<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/622b80033d2fbb00077d7016/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622b80033d2fbb00077d7016/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">GATE Material for Mat<span class="_ _0"></span>hematics</div><div class="t m0 x1 h3 y2 ff2 fs1 fc0 sc0 ls0 ws0">Lesson 1:</div><div class="t m0 x1 h3 y3 ff2 fs1 fc0 sc0 ls0 ws0">Linear Algebra<span class="ff1">:</span></div><div class="t m0 x1 h3 y4 ff2 fs1 fc0 sc0 ls0 ws0">Introduction to Matrices:</div><div class="t m0 x1 h4 y5 ff1 fs1 fc0 sc0 ls0 ws0">Matrices <span class="_ _1"> </span>and <span class="_ _1"> </span>Determinants <span class="_ _1"> </span>were <span class="_ _1"> </span>discovered <span class="_ _1"> </span>and <span class="_ _1"> </span>developed <span class="_ _1"> </span>in <span class="_ _1"> </span>the <span class="_ _1"> </span>eighteenth <span class="_ _1"> </span>and </div><div class="t m0 x1 h4 y6 ff1 fs1 fc0 sc0 ls0 ws0">nineteenth<span class="_"> </span>centuries.<span class="_"> </span>Initially, <span class="_ _2"></span>their <span class="_ _2"></span>development <span class="_ _3"></span>dealt <span class="_ _2"></span>with <span class="_ _3"></span>transformation <span class="_ _2"></span>of <span class="_ _3"></span>geometric <span class="_ _2"></span>objects </div><div class="t m0 x1 h4 y7 ff1 fs1 fc0 sc0 ls0 ws0">and <span class="_ _4"> </span>solution <span class="_ _4"> </span>of <span class="_ _4"> </span>systems <span class="_ _5"> </span>of <span class="_ _4"> </span>linear <span class="_ _4"> </span>equations. <span class="_ _4"> </span>Historically, <span class="_ _4"> </span>the <span class="_ _4"> </span>earl<span class="_ _6"></span>y <span class="_ _4"> </span>emphasis <span class="_ _4"> </span>was <span class="_ _4"> </span>on <span class="_ _4"> </span>the </div><div class="t m0 x1 h4 y8 ff1 fs1 fc0 sc0 ls0 ws0">determinant, not <span class="_ _6"></span>the matrix. In modern <span class="_ _6"></span>treatments <span class="_ _6"></span>of<span class="_"> </span>linear algebra, matrices <span class="_ _6"></span>are considered <span class="_ _6"></span>first. </div><div class="t m0 x1 h4 y9 ff1 fs1 fc0 sc0 ls0 ws0">We <span class="_ _6"></span>will <span class="_ _6"></span>not <span class="_ _6"></span>speculate <span class="_ _6"></span>much on <span class="_ _6"></span>this <span class="_ _6"></span>issue. <span class="_ _6"></span>Matrices <span class="_ _6"></span>provide <span class="_ _6"></span>a <span class="_ _6"></span>theoretically <span class="_ _6"></span>and <span class="_ _6"></span>practically <span class="_ _6"></span>useful </div><div class="t m0 x1 h4 ya ff1 fs1 fc0 sc0 ls0 ws0">way of approaching many<span class="_ _0"></span> t<span class="_ _6"></span>ype<span class="_ _0"></span>s of problems including:</div><div class="t m0 x2 h4 yb ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Solution of S<span class="_ _6"></span>y<span class="_ _8"></span>stems of Linear Equations,</span></div><div class="t m0 x2 h4 yc ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Equilibrium of Rigid Bodies (in physics),</span></div><div class="t m0 x2 h4 yd ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Graph Theory,</span></div><div class="t m0 x2 h4 ye ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Theory of Games,</span></div><div class="t m0 x2 h4 yf ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Leontief<span class="_"> </span>Economics<span class="_"> </span>Model,</span></div><div class="t m0 x2 h4 y10 ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Forest Management,</span></div><div class="t m0 x2 h4 y11 ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Computer Graphics, and Computed Tomography,</span></div><div class="t m0 x2 h4 y12 ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Genetics,</span></div><div class="t m0 x2 h4 y13 ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Cryptography,</span></div><div class="t m0 x2 h4 y14 ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Electrical Networks,</span></div><div class="t m0 x2 h4 y15 ff3 fs2 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="ff1 fs1">Fractals.