="_ _2"> </span>t<span class="_ _5"></span>he<span class="_ _6"> </span>Ea<span class="_ _5"></span>rth's<span class="_ _6"> </span>3-D<span class="_ _6"> </span>s<span class="_ _5"></span>tru<span class="_ _5"></span>ctur<span class="_ _5"></span>e<span class="_ _6"> </span>and<span class="_ _6"> </span>i<span class="_"> </span>n<span class="_ _8"> </span>provid<span class="_ _5"></span>ing</div><div class="t m0 x2 h6 y14 ff2 fs3 fc0 sc0 ls2 ws0">acc<span class="_ _5"></span>urate<span class="_ _1"> </span>refer<span class="_ _5"></span>en<span class="_ _5"></span>ce<span class="_ _b"> </span>s<span class="_ _5"></span>olu<span class="_ _5"></span>tio<span class="_ _5"></span>ns<span class="_ _1"> </span>for<span class="_ _b"> </span>3<span class="_ _5"></span>-D<span class="_ _b"> </span>gl<span class="_ _5"></span>obal<span class="_ _1"> </span>mo<span class="_ _5"></span>dels.</div><div class="t m0 x2 h6 y15 ff1 fs3 fc0 sc0 ls9 ws0">Key<span class="_ _b"> </span>words:<span class="_ _a"> </span><span class="ff2 lsa">Chebyshev<span class="_ _b"> </span>spectral<span class="_ _b"> </span>method,<span class="_ _1"> </span>synthetic<span class="_ _b"> </span>seismograms,<span class="_ _b"> </span>wave<span class="_ _b"> </span>propagatio<span class="_"> </span>n.</span></div><div class="t m0 x1 h7 y16 ff1 fs4 fc0 sc0 lsb ws0">1<span class="_ _c"> </span>INTRO<span class="_ _0"></span>DUCTION</div><div class="t m0 x1 h8 y17 ff2 fs4 fc0 sc0 ls2 ws0">Under<span class="_ _5"></span>stan<span class="_ _5"></span>din<span class="_ _5"></span>g<span class="_ _d"> </span>the<span class="_ _e"> </span>glob<span class="_ _5"></span>al<span class="_ _d"> </span>up<span class="_ _5"></span>per-m<span class="_ _5"></span>antl<span class="_ _5"></span>e<span class="_ _d"> </span>str<span class="_ _5"></span>uctu<span class="_"> </span>r<span class="_ _5"></span>e<span class="_ _d"> </span>an<span class="_ _5"></span>d<span class="_ _d"> </span>the</div><div class="t m0 x1 h8 y18 ff2 fs4 fc0 sc0 ls2 ws0">rel<span class="_ _5"></span>ated<span class="_ _8"> </span>geo<span class="_ _5"></span>dynam<span class="_ _5"></span>ical<span class="_ _8"> </span>featur<span class="_ _5"></span>es<span class="_ _6"> </span>i<span class="_ _5"></span>s<span class="_ _6"> </span>o<span class="_ _5"></span>ne<span class="_ _8"> </span>of<span class="_ _6"> </span>th<span class="_ _5"></span>e<span class="_ _6"> </span>m<span class="_ _5"></span>ost<span class="_ _8"> </span>imp<span class="_ _5"></span>orta<span class="_ _5"></span>nt</div><div class="t m0 x1 h8 y19 ff2 fs4 fc0 sc0 ls2 ws0">goal<span class="_ _5"></span>s<span class="_ _6"> </span>in<span class="_ _6"> </span>s<span class="_ _5"></span>eis<span class="_ _5"></span>molo<span class="_ _5"></span>gy<span class="_ _6"> </span>tod<span class="_ _5"></span>ay<span class="_ _f"></span>.<span class="_ _6"> </span>In<span class="_ _8"> </span>orde<span class="_ _5"></span>r<span class="_ _6"> </span>to<span class="_ _6"> </span>und<span class="_ _5"></span>ers<span class="_"> </span>t<span class="_ _5"></span>and<span class="_ _6"> </span>t<span class="_ _5"></span>he<span class="_ _6"> </span>m<span class="_ _5"></span>ass</div><div class="t m0 x1 h8 y1a ff2 fs4 fc0 sc0 lsc ws0">&#163;ux<span class="_ _2"> </span>into<span class="_ _6"> </span>and<span class="_ _2"> </span>out<span class="_ _2"> </span>of<span class="_ _2"> </span>the<span class="_ _6"> </span>mantle,<span class="_ _2"> </span>a<span class="_ _2"> </span>detailed<span