<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/622bacea3d2fbb0007c6b411/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622bacea3d2fbb0007c6b411/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">1 </div><div class="t m0 x2 h3 y2 ff2 fs0 fc0 sc0 ls0 ws0">978-1<span class="_ _0"></span>-4673-1561-6/12/$31.0<span class="_ _0"></span>0 ©2012 IEEE<span class="ff1"> </span></div><div class="t m0 x3 h4 y3 ff3 fs1 fc0 sc0 ls0 ws0">High Fidelit<span class="_ _1"></span>y<span class="_ _0"></span> Electrical M<span class="_ _1"></span>odel with Thermal </div><div class="t m0 x4 h4 y4 ff3 fs1 fc0 sc0 ls0 ws0">Dependence for Characte<span class="_ _1"></span>rization and Si<span class="_ _1"></span>mul<span class="_ _1"></span>a-</div><div class="t m0 x5 h4 y5 ff3 fs1 fc0 sc0 ls0 ws0">tion of High Power Lithi<span class="_ _1"></span>um <span class="_ _1"></span>Ba<span class="_ _0"></span>tter<span class="_ _1"></span>y<span class="_ _0"></span> Cells</div><div class="t m0 x6 h5 y6 ff3 fs0 fc0 sc0 ls0 ws0">Tar<span class="_ _1"></span>un<span class="_ _0"></span> Huria, Massim<span class="_ _0"></span>o Ceraolo </div><div class="t m0 x7 h6 y7 ff3 fs2 fc0 sc0 ls0 ws0">Departme<span class="_ _0"></span>nt of<span class="_ _0"></span> Ener<span class="_ _1"></span>gy<span class="_ _0"></span> and Sy<span class="_ _0"></span>stems Engi<span class="_ _0"></span>neering<span class="_ _0"></span> </div><div class="t m0 x8 h6 y8 ff3 fs2 fc0 sc0 ls0 ws0">U<span class="_ _0"></span>ni<span class="_ _1"></span>v<span class="_ _0"></span>ersity<span class="_ _0"></span> of Pisa </div><div class="t m0 x9 h6 y9 ff3 fs2 fc0 sc0 ls0 ws0">Largo Lazza<span class="_ _0"></span>rino, Pisa 561<span class="_ _0"></span>22 Italy<span class="_ _0"></span> </div><div class="t m0 xa h6 ya ff3 fs2 fc0 sc0 ls0 ws0">m.ceraolo<span class="_ _0"></span>@ing.unipi<span class="_ _0"></span>.it </div><div class="t m0 xb h5 y6 ff3 fs0 fc0 sc0 ls0 ws0">Javie<span class="_ _0"></span>r Ga<span class="_ _1"></span>zzarri, Robyn<span class="_ _0"></span> Jackey </div><div class="t m0 xc h6 y7 ff3 fs2 fc0 sc0 ls0 ws0">MathWorks<span class="_ _0"></span> </div><div class="t m0 xd h6 y8 ff3 fs2 fc0 sc0 ls0 ws0">39555 Orc<span class="_ _0"></span>hard H<span class="_ _0"></span>ill <span class="_ _1"></span>P<span class="_ _0"></span>lace, Suite 2<span class="_ _0"></span>80 </div><div class="t m0 xe h6 y9 ff3 fs2 fc0 sc0 ls0 ws0">Nov<span class="_ _0"></span>i, <span class="_ _1"></span>MI<span class="_ _0"></span> 48375 U<span class="_ _0"></span>SA </div><div class="t m0 xf h6 ya ff3 fs2 fc0 sc0 ls0 ws0">r<span class="_ _1"></span>o<span class="_ _0"></span>by<span class="_ _0"></span>n.jackey<span class="_ _0"></span>@mathwo<span class="_ _0"></span>rks.<span class="_ _1"></span>co<span class="_ _0"></span>m </div><div class="t m0 x10 h6 yb ff3 fs2 fc0 sc0 ls0 ws0"> </div><div class="t m0 x2 h7 yc ff4 fs3 fc0 sc0 ls0 ws0">Abstrac<span class="_ _0"></span>t<span class="ff5">— <span class="_"> </span><span class="ff3">Th<span class="_ _0"></span>e <span class="_ _2"> </span>gro<span class="_ _0"></span>wing<span class="_ _0"></span> <span class="_ _2"> </span>need<span class="_ _0"></span> <span class="_ _2"> </span>f<span class="_ _0"></span>or <span class="_ _2"> </span>ac<span class="_ _0"></span>curate <span class="_ _3"> </span>simula<span class="_ _0"></span>tion <span class="_"> </span>o<span class="_ _0"></span>f<span class="_ _0"></span> </span></span></div><div class="t m0 x2 h7 yd ff3 fs3 fc0 sc0 ls0 ws0">advanc<span class="_ _0"></span>ed <span class="_"> </span>lithium <span class="_ _4"> </span>ce<span class="_ _0"></span>lls <span class="_"> </span>for <span class="_"> </span>powertra<span class="_ _0"></span>in <span class="_ _4"> </span>elec<span class="_ _0"></span>trifica<span class="_ _0"></span>tion <span class="_"> </span>de-</div><div class="t m0 x2 h7 ye ff3 fs3 fc0 sc0 ls0 ws0">mands<span class="_ _0"></span> <span class="_ _3"> </span>fas<span class="_ _0"></span>t <span class="_ _5"> </span>and <span class="_ _5"> </span>acc<span class="_ _0"></span>urate<span