</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622b80033d2fbb00077d7016/bg2.jpg"><div class="t m0 x1 h3 y16 ff2 fs1 fc0 sc0 ls0 ws0">Introduction and Basic Operations:</div><div class="t m0 x1 h4 y17 ff1 fs1 fc0 sc0 ls0 ws0">Matrices, <span class="_ _6"></span>though <span class="_ _2"></span>they <span class="_ _9"></span>may <span class="_ _6"></span>appear <span class="_ _9"></span>weird <span class="_ _2"></span>objects <span class="_ _9"></span>at <span class="_ _9"></span>first, <span class="_ _9"></span>are <span class="_ _9"></span>a <span class="_ _9"></span>very <span class="_ _9"></span>important <span class="_ _9"></span>tool <span class="_ _9"></span>in <span class="_ _2"></span>expressing </div><div class="t m0 x1 h4 y18 ff1 fs1 fc0 sc0 ls0 ws0">and discussing problems which arise from real life cases.</div><div class="t m0 x1 h4 y19 ff1 fs1 fc0 sc0 ls0 ws0">Our <span class="_ _6"></span>first example <span class="_ _6"></span>deals <span class="_ _6"></span>with economics. <span class="_ _6"></span>Indeed, <span class="_ _6"></span>consider two <span class="_ _6"></span>families <span class="_ _6"></span>A <span class="_ _6"></span>and B <span class="_ _6"></span>(though we <span class="_ _6"></span>may </div><div class="t m0 x1 h4 y1a ff1 fs1 fc0 sc0 ls0 ws0">easily <span class="_ _a"> </span>take <span class="_ _a"> </span>more <span class="_ _b"> </span>than <span class="_ _a"> </span>two). <span class="_ _b"> </span>Every <span class="_ _a"> </span>month, <span class="_ _a"> </span>the <span class="_"> </span>two <span class="_ _a"> </span>families <span class="_ _a"> </span>have <span class="_ _b"> </span>expenses <span class="_ _a"> </span>such <span class="_ _a"> </span>as: <span class="_ _b"> </span>utilities, </div><div class="t m0 x1 h4 y1b ff1 fs1 fc0 sc0 ls0 ws0">health, <span class="_ _c"></span>entertainment, <span class="_ _c"></span>food, <span class="_ _c"> </span>etc... <span class="_ _c"> </span>Let <span class="_ _c"> </span>us <span class="_ _c"> </span>restrict <span class="_ _c"> </span>ourselves <span class="_ _c"> </span>to: <span class="_ _a"> </span>food, <span class="_ _c"></span>utilities, <span class="_ _c"></span>and <span class="_ _c"></span>health. <span class="_ _c"></span>How </div><div class="t m0 x1 h4 y1c ff1 fs1 fc0 sc0 ls0 ws0">would <span class="_"> </span>one <span class="_ _b"> </span>represent <span class="_"> </span>the <span class="_"> </span>data <span class="_"> </span>collected? <span class="_"> </span>Many <span class="_ _b"> </span>ways <span class="_"> </span>are <span class="_"> </span>available <span class="_ _b"> </span>but <span class="_"> </span>one <span class="_"> </span>of <span class="_"> </span>them <span class="_"> </span>has <span class="_ _b"> </span>an </div><div class="t m0 x1 h4 y1d ff1 fs1 fc0 sc0 ls0 ws0">advantage <span class="_ _6"></span>of <span class="_ _6"></span>combining <span class="_ _9"></span>the <span class="_ _6"></span>data <span class="_ _6"></span>so <span class="_ _9"></span>that <span class="_ _6"></span>it <span class="_ _9"></span>is <span class="_ _6"></span>easy <span class="_ _9"></span>to <span class="_ _6"></span>manipulate <span class="_ _6"></span>them. <span class="_ _9"></span>Indeed, <span class="_ _6"></span>we <span class="_ _9"></span>will <span class="_ _6"></span>write <span class="_ _6"></span>the </div><div class="t m0 x1 h4 y1e ff1 fs1 fc0 sc0 ls0 ws0">data as follows: </div><div class="t m0 x1 h4 y1f ff1 fs1 fc0 sc0 ls0 ws0">If we have no problem confusing the names and what the expenses are, then we may write </div><div class="t m0 x1 h4 y20 ff1 fs1 fc0 sc0 ls0 ws0">This <span class="_ _2"></span>is <span class="_ _3"></span>what <span class="_ _2"></span>we <span class="_ _3"></span>call <span class="_ _2"></span>a <span class="_ _3"></span>Matrix. <span class="_ _3"></span>The <span class="_ _2"></span>size <span class="_ _3"></span>of <span class="_ _2"></span>the <span class="_ _3"></span>matrix, <span class="_ _2"></span>as <span class="_ _3"></span>a <span class="_ _2"></span>block, <span class="_ _2"></span>is <span class="_ _3"></span>defined <span class="_ _3"></span>by <span class="_ _2"></span>the <span class="_ _2"></span>number <span class="_ _3"></span>of </div><div class="t m0 x1 h4 y21 ff1 fs1 fc0 sc0 ls0 ws0">Rows and the<span class="_ _6"></span> number of Col<span class="_ _6"></span>umns. In this <span class="_ _6"></span>case, the above matrix<span class="_ _6"></span> has 2 rows <span class="_ _6"></span>and 3 <span class="_ _6"></span>columns. You </div><div class="t m0 x1 h4 y22 ff1 fs1 fc0 sc0 ls0 ws0">may easil<span class="_ _6"></span>y come up wit<span class="_ _6"></span>h a matrix<span class="_ _6"></span> which <span class="_ _6"></span>has m <span class="_ _6"></span>rows and <span class="_ _6"></span>n columns. <span class="_ _6"></span>In this <span class="_ _6"></span>case, we say that <span class="_ _6"></span>the </div><div class="t m0 x1 h4 y23 ff1 fs1 fc0 sc0 ls0 ws0">matrix <span class="_ _6"></span>is <span class="_ _6"></span>a <span class="_ _9"></span>(mxn) <span class="_ _6"></span>matrix <span class="_ _6"></span>(pronounce <span class="_ _6"></span>m-by-n <span class="_ _6"></span>matrix). <span class="_ _9"></span>Keep <span class="_ _6"></span>in <span class="_ _6"></span>mind <span class="_ _6"></span>that <span class="_ _6"></span>the <span class="_ _6"></span>first <span class="_ _6"></span>entry <span class="_ _6"></span>(meaning </div><div class="t m0 x1 h4 y24 ff1 fs1 fc0 sc0 ls0 ws0">m) is <span class="_ _6"></span>the number of ro<span class="_ _6"></span>ws while the second <span class="_ _6"></span>entry (n) is t<span class="_ _6"></span>he number o<span class="_ _6"></span>f columns. Our above m<span class="_ _6"></span>atrix </div><div class="t m0 x1 h4 y25 ff1 fs1 fc0 sc0 ls0 ws0">is a (2x3) matrix.</div><div class="t m0 x1 h4 y26 ff1 fs1 fc0 sc0 ls0 ws0">When <span class="_ _6"></span>the <span class="_ _6"></span>numbers <span class="_ _6"></span>of <span class="_ _6"></span>rows <span class="_ _6"></span>and <span class="_ _6"></span>columns <span class="_ _6"></span>are <span class="_ _9"></span>equal, <span class="_ _6"></span>we <span class="_ _6"></span>call <span class="_ _6"></span>the <span class="_ _6"></span>matrix <span class="_ _6"></span>a <span class="_ _6"></span>square <span class="_ _6"></span>matrix. <span class="_ _9"></span>A <span class="_ _6"></span>square </div><div class="t m0 x1 h4 y27 ff1 fs1 fc0 sc0 ls0 ws0">matrix of order n, is a (nxn) matrix.</div><div class="t m0 x1 h4 y28 ff1 fs1 fc0 sc0 ls0 ws0">Back <span class="_ _2"></span>to <span class="_ _3"></span>our <span class="_ _2"></span>example, <span class="_ _3"></span>let <span class="_ _3"></span>us <span class="_ _2"></span>assume, <span class="_ _3"></span>for <span class="_ _2"></span>example, <span class="_ _3"></span>that <span class="_ _3"></span>the <span class="_ _3"></span>matrices <span class="_ _2"></span>for <span class="_ _3"></span>the <span class="_ _2"></span>months <span class="_ _3"></span>of <span class="_ _3"></span>January, </div><div class="t m0 x1 h4 y29 ff1 fs1 fc0 sc0 ls0 ws0">February, and March are </div><div class="t m0 x1 h4 y2a ff1 fs1 fc0 sc0 ls0 ws0">To <span class="_ _2"></span>make <span class="_ _3"></span>sure <span class="_ _9"></span>that <span class="_ _3"></span>the <span class="_ _2"></span>reader <span class="_ _2"></span>knows <span class="_ _3"></span>what <span class="_ _2"></span>these <span class="_ _2"></span>numbers <span class="_ _3"></span>mean, <span class="_ _2"></span>you <span class="_ _2"></span>should <span class="_ _3"></span>be <span class="_ _2"></span>able <span class="_ _2"></span>to <span class="_ _3"></span>give <span class="_ _2"></span>the </div><div class="t m0 x1 h4 y2b ff1 fs1 fc0 sc0 ls0 ws0">Health-expenses <span class="_ _3"></span>for <span class="_ _c"></span>family <span class="_ _3"></span>A <span class="_ _3"></span>and <span class="_ _3"></span>Food-expenses<span class="_ _d"> </span>for <span class="_ _3"></span>family <span class="_ _c"></span>B <span class="_ _2"></span>during <span class="_ _c"></span>the <span class="_ _3"></span>month <span class="_ _c"></span>of <span class="_ _3"></span>February. </div><div class="t m0 x1 h4 y2c ff1 fs1 fc0 sc0 ls0 ws0">The <span class="_ _6"></span>answers <span class="_ _9"></span>are <span class="_ _9"></span>250 <span class="_ _9"></span>and <span class="_ _9"></span>600. <span class="_ _9"></span>The <span class="_ _6"></span>next <span class="_ _2"></span>question <span class="_ _6"></span>may <span class="_ _9"></span>sound <span class="_ _9"></span>easy <span class="_ _9"></span>to <span class="_ _6"></span>answer, <span