class="_ _6"> </span>understanding<span class="_ _2"> </span>of</div><div class="t m0 x1 h8 y1b ff2 fs4 fc0 sc0 lsd ws0">the<span class="_ _a"> </span>structure<span class="_ _a"> </span>of<span class="_ _a"> </span>subduction<span class="_ _d"> </span>zones,<span class="_ _a"> </span>hotspots,<span class="_ _a"> </span>upper-mantle</div><div class="t m0 x1 h8 y1c ff2 fs4 fc0 sc0 ls2 ws0">dis<span class="_ _5"></span>cont<span class="_ _5"></span>inu<span class="_ _5"></span>ities,<span class="_ _4"> </span>e<span class="_ _5"></span>tc.,<span class="_ _4"> </span>i<span class="_ _5"></span>s<span class="_ _4"> </span>nece<span class="_ _5"></span>ssa<span class="_"> </span>r<span class="_ _5"></span>y<span class="_ _f"></span>.<span class="_ _4"> </span>Much<span class="_ _b"> </span>of<span class="_ _4"> </span>the<span class="_ _b"> </span>cur<span class="_ _5"></span>ren<span class="_ _5"></span>t<span class="_ _4"> </span>imagi<span class="_ _5"></span>ng</div><div class="t m0 x1 h8 y1d ff2 fs4 fc0 sc0 lse ws0">and<span class="_ _1"> </span>modelling<span class="_ _1"> </span>of<span class="_ _1"> </span>upp<span class="_"> </span>er-mantle<span class="_ _1"> </span>structure<span class="_ _1"> </span>is<span class="_ _1"> </span>un<span class="_"> </span>dertaken<span class="_ _1"> </span>using</div><div class="t m0 x1 h8 y1e ff2 fs4 fc0 sc0 ls2 ws0">ray-bas<span class="_ _5"></span>ed<span class="_ _7"> </span>approxi<span class="_ _5"></span>matio<span class="_ _5"></span>ns<span class="_ _7"> </span>or<span class="_ _7"> </span>lon<span class="_ _5"></span>g-p<span class="_ _5"></span>eri<span class="_"> </span>o<span class="_ _5"></span>d<span class="_ _8"> </span>s<span class="_ _5"></span>eism<span class="_ _5"></span>ogra<span class="_"> </span>ms<span class="_ _9"> </span>with</div><div class="t m0 x1 h8 y1f ff2 fs4 fc0 sc0 ls2 ws0">oth<span class="_ _5"></span>er<span class="_ _a"> </span>(li<span class="_ _5"></span>near<span class="_ _5"></span>ized<span class="_ _5"></span>)<span class="_ _9"> </span>app<span class="_ _5"></span>roximat<span class="_ _5"></span>ions<span class="_ _a"> </span>i<span class="_"> </span>nvolved.<span class="_ _9"> </span>Th<span class="_ _5"></span>ese<span class="_ _a"> </span>app<span class="_"> </span>roxi<span class="_ _5"></span>-</div><div class="t m0 x1 h8 y20 ff2 fs4 fc0 sc0 ls2 ws0">mati<span class="_ _5"></span>ons<span class="_ _b"> </span>are<span class="_ _b"> </span>n<span class="_ _5"></span>ot<span class="_ _4"> </span>va<span class="_"> </span>l<span class="_ _5"></span>id<span class="_ _4"> </span>wh<span class="_ _5"></span>en<span class="_ _4"> </span>t<span class="_ _5"></span>he<span class="_ _4"> </span>wavel<span class="_ _5"></span>engt<span class="_ _5"></span>h<span class="_ _4"> </span>of<span class="_ _b"> </span>the<span class="_ _b"> </span>prop<span class="_ _5"></span>agatin<span class="_ _5"></span>g</div><div class="t m0 x1 h8 y21 ff2 fs4 fc0 sc0 ls2 ws0">wave&#162;el<span class="_ _5"></span>d<span class="_ _8"> </span>is<span class="_ _8"> </span>of<span class="_ _8"> </span>the<span class="_ _8"> </span>s<span class="_ _5"></span>ame<span class="_ _8"> </span>o<span class="_"> </span>rd<span class="_ _5"></span>er<span class="_ _8"> </span>as<span class="_ _8"> </span>th<span class="_ _5"></span>e<span class="_ _6"> </span>s<span class="_ _5"></span>tru<span class="_ _5"></span>cture<span class="_ _5"></span>s<span class="_ _8"> </span>of<span class="_ _8"> </span>int<span class="_ _5"></span>eres<span class="_ _5"></span>t.