class="_ _0"></span> <span class="_ _5"> </span>model<span class="_ _0"></span>ing <span class="_ _5"> </span>scheme<span class="_ _0"></span>s. <span class="_ _5"> </span>A<span class="_ _0"></span>dditiona<span class="_ _0"></span>lly<span class="_ _0"></span>, </div><div class="t m0 x2 h7 yf ff3 fs3 fc0 sc0 ls0 ws0">battery<span class="_ _6"></span> <span class="_ _7"></span>mo<span class="_ _6"></span>de<span class="_ _1"></span>ls <span class="_ _7"></span>mu<span class="_ _0"></span>st <span class="_ _1"></span>acco<span class="_ _6"></span>unt<span class="_ _1"></span> <span class="_ _1"></span>for <span class="_ _1"></span>therma<span class="_ _6"></span>l<span class="_ _1"></span> <span class="_ _1"></span>effec<span class="_ _6"></span>t<span class="_ _1"></span>s <span class="_ _1"></span>becaus<span class="_ _0"></span>e <span class="_ _7"></span>of<span class="_ _6"></span> </div><div class="t m0 x2 h7 y10 ff3 fs3 fc0 sc0 ls0 ws0">the <span class="_"> </span>pa<span class="_ _0"></span>ramount<span class="_ _6"></span> <span class="_"> </span>i<span class="_ _1"></span>m<span class="_ _6"></span>portance <span class="_"> </span>o<span class="_ _6"></span>f <span class="_"> </span>tempera<span class="_ _6"></span>t<span class="_ _1"></span>ure <span class="_ _2"> </span>in <span class="_"> </span>k<span class="_ _6"></span>i<span class="_ _1"></span>ne<span class="_ _0"></span>tic <span class="_"> </span>and<span class="_ _6"></span> </div><div class="t m0 x2 h7 y11 ff3 fs3 fc0 sc0 ls0 ws0">transpor<span class="_ _6"></span>t<span class="_ _1"></span> <span class="_ _8"> </span>pheno<span class="_ _6"></span>mena <span class="_ _8"> </span>of<span class="_ _0"></span> <span class="_ _8"> </span>elec<span class="_ _0"></span>trochem<span class="_ _0"></span>ical <span class="_ _8"></span>sy<span class="_ _6"></span>stems. <span class="_ _8"> </span>This <span class="_ _8"></span>p<span class="_ _6"></span>a-</div><div class="t m0 x2 h7 y12 ff3 fs3 fc0 sc0 ls0 ws0">per <span class="_ _3"> </span>present<span class="_ _0"></span>s <span class="_ _5"> </span>an <span class="_ _3"> </span>effective <span class="_ _5"> </span>method <span class="_ _5"> </span>for <span class="_ _3"> </span>dev<span class="_ _6"></span>e<span class="_ _1"></span>loping<span class="_ _6"></span> <span class="_"> </span>a<span class="_ _6"></span> <span class="_ _2"> </span>mul<span class="_ _6"></span>ti-</div><div class="t m0 x2 h7 y13 ff3 fs3 fc0 sc0 ls0 ws0">tempera<span class="_ _0"></span>ture<span class="_ _0"></span> <span class="_ _1"></span>lithium<span class="_ _6"></span> <span class="_ _7"></span>cell <span class="_ _1"></span>simulat<span class="_ _6"></span>i<span class="_ _1"></span>on <span class="_ _1"></span>mo<span class="_ _0"></span>del <span class="_ _1"></span>with<span class="_ _6"></span> <span class="_ _7"></span>t<span class="_ _1"></span>h<span class="_ _0"></span>ermal<span class="_ _6"></span> <span class="_ _7"></span>de-</div><div class="t m0 x2 h7 y14 ff3 fs3 fc0 sc0 ls0 ws0">pendenc<span class="_ _6"></span>e<span class="_ _1"></span>. <span class="_"> </span>A<span class="_ _6"></span>n <span class="_"> </span>equ<span class="_ _6"></span>i<span class="_ _1"></span>v<span class="_ _0"></span>alent <span class="_"> </span>c<span class="_ _6"></span>i<span class="_ _1"></span>rcu<span class="_ _6"></span>i<span class="_ _1"></span>t <span class="_"> </span>m<span class="_ _0"></span>odel<span class="_ _0"></span> <span class="_"> </span>w<span class="_ _6"></span>i<span class="_ _1"></span>th<span class="_ _6"></span> <span class="_"> </span>one <span class="_"> </span>vo<span class="_ _6"></span>l<span class="_ _1"></span>tag<span class="_ _6"></span>e </div><div class="t m0 x2 h7 y15 ff3 fs3 fc0 sc0 ls0 ws0">sourc<span class="_ _0"></span>e, <span class="_ _7"></span>one<span class="_ _0"></span> <span class="_ _7"></span>series <span class="_ _1"></span>r<span class="_ _1"></span>e<span class="_ _0"></span>sistor<span class="_ _0"></span>, <span class="_ _7"></span>and<span class="_ _0"></span> <span class="_ _7"></span>a <span class="_ _7"></span>sing<span class="_ _0"></span>le <span class="_ _7"></span>RC <span class="_ _7"></span>blo<span class="_ _6"></span>ck <span class="_ _7"></span>was <span class="_ _7"></span>able<span class="_ _0"></span> </div><div class="t m0 x2 h7 y16 ff3 fs3 fc0 sc0 ls0 ws0">to <span class="_ _8"></span>ac<span class="_ _0"></span>co<span class="_ _6"></span>unt <span class="_ _8"> </span>for <span class="_ _8"></span>the<span class="_ _6"></span> <span class="_ _8"> </span>discha<span class="_ _0"></span>rge <span class="_ _8"></span>dy<span class="_ _6"></span>namics <span class="_ _8"></span>o<span class="_ _6"></span>bserved <span class="_ _7"></span>i<span class="_ _1"></span>n<span class="_ _0"></span> <span class="_ _7"></span>t<span class="_ _1"></span>he <span class="_ _8"></span>e<span class="_ _6"></span>x-</div><div class="t m0 x2 h7 y17 ff3 fs3 fc0 sc0 ls0 ws0">perimen<span class="_ _0"></span>t. <span class="_ _8"> </span>A<span class="_ _6"></span> <span class="_ _8"> </span>paramete<span class="_ _0"></span>r <span class="_ _8"></span>es<span class="_ _6"></span>t<span class="_ _1"></span>imation<span class="_ _6"></span> <span class="_ _8"> </span>numerica<span class="_ _6"></span>l<span class="_ _1"></span> <span class="_ _7"></span>scheme <span class="_ _7"></span>using </div><div class="t m0 x2 h7 y18 ff3 fs3 fc0 sc0 ls0 ws0">pulse <span class="_ _7"></span>curren<span class="_ _0"></span>t <span class="_ _8"></span>d<span class="_ _6"></span>i<span class="_ _1"></span>scha<span class="_ _6"></span>r<span class="_ _1"></span>ge <span class="_ _7"></span>tests <span class="_ _7"></span>on <span class="_ _7"></span>high <span class="_ _7"></span>pow<span class="_ _0"></span>er <span class="_ _7"></span>lithium <span class="_ _7"></span>(<span class="_ _1"></span>L<span class="_ _0"></span>iNi-</div><div class="t m0 x2 h7 y19 ff3 fs3 fc0 sc0 ls0 ws0">Co<span class="_ _0"></span>MnO</div><div class="t m0 x11 h8 y1a ff3 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x12 h7 y19 ff3 fs3 fc0 sc0 ls0 ws0"> <span class="_"> </span>cathode <span class="_"> </span>and <span class="_ _4"> </span>g<span class="_ _0"></span>raph<span class="_ _6"></span>i<span class="_ _1"></span>te-base<span class="_ _0"></span>d <span class="_"> </span>anode)<span class="_ _6"></span> <span class="_ _4"> </span>cells <span class="_"> </span>under </div><div class="t m0 x2 h7 y1b ff3 fs3 fc0 sc0 ls0 ws0">differen<span class="_ _0"></span>t <span class="_ _8"></span>o<span class="_ _6"></span>pe<span class="_ _1"></span>rat<span class="_ _0"></span>ing<span class="_ _6"></span> <span class="_ _8"> </span>co<span class="_ _0"></span>nditi<span class="_ _1"></span>ons<span class="_ _6"></span> <span class="_ _8"></span>revea<span class="_ _6"></span>l<span class="_ _1"></span>ed <span class="_ _7"></span>depend<span class="_ _6"></span>e<span class="_ _1"></span>nc<span class="_ _0"></span>es <span class="_ _8"></span>o<span class="_ _6"></span>f <span class="_ _8"></span>the<span class="_ _0"></span> </div><div class="t m0 x2 h7 y1c ff3 fs3 fc0 sc0 ls0 ws0">equiva<span class="_ _0"></span>lent <span class="_ _7"></span>ci<span class="_ _0"></span>rcui<span class="_ _0"></span>t <span class="_ _1"></span>elements<span class="_ _0"></span> <span class="_ _7"></span>o<span class="_ _0"></span>n <span class="_ _7"></span>state<span class="_ _6"></span> <span class="_ _7"></span>of <span class="_ _1"></span>charge, <span class="_ _1"></span>averag<span class="_ _0"></span>e <span class="_ _1"></span>cur-</div><div class="t m0 x2 h7 y1d ff3 fs3 fc0 sc0 ls0 ws0">rent, <span class="_ _8"></span>an<span class="_ _0"></span>d <span class="_ _7"></span>t<span class="_ _1"></span>emp<span class="_ _6"></span>e<span class="_ _1"></span>ratu<span class="_ _0"></span>re. <span class="_ _8"> </span>T<span class="_ _0"></span>he <span class="_ _8"></span>pro<span class="_ _6"></span>cess <span class="_ _8"></span>is <span class="_ _7"></span>useful <span class="_ _8"></span>f<span class="_ _0"></span>or <span class="_ _8"></span>c<span class="_ _6"></span>r<span class="_ _1"></span>eat<span class="_ _0"></span>ing <span class="_ _8"></span>a<span class="_ _6"></span> </div><div class="t m0 x2 h7 y1e ff3 fs3 fc0 sc0 ls0 ws0">high <span class="_"> </span>fidelity<span class="_ _6"></span> <span class="_ _4"> </span>mo<span class="_ _6"></span>de<span class="_ _1"></span>l <span class="_ _4"> </span>capa<span class="_ _6"></span>ble <span class="_ _4"> </span>of<span class="_ _6"></span> <span class="_ _4"> </span>predic<span class="_ _0"></span>ting <span class="_"> </span>elec<span class="_ _0"></span>trical <span class="_"> </span>cur-</div><div class="t m0 x2 h7 y1f ff3 fs3 fc0 sc0 ls0 ws0">rent/vo<span class="_ _6"></span>l<span class="_ _1"></span>tage<span class="_ _0"></span> <span class="_ _5"> </span>perfo<span class="_ _6"></span>r<span class="_ _1"></span>manc<span class="_ _0"></span>e <span class="_ _5"> </span>and <span class="_ _5"> </span>estim<span class="_ _0"></span>ating <span class="_ _8"> </span>run-time <span class="_ _8"> </span>state <span class="_ _5"> </span>of<span class="_ _0"></span> </div><div class="t m0 x2 h7 y20 ff3 fs3 fc0 sc0 ls0 ws0">charg<span class="_ _0"></span>e. <span class="_ _7"></span>The <span class="_ _1"></span>model <span class="_ _1"></span>was <span class="_ _7"></span>val<span class="_ _6"></span>i<span class="_ _1"></span>dat<span class="_ _0"></span>ed <span class="_ _7"></span>fo<span class="_ _6"></span>r<span class="_ _1"></span> <span class="_ _1"></span>a<span class="_ _1"></span> <span class="_ _1"></span>lithium <span class="_ _1"></span>cell <span class="_ _1"></span>with <span class="_ _1"></span>an </div><div class="t m0 x2 h7 y21 ff3 fs3 fc0 sc0 ls0 ws0">indepen<span class="_ _0"></span>dent <span class="_ _5"> </span>drive <span class="_ _5"> </span>cy<span class="_ _6"></span>cle <span class="_ _3"> </span>showing<span class="_ _0"></span> <span class="_ _5"> </span>vo<span class="_ _0"></span>lta<span class="_ _1"></span>g<span class="_ _0"></span>e <span class="_ _5"> </span>accurac<span class="_ _0"></span>y<span class="_ _6"></span> <span class="_ _3"> </span>withi<span class="_ _1"></span>n<span class="_ _0"></span> </div><div class="t m0 x2 h7 y22 ff3 fs3 fc0 sc0 ls0 ws0">2%. <span class="_ _1"></span> <span class="_ _7"></span>The <span class="_ _1"></span>mo<span class="_ _6"></span>de<span class="_ _1"></span>l <span class="_ _7"></span>w<span class="_ _0"></span>as <span class="_ _1"></span>also <span class="_ _1"></span>used <span class="_ _1"></span>to <span class="_ _1"></span>si<span class="_ _1"></span>mu<span class="_ _6"></span>l<span class="_ _1"></span>ate<span class="_ _0"></span> <span class="_ _7"></span>the<span class="_ _6"></span>r<span class="_ _1"></span>mal <span class="_ _1"></span>buildup<span class="_ _6"></span> </div><div class="t m0 x2 h7 y23 ff3 fs3 fc0 sc0 ls0 ws0">fo<span class="_ _6"></span>r<span class="_ _1"></span> a constant<span class="_ _6"></span> <span class="_ _1"></span>curr<span class="_ _0"></span>ent discha<span class="_ _6"></span>rge scenar<span class="_ _0"></span>io. </div><div class="t m0 x4 h9 y24 ff4 fs3 fc0 sc0 ls0 ws0">Ke<span class="_ _0"></span>yw<span class="_ _0"></span>ords- <span class="_ _9"> </span>high<span class="_ _6"></span>-<span class="_ _1"></span>pow<span class="_ _6"></span>er <span class="_ _9"> </span>lith<span class="_ _0"></span>ium <span class="_ _9"> </span>ce<span class="_ _6"></span>ll; <span class="_ _9"> </span>the<span class="_ _6"></span>r<span class="_ _1"></span>ma<span class="_ _6"></span>l<span class="_ _1"></span> <span class="_ _a"> </span>mo<span class="_ _0"></span>del, </div><div class="t m0 x2 h9 y25 ff4 fs3 fc0 sc0 ls0 ws0">ele<span class="_ _0"></span>ctrical <span class="_"> </span>equ<span class="_ _6"></span>iv<span class="_ _1"></span>a<span class="_ _0"></span>lent<span class="_ _0"></span> <span class="_"> </span>lithium<span class="_ _6"></span> <span class="_"> </span>cell <span class="_"> </span>m<span class="_ _0"></span>ode<span class="_ _6"></span>l. <span class="_"> </span>state <span class="_"> </span>o<span class="_ _6"></span>f <span class="_"> </span>charge<span class="_ _6"></span>, </div><div class="t m0 x2 h9 y26 ff4 fs3 fc0 sc0 ls0 ws0">pulse <span class="_ _8"> </span>discharge <span class="_ _8"> </span>test, <span class="_ _5"> </span>energy <span class="_ _8"> </span>storage<span class="_ _6"></span>;<span class="_ _1"></span> <span class="_ _5"> </span>electri<span class="_ _0"></span>c <span class="_ _5"> </span>vehic<span class="_ _0"></span>le, <span class="_ _5"> </span>hy-</div><div class="t m0 x2 h9 y27 ff4 fs3 fc0 sc0 ls0 ws0">brid elect<span class="_ _6"></span>r<span class="_ _1"></span>ic ve<span class="_ _6"></span>hi<span class="_ _1"></span>c<span class="_ _0"></span>le </div><div class="t m0 x13 ha y28 ff3 fs2 fc0 sc0 ls0 ws0">I.<span class="ff6"> <span class="_ _b"> </span></span>N<span class="fs5">OMENCL<span class="_ _1"></span>ATURE<span class="_ _1"></span></span> </div><div class="c x2 y29 w2 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">BM<span class="_ _0"></span>S</div></div><div class="c x14 y29 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x15 y29 w4 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">batte<span class="_ _6"></span>r<span class="_ _1"></span>y<span class="_ _6"></span> <span class="_ _1"></span>ma<span class="_ _0"></span>nage<span class="_ _0"></span>me<span class="_ _0"></span>nt sy<span class="_ _6"></span>stem</div></div><div class="c x16 y29 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y2b w5 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">C</div></div><div class="c x17 y2c w6 hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">n</div></div><div class="c x18 y2b w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x15 y2b w7 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">cap<span class="_ _0"></span>acito<span class="_ _6"></span>r </div></div><div class="c x19 y2b w8 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">n</div></div><div class="c x1a y2b w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">, </div></div><div class="c x1b y2b w9 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">w<span class="_ _0"></span>here<span class="_ _0"></span> </div></div><div class="c x1c y2b w8 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">n</div></div><div class="c x1d y2b wa hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x1e y2b wb hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">is a<span class="_ _0"></span> natu<span class="_ _6"></span>ral numb<span class="_ _6"></span>er </div></div><div class="c x1f y2b w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y2e w5 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">C</div></div><div class="c x17 y2f wc hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">Q</div></div><div class="c x7 y2e w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x15 y2e wd hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">ce<span class="_ _0"></span>ll <span class="_ _1"></span>c<span class="_ _6"></span>apacity<span class="_ _6"></span> (Ah)</div></div><div class="c x20 y2e w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y30 w5 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">C</div></div><div class="c x17 y31 we hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">T</div></div><div class="c x18 y30 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x15 y30 wf hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">heat c<span class="_ _6"></span>apacita<span class="_ _0"></span>nce<span class="_ _0"></span> (J <span class="_ _6"></span>m</div></div><div class="c x21 y32 w10 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">-</div></div><div class="c x22 y32 w6 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">3</div></div><div class="c x23 y30 w11 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x24 y30 w12 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">K</div></div><div class="c x25 y32 w10 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">-</div></div><div class="c x26 y32 w13 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">1</div></div><div