class="_ _2"></span>but <span class="_ _9"></span>requires <span class="_ _6"></span>a <span class="_ _9"></span>new </div><div class="t m0 x1 h4 y2d ff1 fs1 fc0 sc0 ls0 ws0">concept in the matrix context. Indeed, what is the matrix-ex<span class="_ _6"></span>pense for the two fa<span class="_ _8"></span>milies for the first </div><div class="t m0 x1 h4 y2e ff1 fs1 fc0 sc0 ls0 ws0">quarter? The ide<span class="_ _6"></span>a is to <span class="_ _6"></span>add the three m<span class="_ _6"></span>atrices above. <span class="_ _6"></span>It is easy to <span class="_ _6"></span>determine the total ex<span class="_ _6"></span>penses for </div><div class="t m0 x1 h4 y2f ff1 fs1 fc0 sc0 ls0 ws0">each family and each item, then the answer is </div><div class="t m0 x1 h4 y30 ff1 fs1 fc0 sc0 ls0 ws0">So <span class="_ _6"></span>how <span class="_ _6"></span>do <span class="_ _9"></span>we <span class="_ _9"></span>add <span class="_ _6"></span>matrices? <span class="_ _9"></span>An <span class="_ _6"></span>approach <span class="_ _9"></span>is <span class="_ _6"></span>given <span class="_ _9"></span>by <span class="_ _9"></span>the <span class="_ _6"></span>above <span class="_ _9"></span>example. <span class="_ _9"></span>The <span class="_ _6"></span>answer <span class="_ _6"></span>is <span class="_ _9"></span>to <span class="_ _9"></span>add </div><div class="t m0 x1 h4 y31 ff1 fs1 fc0 sc0 ls0 ws0">entries one by one. For example, we have </div><div class="t m0 x1 h4 y32 ff1 fs1 fc0 sc0 ls0 ws0">Clearly, if you want to double a matrix, it is enough to add the matrix to itself. So we have </div><div class="t m0 x1 h4 y33 ff1 fs1 fc0 sc0 ls0 ws0">we get</div><div class="t m0 x1 h4 y34 ff1 fs1 fc0 sc0 ls0 ws0">which implies </div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622b80033d2fbb00077d7016/bg3.jpg"><div class="t m0 x1 h4 y35 ff1 fs1 fc0 sc0 ls0 ws0">This suggests the following rule </div><div class="t m0 x1 h4 y17 ff1 fs1 fc0 sc0 ls0 ws0">and for any number , we will have </div><div class="t m0 x1 h4 y36 ff1 fs1 fc0 sc0 ls0 ws0">Let us summarize these two rules about matrices.</div><div class="t m0 x1 h4 y37 ff1 fs1 fc0 sc0 ls0 ws0">Addition of Matrices: In order to add two matrices, we add the entries one by<span class="_ _0"></span> one. </div><div class="t m0 x1 h4 y38 ff1 fs1 fc0 sc0 ls0 ws0">Note: Matrices involved in the addition operation must have the same size.</div><div class="t m0 x1 h4 y39 ff1 fs1 fc0 sc0 ls0 ws0">Multiplication of <span class="_ _6"></span>a Matrix by a <span class="_ _6"></span>Number: In order to <span class="_ _6"></span>multiply a matrix<span class="_ _6"></span> by a number, <span class="_ _6"></span>you multiply </div><div class="t m0 x1 h4 y3a ff1 fs1 fc0 sc0 ls0 ws0">every entry by<span class="_"> </span>the given number.</div><div class="t m0 x1 h4 y3b ff1 fs1 fc0 sc0 ls0 ws0">Keep <span class="_ _9"></span>in <span class="_ _2"></span>mind <span class="_ _2"></span>that <span class="_ _9"></span>we <span class="_ _9"></span>always <span class="_ _2"></span>write <span class="_ _9"></span>numbers <span class="_ _2"></span>to <span class="_ _2"></span>the <span class="_ _9"></span>left <span class="_ _9"></span>and <span class="_ _2"></span>matrices <span class="_ _9"></span>to <span class="_ _2"></span>the <span class="_ _9"></span>right <span class="_ _2"></span>(in <span class="_ _9"></span>the <span class="_ _2"></span>case <span class="_ _9"></span>of </div><div class="t m0 x1 h4 y3c ff1 fs1 fc0 sc0 ls0 ws0">multiplication).</div><div class="t m0 x1 h4 y3d ff1 fs1 fc0 sc0 ls0 ws0">What <span class="_ _3"></span>about <span class="_ _3"></span>subtracting <span class="_ _2"></span>two <span class="_ _3"></span>matrices? <span class="_ _3"></span>I<span class="_ _0"></span>t <span class="_ _3"></span>is <span class="_ _3"></span>easy, <span class="_ _2"></span>since <span class="_ _3"></span>subtraction <span class="_ _3"></span>is <span class="_ _3"></span>a <span class="_ _2"></span>combination <span class="_ _3"></span>of <span class="_ _3"></span>the <span class="_ _3"></span>two </div><div class="t m0 x1 h4 y3e ff1 fs1 fc0 sc0 ls0 ws0">above rules. Indeed, if M and<span class="_"> </span>N are two matrices, then we will write </div><div class="t m0 x1 h4 y3f ff1 fs1 fc0 sc0 ls0 ws0">M-N = M + (-1)N</div><div class="t m0 x1 h4 y40 ff1 fs1 fc0 sc0 ls0 ws0">So first, you multiply the matrix N by -1, and then add the result to the matrix M.