</div><div class="t m0 x1 h8 y22 ff2 fs4 fc0 sc0 lsf ws0">Scattering<span class="_ _8"> </span>e&#161;ects<span class="_ _7"> </span>will<span class="_ _7"> </span>then<span class="_ _7"> </span>be<span class="_ _7"> </span>important,<span class="_ _7"> </span>and<span class="_ _7"> </span>may<span class="_ _7"> </span>contain</div><div class="t m0 x1 h8 y23 ff2 fs4 fc0 sc0 ls10 ws0">important<span class="_ _d"> </span>information<span class="_ _d"> </span>on<span class="_ _d"> </span>these<span class="_ _d"> </span>structures.<span class="_ _a"> </span>Modern<span class="_ _d"> </span>high-</div><div class="t m0 x1 h8 y24 ff2 fs4 fc0 sc0 ls2 ws0">qual<span class="_ _5"></span>ity<span class="_ _9"> </span>broad<span class="_ _5"></span>-ban<span class="_ _5"></span>d<span class="_ _9"> </span>r<span class="_ _5"></span>eco<span class="_ _5"></span>rding<span class="_ _5"></span>s<span class="_ _a"> </span>cont<span class="_ _5"></span>ain<span class="_ _a"> </span>i<span class="_ _5"></span>nformat<span class="_ _5"></span>ion<span class="_ _a"> </span>t<span class="_ _5"></span>hat<span class="_ _a"> </span>is</div><div class="t m0 x1 h8 y25 ff2 fs4 fc0 sc0 ls11 ws0">currently<span class="_ _3"> </span>not<span class="_ _4"> </span>accounted<span class="_ _4"> </span>fo<span class="_ _f"></span>r<span class="_ _4"> </span>by<span class="_ _3"> </span>essentially<span class="_ _4"> </span>ra<span class="_ _0"></span>y-based<span class="_ _3"> </span>modelling</div><div class="t m0 x1 h8 y26 ff2 fs4 fc0 sc0 ls2 ws0">algo<span class="_ _5"></span>rith<span class="_ _5"></span>ms.<span class="_ _4"> </span>T<span class="_ _5"></span>here<span class="_ _5"></span>fore,<span class="_ _1"> </span>the<span class="_ _1"> </span>deve<span class="_ _5"></span>lopm<span class="_ _5"></span>ent<span class="_ _1"> </span>of<span class="_ _b"> </span>for<span class="_ _5"></span>ward<span class="_ _1"> </span>mod<span class="_ _5"></span>elli<span class="_ _5"></span>ng</div><div class="t m0 x1 h8 y27 ff2 fs4 fc0 sc0 ls2 ws0">tool<span class="_ _5"></span>s<span class="_ _7"> </span>th<span class="_ _5"></span>at&#246;i<span class="_ _5"></span>n<span class="_ _7"> </span>the<span class="_ _9"> </span>not<span class="_ _9"> </span>too<span class="_ _7"> </span>d<span class="_ _5"></span>istan<span class="_ _5"></span>t<span class="_ _9"> </span>future&#246;w<span class="_ _5"></span>ill<span class="_ _9"> </span>allow<span class="_ _9"> </span>us<span class="_ _7"> </span>to</div><div class="t m0 x1 h8 y28 ff2 fs4 fc0 sc0 ls2 ws0">simu<span class="_ _5"></span>late<span class="_ _3"> </span>3<span class="_ _5"></span>-D<span class="_ _3"> </span>glob<span class="_ _5"></span>al<span class="_ _3"> </span>eart<span class="_ _5"></span>h<span class="_ _3"> </span>mo<span class="_ _5"></span>dels<span class="_ _3"> </span>w<span class="_ _5"></span>ith<span class="_ _3"> </span>hig<span class="_ _5"></span>h<span class="_ _3"> </span>enoug<span class="_ _5"></span>h<span class="_ _3"> </span>frequ<span class="_ _5"></span>enci<span class="_ _5"></span>es</div><div class="t m0 x1 h8 y29 ff2 fs4 fc0 sc0 ls2 ws0">is<span class="_ _9"> </span>an<span class="_ _a"> </span>imp<span class="_ _5"></span>ort<span class="_ _5"></span>ant<span class="_ _9"> </span>st<span class="_ _5"></span>ep<span class="_ _9"> </span>toward<span class="_ _5"></span>s<span class="_ _9"> </span>solv<span class="_ _5"></span>ing<span class="_ _a"> </span>some<span class="_ _a"> </span>of<span class="_ _9"> </span>th<span class="_ _5"></span>e<span class="_ _9"> </span>cu<span class="_ _5"></span>rren<span class="_ _5"></span>t</div><div class="t m0 x1 h8 y2a ff2 fs4 fc0 sc0 ls2 ws0">geo<span class="_ _5"></span>dyna<span class="_"> </span>mi<span class="_ _5"></span>cal<span class="_ _b"> </span>p<span class="_"> </span>robl<span class="_ _5"></span>ems.