class="c x27 y30 w6 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">)</div></div><div class="c x28 y30 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y34 w14 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">E</div></div><div class="c x17 y35 wc hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">m</div></div><div class="c x7 y34 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x15 y34 w15 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">elec<span class="_ _6"></span>tr<span class="_ _1"></span>omo<span class="_ _6"></span>tive f<span class="_ _6"></span>orce of<span class="_ _6"></span> <span class="_ _1"></span>main b<span class="_ _6"></span>ranc<span class="_ _0"></span>h</div></div><div class="c x29 y34 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y36 w14 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">E</div></div><div class="c x2a y37 w13 hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">p</div></div><div class="c x18 y36 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x15 y36 w16 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">elec<span class="_ _6"></span>tr<span class="_ _1"></span>omo<span class="_ _6"></span>tive f<span class="_ _6"></span>orce of<span class="_ _6"></span> <span class="_ _1"></span>paras<span class="_ _6"></span>itic b<span class="_ _6"></span>r<span class="_ _1"></span>anc<span class="_ _6"></span>h</div></div><div class="c x2b y36 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y38 w17 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">ECM</div></div><div class="c x2c y38 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x15 y38 w18 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">equiv<span class="_ _0"></span>ale<span class="_ _6"></span>nt <span class="_ _1"></span>c<span class="_ _6"></span>ir<span class="_ _1"></span>cu<span class="_ _6"></span>it mode<span class="_ _6"></span>l</div></div><div class="c x2d y38 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y39 w19 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">EKF</div></div><div class="c x3 y39 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x15 y39 w1a hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">exte<span class="_ _6"></span>n<span class="_ _1"></span>ded<span class="_ _6"></span> <span class="_ _1"></span>K<span class="_ _0"></span>alma<span class="_ _6"></span>n <span class="_ _1"></span>fi<span class="_ _6"></span>l<span class="_ _1"></span>te<span class="_ _6"></span>r</div></div><div class="c x2e y39 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y3a w1b hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">I</div></div><div class="c x2f y3b wc hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">m</div></div><div class="c x30 y3a w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x5 y3a w1c hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">curre<span class="_ _0"></span>nt <span class="_ _0"></span>in m<span class="_ _6"></span>a<span class="_ _1"></span>in b<span class="_ _6"></span>ranc<span class="_ _0"></span>h (A)</div></div><div class="c x28 y3a w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y3c w1b hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">I</div></div><div class="t m0 x2f he y3d ff4 fs6 fc0 sc0 ls0 ws0">n</div><div class="c x2a y3c w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x5 y3c w1d hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">curre<span class="_ _0"></span>nt <span class="_"> </span>in <span class="_ _c"> </span>b<span class="_ _6"></span>ranch </div></div><div class="c x31 y3c w8 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">n</div></div><div class="c x32 y3c w1e hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">, </div></div><div class="c x33 y3c w1f hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">w<span class="_ _0"></span>here<span class="_ _0"></span> </div></div><div class="c x34 y3c w8 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">n</div></div><div class="c x35 y3c w20 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x36 