</div><div class="t m0 x1 h4 y41 ff1 fs1 fc0 sc0 ls0 ws0">Example. Consider the three matrices J, F, and M from above. Evaluate </div><div class="t m0 x1 h4 y42 ff1 fs1 fc0 sc0 ls0 ws0">Answer. We have </div><div class="t m0 x1 h4 y43 ff1 fs1 fc0 sc0 ls0 ws0">and since </div><div class="t m0 x1 h4 y44 ff1 fs1 fc0 sc0 ls0 ws0">we get </div><div class="t m0 x1 h4 y45 ff1 fs1 fc0 sc0 ls0 ws0">To compute J-M, we note first that </div><div class="t m0 x1 h4 y46 ff1 fs1 fc0 sc0 ls0 ws0">Since J-M = J + (-1)M, we get </div><div class="t m0 x1 h4 y47 ff1 fs1 fc0 sc0 ls0 ws0">And <span class="_ _a"> </span>finally, <span class="_ _a"> </span>for <span class="_ _a"> </span>J-F+2M, <span class="_ _b"> </span>we <span class="_ _c"> </span>have <span class="_ _b"> </span>a <span class="_ _a"> </span>choice. <span class="_ _a"> </span>Here <span class="_ _a"> </span>we <span class="_ _a"> </span>would <span class="_ _a"> </span>like <span class="_ _b"> </span>to <span class="_ _a"> </span>emphasize <span class="_ _a"> </span>the <span class="_ _a"> </span>fact <span class="_ _a"> </span>that </div><div class="t m0 x1 h4 y48 ff1 fs1 fc0 sc0 ls0 ws0">addition <span class="_ _a"> </span>of <span class="_ _b"> </span>matrices <span class="_ _a"> </span>may <span class="_ _a"> </span>involve <span class="_ _b"> </span>more <span class="_ _a"> </span>than <span class="_ _b"> </span>one <span class="_ _a"> </span>matrix. <span class="_"> </span>I<span class="_ _8"></span>n <span class="_ _b"> </span>this <span class="_ _b"> </span>case, <span class="_ _a"> </span>you <span class="_ _a"> </span>may <span class="_ _b"> </span>perform <span class="_ _a"> </span>the </div><div class="t m0 x1 h4 y49 ff1 fs1 fc0 sc0 ls0 ws0">calculations <span class="_ _6"></span>in <span class="_ _6"></span>any<span class="_"> </span>order. <span class="_ _9"></span>This <span class="_ _6"></span>is <span class="_ _6"></span>called <span class="_ _6"></span>associativity <span class="_ _6"></span>of the <span class="_ _6"></span>operations. <span class="_ _6"></span>So <span class="_ _9"></span>first <span class="_ _6"></span>we <span class="_ _6"></span>will <span class="_ _6"></span>take <span class="_ _6"></span>care </div><div class="t m0 x1 h4 y4a ff1 fs1 fc0 sc0 ls0 ws0">of -F and 2M to get </div><div class="t m0 x1 h4 y4b ff1 fs1 fc0 sc0 ls0 ws0">Since J-F+2M = J + (-1)F + 2M, we get </div><div class="t m0 x1 h4 y4c ff1 fs1 fc0 sc0 ls0 ws0">So first we will evaluate J-F to get </div><div class="t m0 x1 h4 y4d ff1 fs1 fc0 sc0 ls0 ws0">to which we add 2M, to finally obtain </div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622b80033d2fbb00077d7016/bg4.jpg"><div class="t m0 x1 h4 y35 ff1 fs1 fc0 sc0 ls0 ws0">For the addition of matrices, one spe<span class="_ _6"></span>cial matrix plays a role similar to the number zero. Indeed, if </div><div class="t m0 x1 h4 y4e ff1 fs1 fc0 sc0 ls0 ws0">we <span class="_ _6"></span>consider <span class="_ _6"></span>the <span class="_ _6"></span>matrix <span class="_ _6"></span>with <span class="_ _6"></span>all <span class="_ _6"></span>its <span class="_ _6"></span>entries <span class="_ _6"></span>equal <span class="_ _6"></span>to <span class="_ _6"></span>0, <span class="_ _6"></span>then <span class="_ _6"></span>it <span class="_ _6"></span>is <span class="_ _6"></span>easy to <span class="_ _9"></span>check <span class="_ _6"></span>that <span class="_ _6"></span>this <span class="_ _6"></span>matrix <span class="_ _6"></span>has </div><div class="t m0 x1 h4 y4f ff1 fs1 fc0 sc0 ls0 ws0">behavior similar to the number zero. For example, we have </div><div class="t m0 x1 h4 y50 ff1 fs1 fc0 sc0 ls0 ws0">and </div><div class="t m0 x3 h5 y51 ff4 fs3 fc0 sc0 ls0 ws0">Matrices, <span class="_ _2"></span>though <span class="_ _2"></span>they <span class="_ _2"></span>may <span class="_ _3"></span>appear <span class="_ _9"></span>weird <span class="_ _3"></span>objects <span class="_ _2"></span>at <span class="_ _2"></span>first, <span class="_ _2"></span>are <span class="_ _3"></span>a <span class="_ _2"></span>very <span class="_ _2"></span>important <span class="_ _2"></span>tool <span class="_ _3"></span>in <span class="_ _9"></span>expressing <span class="_ _2"></span>and </div><div class="t m0 x1 h5 y52 ff4 fs3 fc0 sc0 ls0 ws0">discussing proble<span class="_ _0"></span>ms which arise from real life cases.