</div><div class="t m0 x3 h8 y2b ff2 fs4 fc0 sc0 ls2 ws0">In<span class="_ _2"> </span>the<span class="_ _2"> </span>pa<span class="_ _5"></span>st<span class="_ _2"> </span>dec<span class="_ _5"></span>ade<span class="_ _2"> </span>dis<span class="_ _5"></span>cre<span class="_"> </span>t<span class="_ _5"></span>e<span class="_ _1"> </span>g<span class="_ _5"></span>rid<span class="_ _2"> </span>met<span class="_ _5"></span>hods<span class="_ _2"> </span>h<span class="_ _5"></span>ave<span class="_ _1"> </span>been<span class="_ _2"> </span>wi<span class="_ _5"></span>dely</div><div class="t m0 x1 h8 y2c ff2 fs4 fc0 sc0 ls2 ws0">use<span class="_ _5"></span>d<span class="_ _4"> </span>in<span class="_ _3"> </span>t<span class="_ _5"></span>he<span class="_ _4"> </span>&#162;eld<span class="_ _4"> </span>of<span class="_ _4"> </span>seis<span class="_ _5"></span>mic<span class="_ _4"> </span>wave<span class="_ _4"> </span>propagati<span class="_ _5"></span>on.<span class="_ _4"> </span>Early<span class="_ _4"> </span>algor<span class="_ _5"></span>ithm<span class="_ _5"></span>s</div><div class="t m0 x1 h8 y2d ff2 fs4 fc0 sc0 ls2 ws0">(e.g.<span class="_ _b"> </span>Vir<span class="_ _5"></span>ieu<span class="_"> </span>x<span class="_ _2"> </span>1984<span class="_ _5"></span>,<span class="_ _2"> </span>1986)<span class="_ _6"> </span>solved<span class="_ _6"> </span>th<span class="_ _5"></span>e<span class="_ _6"> </span>equatio<span class="_ _5"></span>ns<span class="_ _6"> </span>in<span class="_ _6"> </span>two<span class="_ _6"> </span>di<span class="_ _5"></span>men-</div><div class="t m0 x1 h8 y2e ff2 fs4 fc0 sc0 ls2 ws0">sio<span class="_ _5"></span>ns<span class="_ _6"> </span>usi<span class="_ _5"></span>ng<span class="_ _6"> </span>low-ord<span class="_ _5"></span>er<span class="_ _6"> </span>approxim<span class="_ _5"></span>ation<span class="_ _5"></span>s<span class="_ _2"> </span>to<span class="_ _6"> </span>t<span class="_ _5"></span>he<span class="_ _6"> </span>spac<span class="_ _5"></span>e<span class="_ _6"> </span>and<span class="_ _6"> </span>tim<span class="_ _5"></span>e</div><div class="t m0 x1 h8 y2f ff2 fs4 fc0 sc0 ls2 ws0">der<span class="_ _5"></span>ivatives.<span class="_ _8"> </span>Lat<span class="_ _5"></span>er<span class="_ _8"> </span>th<span class="_ _5"></span>ese<span class="_ _8"> </span>a<span class="_ _5"></span>lgor<span class="_"> </span>it<span class="_ _5"></span>hm<span class="_ _5"></span>s<span class="_ _8"> </span>wer<span class="_ _5"></span>e<span class="_ _8"> </span>exten<span class="_ _5"></span>ded<span class="_ _8"> </span>to<span class="_ _8"> </span>h<span class="_ _5"></span>ighe<span class="_ _5"></span>r</div><div class="t m0 x4 h8 y30 ff2 fs4 fc0 sc0 ls2 ws0">orde<span class="_ _5"></span>rs<span class="_ _6"> </span>(e.g.<span class="_ _8"> </span>Levan<span class="_ _5"></span>der<span class="_ _6"> </span>1988),<span class="_ _6"> </span>to<span class="_ _6"> </span>t<span class="_ _5"></span>hree<span class="_ _8"> </span>dime<span class="_ _5"></span>nsi<span class="_ _5"></span>ons<span class="_ _6"> </span>(e.g<span class="_ _5"></span>.