</div><div class="t m0 x1 h4 y53 ff1 fs1 fc0 sc0 ls0 ws0">Our <span class="_ _6"></span>first <span class="_ _9"></span>example <span class="_ _9"></span>deals <span class="_ _6"></span>with<span class="_"> </span>economics. <span class="_ _9"></span>Indeed, <span class="_ _6"></span>consider <span class="_ _9"></span>twofamilies<span class="_"> </span>A <span class="_ _6"></span>and <span class="_ _9"></span>B <span class="_ _9"></span>(though <span class="_ _6"></span>we <span class="_ _9"></span>may </div><div class="t m0 x1 h4 y54 ff1 fs1 fc0 sc0 ls0 ws0">easily <span class="_"> </span>take <span class="_ _4"> </span>more <span class="_"> </span>than <span class="_ _e"> </span>two). <span class="_ _e"> </span>Every <span class="_"> </span>month, <span class="_ _e"> </span>the <span class="_ _e"> </span>two<span class="_"> </span>families<span class="_"> </span>have<span class="_"> </span>expenses<span class="_"> </span>such <span class="_ _e"> </span>as: <span class="_"> </span>utilities, </div><div class="t m0 x1 h4 y55 ff1 fs1 fc0 sc0 ls0 ws0">health, <span class="_ _c"></span>entertainment, <span class="_ _c"></span>food, <span class="_ _c"> </span>etc... <span class="_ _c"> </span>Let <span class="_ _c"> </span>us <span class="_ _c"> </span>restrict <span class="_ _c"> </span>ourselves <span class="_ _c"> </span>to: <span class="_ _a"> </span>food, <span class="_ _c"></span>utilities, <span class="_ _c"></span>and <span class="_ _c"></span>health. <span class="_ _c"></span>How </div><div class="t m0 x1 h4 y56 ff1 fs1 fc0 sc0 ls0 ws0">would <span class="_ _d"> </span>one<span class="_"> </span>represent<span class="_"> </span>the <span class="_ _d"> </span>data <span class="_ _d"> </span>collected? <span class="_ _d"> </span>Many <span class="_ _f"> </span>ways <span class="_ _d"> </span>are <span class="_ _f"> </span>available <span class="_ _d"> </span>but <span class="_ _d"> </span>one <span class="_ _d"> </span>of <span class="_ _d"> </span>them <span class="_ _d"> </span>has </div><div class="t m0 x1 h4 y57 ff1 fs1 fc0 sc0 ls0 ws0">anadvantage<span class="_"> </span>of <span class="_ _2"></span>combining <span class="_ _3"></span>the <span class="_ _3"></span>data <span class="_ _2"></span>so <span class="_ _3"></span>that <span class="_ _3"></span>it <span class="_ _3"></span>is <span class="_ _3"></span>easy <span class="_ _2"></span>to <span class="_ _3"></span>manipulate <span class="_ _3"></span>them. <span class="_ _2"></span>Indeed,<span class="_"> </span>we <span class="_ _3"></span>will<span class="_"> </span>write </div><div class="t m0 x1 h4 y58 ff1 fs1 fc0 sc0 ls0 ws0">the data as follows:</div><div class="t m0 x1 h4 y59 ff1 fs1 fc0 sc0 ls0 ws0">If <span class="_ _b"> </span>we <span class="_ _a"> </span>have <span class="_"> </span>no <span class="_ _b"> </span>problem <span class="_ _b"> </span>confusing <span class="_ _b"> </span>the <span class="_ _b"> </span>names <span class="_ _b"> </span>and<span class="_"> </span>what <span class="_ _b"> </span>theexpenses<span class="_"> </span>are, <span class="_ _b"> </span>then <span class="_ _b"> </span>we <span class="_ _a"> </span>may <span class="_"> </span>write</div><div class="t m0 x1 h4 y5a ff1 fs1 fc0 sc0 ls0 ws0">This <span class="_ _10"> </span>is <span class="_ _10"> </span>what <span class="_ _10"> </span>we <span class="_ _10"> </span>call <span class="_ _10"> </span>a<span class="_"> </span>Matrix. <span class="_ _10"> </span>The <span class="_ _10"> </span>size <span class="_ _10"> </span>of <span class="_ _10"> </span>the <span class="_ _10"> </span>matrix, <span class="_ _10"> </span>as <span class="_ _10"> </span>a <span class="_ _10"> </span>block, <span class="_ _10"> </span>is <span class="_ _10"> </span>defined <span class="_ _10"> </span>by </div><div class="t m0 x1 h4 y5b ff1 fs1 fc0 sc0 ls0 ws0">the<span class="_"> </span>number<span class="_"> </span>of<span class="_"> </span>Rows<span class="_"> </span>and <span class="_ _6"></span>the<span class="_"> </span>number<span class="_"> </span>ofColumns. <span class="_ _6"></span>In <span class="_ _6"></span>this <span class="_ _6"></span>case, <span class="_ _6"></span>the <span class="_ _6"></span>above <span class="_ _6"></span>matrix <span class="_ _6"></span>has <span class="_ _6"></span>2 <span class="_ _6"></span>rows <span class="_ _6"></span>and <span class="_ _6"></span>3 </div><div class="t m0 x1 h4 y5c ff1 fs1 fc0 sc0 ls0 ws0">columns. <span class="_ _6"></span>You <span class="_ _6"></span>may <span class="_ _6"></span>easily <span class="_ _6"></span>come <span class="_ _6"></span>up <span class="_ _6"></span>with <span class="_ _6"></span>a <span class="_ _6"></span>matrix <span class="_ _6"></span>which <span class="_ _6"></span>has <span class="_ _6"></span>m <span class="_ _6"></span>rows <span class="_ _6"></span>and <span class="_ _6"></span>n <span class="_ _6"></span>columns. <span class="_ _6"></span>In <span class="_ _6"></span>this <span class="_ _6"></span>case, </div><div class="t m0 x1 h4 y5d ff1 fs1 fc0 sc0 ls0 ws0">we <span class="_ _9"></span>say <span class="_ _9"></span>that <span class="_ _9"></span>the <span class="_ _9"></span>matrix <span class="_ _2"></span>is <span class="_ _9"></span>a(mxn) <span class="_ _9"></span>matrix<span class="_"> </span>(pronounce <span class="_ _9"></span>m-by-n <span class="_ _9"></span>matrix). <span class="_ _9"></span>Keep <span class="_ _9"></span>in <span class="_ _2"></span>mind <span class="_ _9"></span>that <span class="_ _9"></span>the <span class="_ _2"></span>first </div><div class="t m0 x1 h4 y5e ff1 fs1 fc0 sc0 ls0 ws0">entry <span class="_ _2"></span>(meaning <span class="_ _2"></span>m) <span class="_ _3"></span>is <span class="_ _9"></span>the<span class="_ _e"> </span>number<span class="_ _b"> </span>of <span class="_ _2"></span>rows <span class="_ _2"></span>while <span class="_ _3"></span>the <span class="_ _2"></span>second <span class="_ _2"></span>entr<span class="_ _6"></span>y <span class="_ _9"></span>(n) <span class="_ _2"></span>is <span class="_ _2"></span>the<span class="_ _e"> </span>number<span class="_ _b"> </span>of <span class="_ _2"></span>columns. </div><div class="t m0 x1 h4 y5f ff1 fs1 fc0 sc0 ls0 ws0">Our above matrix is a (2x3) matrix.</div><div class="t m0 x1 h4 y60 ff1 fs1 fc0 sc0 ls0 ws0">When <span class="_ _6"></span>the<span class="_"> </span>numbers<span class="_"> </span>of <span class="_ _6"></span>rows <span class="_ _9"></span>and <span class="_ _9"></span>columns <span class="_ _6"></span>are <span class="_ _9"></span>equal, <span class="_ _6"></span>we <span class="_ _9"></span>call <span class="_ _6"></span>the <span class="_ _9"></span>matrix <span class="_ _9"></span>a<span class="_"> </span>square <span class="_ _6"></span>matrix. <span class="_ _9"></span>A <span class="_ _6"></span>square </div><div class="t m0 x1 h4 y61 ff1 fs1 fc0 sc0 ls0 ws0">matrix of<span class="_"> </span>order n, is a (nxn) matrix.</div><div class="t m0 x1 h4 y62 ff1 fs1 fc0 sc0 ls0 ws0">Back <span class="_ _2"></span>to <span class="_ _3"></span>our <span class="_ _3"></span>example, <span class="_ _3"></span>let <span class="_ _3"></span>us <span class="_ _3"></span>assume,<span class="_"> </span>for <span class="_ _3"></span>example, <span class="_ _2"></span>that <span class="_ _3"></span>the <span class="_ _3"></span>matrices <span class="_ _3"></span>for <span class="_ _3"></span>the <span class="_ _3"></span>months <span class="_ _3"></span>of <span class="_ _2"></span>January, </div><div class="t m0 x1 h4 y63 ff1 fs1 fc0 sc0 ls0 ws0">February, <span class="_ _11"> </span>and <span class="_ _11"> </span>March <span class="_ _11"> </span>are</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622b80033d2fbb00077d7016/bg5.jpg"><div class="t m0 x1 h4 y64 ff1 fs1 fc0 sc0 ls0 ws0">To <span class="_ _3"></span>make <span class="_ _3"></span>sure <span class="_ _3"></span>that <span class="_ _c"></span>the <span class="_ _3"></span>reader <span class="_ _3"></span>knows <span class="_ _3"></span>what <span class="_ _3"></span>these<span class="_ _e"> </span>numbersmean, <span class="_ _3"></span>you <span class="_ _2"></span>should <span class="_ _c"></span>be <span class="_ _3"></span>able <span class="_ _3"></span>to <span class="_ _3"></span>give <span class="_ _c"></span>the </div><div class="t m0 x1 h4 y65 ff1 fs1 fc0 sc0 ls0 ws0">Health-expenses<span class="_"> </span>for <span class="_ _12"> </span>family <span class="_ _12"> </span>A <span class="_ _12"> </span>and <span class="_ _12"> </span>Food-expenses<span class="_"> </span>for <span class="_ _12"> </span>family <span class="_ _13"> </span>B <span class="_ _12"> </span>during <span class="_ _12"> </span>the <span class="_ _12"> </span>month <span class="_ _12"> </span>of </div><div class="t m0 x1 h4 y66 ff1 fs1 fc0 sc0 ls0 ws0">February.