<span class="_ _6"> </span>Mora</div><div class="t m0 x4 h8 y31 ff2 fs4 fc0 sc0 ls2 ws0">1989)<span class="_ _b"> </span>a<span class="_ _5"></span>nd<span class="_ _b"> </span>to<span class="_ _b"> </span>t<span class="_ _5"></span>he<span class="_ _b"> </span>ge<span class="_ _5"></span>neral<span class="_ _1"> </span>aniso<span class="_ _5"></span>tropi<span class="_ _5"></span>c<span class="_ _4"> </span>c<span class="_ _5"></span>ase<span class="_ _1"> </span>(e.g.<span class="_ _b"> </span>Igel<span class="_ _1"> </span><span class="ff3 ls12">et<span class="_ _4"> </span>al.<span class="_ _4"> </span></span><span class="ls13">199<span class="_ _5"></span>5<span class="_ _5"></span>;</span></div><div class="t m0 x4 h8 y32 ff2 fs4 fc0 sc0 ls2 ws0">T<span class="_ _f"></span>es<span class="_ _5"></span>smer<span class="_ _4"> </span>1995).</div><div class="t m0 x5 h8 y33 ff2 fs4 fc0 sc0 ls2 ws0">An<span class="_ _d"> </span>al<span class="_ _5"></span>ter<span class="_ _5"></span>native<span class="_ _d"> </span>to<span class="_ _e"> </span>the<span class="_ _d"> </span><span class="ff3 ls14">local<span class="_ _e"> </span></span>derivat<span class="_ _5"></span>ive<span class="_ _d"> </span>op<span class="_ _5"></span>erator<span class="_ _5"></span>s<span class="_ _d"> </span>of<span class="_ _d"> </span>FD</div><div class="t m0 x4 h8 y34 ff2 fs4 fc0 sc0 ls2 ws0">schem<span class="_ _5"></span>es<span class="_ _10"> </span>is<span class="_ _10"> </span>pse<span class="_ _5"></span>udo<span class="_ _5"></span>spe<span class="_ _5"></span>ctral<span class="_ _10"> </span>(P<span class="_ _5"></span>S)<span class="_ _10"> </span>techn<span class="_ _5"></span>iques.<span class="_ _10"> </span>PS<span class="_ _10"> </span>me<span class="_ _5"></span>thod<span class="_ _5"></span>s</div><div class="t m0 x4 h8 y35 ff2 fs4 fc0 sc0 ls2 ws0">have<span class="_ _d"> </span>bee<span class="_ _5"></span>n<span class="_ _d"> </span>widely<span class="_ _e"> </span>us<span class="_ _5"></span>ed<span class="_ _d"> </span>in<span class="_ _e"> </span>num<span class="_ _5"></span>eri<span class="_"> </span>ca<span class="_ _5"></span>l<span class="_ _d"> </span>a<span class="_ _5"></span>lgorit<span class="_ _5"></span>hms<span class="_ _e"> </span>for<span class="_ _d"> </span>wave</div><div class="t m0 x4 h8 y36 ff2 fs4 fc0 sc0 lsd ws0">propaga<span class="_ _0"></span>tion,<span class="_ _6"> </span>computational<span class="_ _6"> </span>&#163;uid<span class="_ _6"> </span>dynamics<span class="_ _6"> </span>and<span class="_ _6"> </span>other<span class="_ _2"> </span>&#162;el<span class="_"> </span>ds.</div><div class="t m0 x4 h8 y37 ff2 fs4 fc0 sc0 ls2 ws0">F<span class="_ _f"></span>o<span class="_ _5"></span>r<span class="_ _4"> </span>t<span class="_ _5"></span>he<span class="_ _b"> </span>fundam<span class="_ _5"></span>ent<span class="_ _5"></span>als<span class="_ _b"> </span>of<span class="_ _b"> </span>pse<span class="_ _5"></span>udos<span class="_ _5"></span>pe<span class="_ _5"></span>ctral<span class="_ _b"> </span>me<span class="_ _5"></span>thod<span class="_ _5"></span>s<span class="_ _4"> </span>t<span class="_ _5"></span>he<span class="_ _4"> </span>r<span class="_ _5"></span>eade<span class="_ _5"></span>r<span class="_ _4"> </span>i<span class="_"> </span>s</div><div class="t m0 x4 h8 y38 ff2 fs4 fc0 sc0 ls2 ws0">referr<span class="_ _5"></span>ed<span class="_ _8"> </span>to<span class="_ _6"> </span>t<span class="_ _5"></span>he<span class="_ _8"> </span>excell<span class="_ _5"></span>ent<span class="_ _8"> </span>book<span class="_ _6"> </span>by<span class="_ _8"> </span>F<span class="_ _0"></span>or<span class="_ _5"></span>nber<span class="_ _5"></span>g<span class="_ _6"> </span>(1996).<span class="_ _8"> </span>Previ<span class="_ _5"></span>ous</div><div class="t m0 x4 h8 y39 ff2 fs4 fc0 sc0 ls2 ws0">appl<span class="_ _5"></span>icati<span class="_ _5"></span>ons<span class="_ _6"> </span>to<span class="_ _8"> </span>wave<span class="_ _6"> </span>propaga<span class="_ _5"></span>tion<span class="_ _8"> </span>problem<span class="_ _5"></span>s<span class="_ _6"> </span>can<span class="_ _8"> </span>be<span class="_ _6"> </span>foun<span class="_ _5"></span>d<span class="_ _6"> </span>in</div><div class="t m0 x4 h8 y3a ff2 fs4 fc0 sc0 ls15 ws0">Kos<span class="_ _5"></span>l<span class="_ _5"></span>o&#161;<span class="_ _6"> </span><span class="ff3 ls12">et<span class="_ _1"> </span>al.<span class="_ _6"> </span></span><span class="ls16">(1<span class="_ _f"></span>990),<span class="_ _2"> </span>K<span class="_ _0"></span>oslo&#161;<span class="_ _2"> </span>&amp;<span class="_ _2"> </span>T<span class="_ _f"></span>al-Ezer<span class="_ _2"> </span>(1<span class="_ _f"></span>993),<span class="_ _1"> </span>Carcione<span class="_ _2"> </span>&amp;</span></div><div class="t m0 x4 h8 y3b ff2 fs4 fc0 sc0 ls2 ws0">W<span class="_ _f"></span>a<span class="_"> </span>n<span class="_ _5"></span>g<span class="_ _a"> </span>(1993),<span class="_ _a"> </span>C<span class="_ _5"></span>arci<span class="_ _5"></span>one<span class="_ _d"> </span>(1<span class="_ _0"></span>994<span class="_ _5"></span>),<span class="_ _9"> </span>T<span class="_ _f"></span>ess<span class="_"> </span>m<span class="_ _5"></span>er<span class="_ _d"> </span>&amp;<span class="_ _a"> </span>Kos<span class="_ _5"></span>lo&#161;<span class="_ _d"> </span>(1<span class="_ _0"></span>994),</div><div class="t m0 x4 h8 y3c ff2 fs4 fc0 sc0 ls2 ws0">T<span class="_ _f"></span>es<span class="_ _5"></span>smer<span class="_ _b"> </span>(1995)<span class="_ _4"> </span>an<span class="_ _5"></span>d<span class="_ _4"> </span>Komat<span class="_ _5"></span>itsch<span class="_ _b"> </span><span class="ff3 ls12">et<span class="_ _3"> </span>a<span class="_"> </span>l<span class="_"> </span>.<span class="_ _b"> </span></span>(1996).</div><div class="t m0 x5 h8 y3d ff2 fs4 fc0 sc0 ls17 ws0">In<span class="_ _4"> </span>PS<span class="_ _4"> </span>techniques<span class="_ _3"> </span>the<span class="_ _4"> </span>space-dep<span class="_"> </span>endent<span class="_ _4"> </span>&#162;elds<span class="_ _4"> </span>are<span class="_ _4"> </span>expanded<span class="_ _4"> </span>in</div><div class="t m0 x4 h8 y3e ff2 fs4 fc0 sc0 ls2 ws0">a<span class="_ _3"> </span>set<span class="_ _11"> </span>of<span class="_ _11"> </span>orth<span class="_ _5"></span>ogon<span class="_ _5"></span>al<span class="_ _11"> </span>ba<span class="_ _5"></span>sis<span class="_ _11"> </span>func<span class="_ _5"></span>tio<span class="_ _5"></span>ns<span class="_ _11"> </span>whi<span class="_ _5"></span>ch<span class="_ _11"> </span>are<span class="_ _3"> </span>know<span class="_ _5"></span>n<span class="_ _11"> </span><span class="ff3">exa<span class="_ _5"></span>ctl<span class="_ _5"></span>y<span class="_ _11"> </span></span>at<span class="_ _11"> </span>a</div><div class="t m0 x4 h8 y3f ff2 fs4 fc0 sc0 ls2 ws0">dis<span class="_ _5"></span>cret<span class="_ _5"></span>e<span class="_ _4"> </span>set<span class="_ _4"> </span>of<span class="_ _4"> </span>poin<span class="_ _5"></span>ts.