<span class="_"> </span>The <span class="_ _b"> </span>answers<span class="_"> </span>are <span class="_ _b"> </span>250 <span class="_"> </span>and <span class="_ _b"> </span>600. <span class="_ _b"> </span>The <span class="_"> </span>next <span class="_ _b"> </span>question <span class="_"> </span>may <span class="_ _a"> </span>sound <span class="_"> </span>easy <span class="_"> </span>to <span class="_ _b"> </span>answer, <span class="_ _b"> </span>but </div><div class="t m0 x1 h4 y67 ff1 fs1 fc0 sc0 ls0 ws0">requires <span class="_"> </span>a <span class="_ _e"> </span>new <span class="_ _e"> </span>concept <span class="_ _e"> </span>in <span class="_"> </span>the <span class="_ _e"> </span>matrix <span class="_ _e"> </span>context. <span class="_"> </span>Indeed, <span class="_ _e"> </span>what <span class="_"> </span>is <span class="_ _e"> </span>the <span class="_"> </span>matrix-ex<span class="_ _6"></span>pense <span class="_ _14"> </span>for <span class="_ _14"> </span>the </div><div class="t m0 x1 h4 y68 ff1 fs1 fc0 sc0 ls0 ws0">twofamilies<span class="_"> </span>for <span class="_ _b"> </span>the <span class="_ _b"> </span>first <span class="_ _b"> </span>quarter? <span class="_ _b"> </span>The <span class="_ _b"> </span>idea <span class="_ _b"> </span>is <span class="_ _b"> </span>to <span class="_ _b"> </span>add <span class="_ _b"> </span>the <span class="_ _b"> </span>three <span class="_ _b"> </span>matrices <span class="_ _b"> </span>above. <span class="_"> </span>I<span class="_ _8"></span>t <span class="_"> </span>is <span class="_ _b"> </span>easy <span class="_ _b"> </span>to </div><div class="t m0 x1 h4 y69 ff1 fs1 fc0 sc0 ls0 ws0">determine <span class="_ _15"> </span>the <span class="_ _15"> </span>total<span class="_"> </span>expenses<span class="_"> </span>for <span class="_ _16"> </span>each <span class="_ _15"> </span>family <span class="_ _15"> </span>and <span class="_ _15"> </span>each <span class="_ _15"> </span>item, <span class="_ _16"> </span>then<span class="_"> </span>the <span class="_ _15"> </span>answer<span class="_"> </span>is</div><div class="t m0 x1 h4 y6a ff1 fs1 fc0 sc0 ls0 ws0">So <span class="_ _9"></span>how <span class="_ _6"></span>do <span class="_ _9"></span>we <span class="_ _9"></span>add <span class="_ _9"></span>matrices? <span class="_ _9"></span>An <span class="_ _9"></span>approach <span class="_ _6"></span>is <span class="_ _2"></span>given <span class="_ _6"></span>by <span class="_ _9"></span>the <span class="_ _9"></span>above <span class="_ _9"></span>example.<span class="_"> </span>The <span class="_ _9"></span>answer<span class="_"> </span>is <span class="_ _9"></span>to <span class="_ _9"></span>add </div><div class="t m0 x1 h4 y6b ff1 fs1 fc0 sc0 ls0 ws0">entries<span class="_"> </span>one <span class="_ _17"> </span>by <span class="_ _17"> </span>one.<span class="_"> </span>For <span class="_ _18"> </span>example, <span class="_ _17"> </span>we <span class="_ _18"> </span>have</div><div class="t m0 x1 h4 y6c ff1 fs1 fc0 sc0 ls0 ws0">Clearly, <span class="_ _3"></span>if <span class="_ _c"> </span>you <span class="_ _3"></span>want <span class="_ _c"></span>to <span class="_ _c"></span>double <span class="_ _3"></span>a <span class="_ _c"></span>matrix, <span class="_ _3"></span>it <span class="_ _c"></span>is <span class="_ _3"></span>enough <span class="_ _3"></span>to <span class="_ _c"></span>add <span class="_ _3"></span>the <span class="_ _c"></span>matrix <span class="_ _c"></span>to <span class="_ _3"></span>itself. <span class="_ _c"></span>So <span class="_ _3"></span>we <span class="_ _c"></span>have</div><div class="t m0 x1 h4 y6d ff1 fs1 fc0 sc0 ls0 ws0">we get</div><div class="t m0 x1 h4 y6e ff1 fs1 fc0 sc0 ls0 ws0">which <span class="_ _19"> </span>implies</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>