<span class="_ _11"> </span>T<span class="_ _5"></span>hese<span class="_ _4"> </span>b<span class="_ _5"></span>asis<span class="_ _4"> </span>func<span class="_ _5"></span>tio<span class="_"> </span>n<span class="_ _5"></span>s<span class="_ _4"> </span>can<span class="_ _4"> </span>be<span class="_ _4"> </span>for<span class="_ _4"> </span>exam<span class="_ _5"></span>ple</div><div class="t m0 x4 h8 y40 ff2 fs4 fc0 sc0 ls2 ws0">F<span class="_ _f"></span>ou<span class="_ _5"></span>rie<span class="_ _5"></span>r<span class="_ _1"> </span>ser<span class="_ _5"></span>ies<span class="_ _1"> </span>(r<span class="_ _5"></span>egu<span class="_ _5"></span>lar<span class="_ _1"> </span>g<span class="_ _5"></span>rid)<span class="_ _2"> </span>or<span class="_ _1"> </span>C<span class="_ _5"></span>hebysh<span class="_ _5"></span>ev<span class="_ _1"> </span>poly<span class="_ _5"></span>nomi<span class="_ _5"></span>als<span class="_ _2"> </span>(non-</div><div class="t m0 x4 h8 y41 ff2 fs4 fc0 sc0 lsd ws0">uniform<span class="_ _3"> </span>grid<span class="_ _4"> </span>de&#162;ned<span class="_ _3"> </span>between<span class="_ _4"> </span>[<span class="ff4 ls2">{</span><span class="lsc">1<span class="_ _f"></span>,<span class="_ _1"> </span>1<span class="_ _0"></span>]<span class="_ _3"> </span>with<span class="_ _4"> </span>denser<span class="_ _3"> </span>grid<span class="_ _4"> </span>near<span class="_ _3"> </span>the</span></div><div class="t m0 x4 h8 y42 ff2 fs4 fc0 sc0 ls2 ws0">boun<span class="_ _5"></span>dari<span class="_ _5"></span>es).<span class="_ _d"> </span>Th<span class="_ _5"></span>e<span class="_ _e"> </span>PS<span class="_ _12"> </span>tech<span class="_ _5"></span>niqu<span class="_ _5"></span>es<span class="_ _e"> </span>h<span class="_ _5"></span>ave<span class="_ _e"> </span>the<span class="_ _12"> </span>advan<span class="_ _5"></span>tage<span class="_ _12"> </span>that</div><div class="t m0 x4 h8 y43 ff2 fs4 fc0 sc0 ls2 ws0">the<span class="_ _4"> </span>der<span class="_ _5"></span>ivatives<span class="_ _4"> </span>can<span class="_ _4"> </span>be<span class="_ _4"> </span>cal<span class="_ _5"></span>culat<span class="_ _5"></span>ed<span class="_ _4"> </span>with<span class="_ _4"> </span>nume<span class="_ _5"></span>ric<span class="_"> </span>al<span class="_ _4"> </span>p<span class="_ _5"></span>reci<span class="_ _5"></span>sion.<span class="_ _3"> </span>T<span class="_ _5"></span>he</div><div class="t m0 x4 h8 y44 ff2 fs4 fc0 sc0 ls2 ws0">Chebys<span class="_ _5"></span>hev<span class="_ _d"> </span>met<span class="_ _5"></span>hod<span class="_ _d"> </span>furt<span class="_ _5"></span>herm<span class="_ _5"></span>ore<span class="_ _d"> </span>al<span class="_ _5"></span>lows<span class="_ _d"> </span>an<span class="_ _d"> </span>imp<span class="_ _5"></span>lem<span class="_ _5"></span>entat<span class="_ _5"></span>ion</div><div class="t m0 x4 h8 y45 ff2 fs4 fc0 sc0 ls2 ws0">of<span class="_ _8"> </span>bound<span class="_ _5"></span>ary<span class="_ _8"> </span>c<span class="_ _5"></span>ondit<span class="_ _5"></span>ions<span class="_ _8"> </span>(e.g<span class="_ _5"></span>.<span class="_ _8"> </span>tract<span class="_ _5"></span>ion-<span class="_ _5"></span>free<span class="_ _8"> </span>or<span class="_ _7"> </span>no<span class="_ _5"></span>n-re<span class="_ _5"></span>&#163;ect<span class="_ _5"></span>ing)</div><div class="t m0 x4 h8 y46 ff2 fs4 fc0 sc0 ls2 ws0">with<span class="_ _6"> </span>th<span class="_ _5"></span>e<span class="_ _6"> </span>same<span class="_ _6"> </span>ac<span class="_ _5"></span>cura<span class="_ _5"></span>cy<span class="_ _2"> </span>as<span class="_ _6"> </span>w<span class="_ _5"></span>ithin<span class="_ _6"> </span>t<span class="_ _5"></span>he<span class="_ _6"> </span>med<span class="_ _5"></span>ium.<span class="_ _2"> </span>Th<span class="_ _5"></span>is<span class="_ _6"> </span>is<span class="_ _6"> </span>mo<span class="_ _5"></span>re</div><div class="t m0 x4 h8 y47 ff2 fs4 fc0 sc0 ls10 ws0">di&#164;cult<span class="_ _9"> </span>when<span class="_ _7"> </span>FD<span class="_ _9"> </span>techniques<span class="_ _7"> </span>are<span class="_ _7"> </span>applied,<span class="_ _9"> </span>where<span class="_ _7"> </span>boundary</div><div class="t m0 x4 h8 y48 ff2 fs4 fc0 sc0 ls10 ws0">conditions<span class="_ _b"> </span>are<span class="_ _1"> </span>usually<span class="_ _b"> </span>implemented<span class="_ _b"> </span>with<span class="_ _1"> </span>lower<span class="_ _4"> </span>accuracy<span class="_ _b"> </span>than</div><div class="t m0 x4 h8 y49 ff2 fs4 fc0 sc0 ls2 ws0">the<span class="_ _b"> </span>d<span class="_ _5"></span>i&#161;ere<span class="_ _5"></span>ntia<span class="_ _5"></span>l<span class="_ _4"> </span>o<span class="_ _5"></span>perato<span class="_ _5"></span>rs<span class="_ _b"> </span>ins<span class="_ _5"></span>ide<span class="_ _b"> </span>th<span class="_ _5"></span>e<span class="_ _4"> </span>me<span class="_ _5"></span>diu<span class="_ _5"></span>m.<span class="_ _4"> </span>The<span class="_ _b"> </span>drawba<span class="_ _5"></span>ck<span class="_ _4"> </span>of</div><div class="t m0 x4 h8 y4a ff2 fs4 fc0 sc0 ls2 ws0">the<span class="_ _1"> </span>P<span class="_ _5"></span>S<span class="_ _1"> </span>tec<span class="_ _5"></span>hniqu<span class="_ _5"></span>e<span class="_ _1"> </span>is<span class="_ _1"> </span>th<span class="_ _5"></span>at<span class="_ _1"> </span>owing<span class="_ _2"> </span>to<span class="_ _1"> </span>th<span class="_ _5"></span>e<span class="_ _1"> </span>len<span class="_ _5"></span>gth<span class="_ _1"> </span>o<span class="_ _5"></span>f<span class="_ _1"> </span>the<span class="_ _1"> </span>d<span class="_"> </span>e<span class="_ _5"></span>rivative</div><div class="t m0 x6 h4 y4b ff3 fs2 fc0 sc0 ls18 ws0">Geophys.<span class="_ _11"> </span>J.<span class="_ _3"> </span>Int.<span class="_ _11"> </span><span class="ff2 ls2">(19<span class="_ _5"></span>99)<span class="_ _4"> </span><span class="ff1 ls19">136,<span class="_ _4"> </span></span>559^5<span class="_ _5"></span>66</span></div><div class="t m0 x1 h4 y4c ff2 fs2 fc0 sc0 ls1a ws0">&#223;1<span class="_ _13"></span>9<span class="_ _14"></span>9<span class="_ _13"></span>9R<span class="_ _14"></span>A<span class="_ _14"></span>S</div><div class="t m0 x7 h6 y4d ff2 fs3 fc0 sc0 ls2 ws0">559</div><div class="t m1 x8 h9 y4e ff5 fs5 fc0 sc0 ls2 ws0"> by guest on November 22, 2013<span class="_ _15"></span><span class="fc1">http://gji.oxfordjournals.org/<span class="_ _16"></span><span class="fc0">Downloaded from </span></span></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a></div><div class="pi" data-data='{"ctm":[1.611639,0.000000,0.000000,1.611639,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