y3c w21 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">is <span class="_ _4"> </span>a <span class="_ _4"> </span>natural<span class="_ _6"></span> </div></div><div class="t m0 x5 h6 y3e ff3 fs2 fc0 sc0 ls0 ws0">numb<span class="_ _6"></span>er (A)<span class="_ _6"></span> </div><div class="c x2 y3f w1b hb"><div class="t m0 x0 hc y40 ff4 fs2 fc0 sc0 ls0 ws0">I</div></div><div class="c x2f y41 w13 hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">p</div></div><div class="c x2a y3f w3 hb"><div class="t m0 x0 hc y40 ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x5 y3f w22 hb"><div class="t m0 x0 h6 y40 ff3 fs2 fc0 sc0 ls0 ws0">curre<span class="_ _0"></span>nt <span class="_ _0"></span>in pa<span class="_ _6"></span>ra<span class="_ _1"></span>s<span class="_ _6"></span>itic b<span class="_ _0"></span>ranc<span class="_ _0"></span>h (A)</div></div><div class="c x37 y3f w3 hb"><div class="t m0 x0 h6 y40 ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x2 y42 w23 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">NMC</div></div><div class="c x38 y42 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x5 y42 w20 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">n</div></div><div class="c x39 y42 w24 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">ickel</div></div><div class="c x3a y42 w6 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">-</div></div><div class="c x3b y42 w25 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">mang<span class="_ _0"></span>anese</div></div><div class="c x3c y42 w13 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">-</div></div><div class="c x3d y42 w26 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">co<span class="_ _6"></span>balt</div></div><div class="c x26 y42 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y43 w27 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">OCV</div></div><div class="c x3f y43 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y43 w28 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">ope<span class="_ _6"></span>n <span class="_ _1"></span>ci<span class="_ _0"></span>rcui<span class="_ _0"></span>t vo<span class="_ _0"></span>ltage<span class="_ _6"></span> <span class="_ _1"></span>(V<span class="_ _0"></span>)</div></div><div class="c x41 y43 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y44 w29 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">P</div></div><div class="c x42 y45 w11 hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">s</div></div><div class="c x43 y44 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y44 w2a hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">pow<span class="_ _6"></span>er <span class="_ _1"></span>d<span class="_ _0"></span>issipa<span class="_ _6"></span>t<span class="_ _1"></span>ed<span class="_ _6"></span> inside<span class="_ _6"></span> </div></div><div class="c x44 y44 w2b hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">the<span class="_ _0"></span> cel<span class="_ _6"></span>l (W)</div></div><div class="c x45 y44 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y46 w12 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">Q</div></div><div class="c x46 y47 w2c hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">e</div></div><div class="c x47 y46 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y46 w2d hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">ext<span class="_ _0"></span>racted<span class="_ _6"></span> <span class="_ _1"></span>c<span class="_ _6"></span>harge f<span class="_ _6"></span>r<span class="_ _1"></span>om<span class="_ _6"></span> <span class="_ _1"></span>ce<span class="_ _0"></span>ll (A<span class="_ _6"></span>h<span class="_ _1"></span>)</div></div><div class="c x48 y46 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y48 w14 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">R</div></div><div class="t m0 x42 he y49 ff4 fs6 fc0 sc0 ls0 ws0">n</div><div class="c x49 y48 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="t m0 x40 h6 y4a ff3 fs2 fc0 sc0 ls0 ws0">resisto<span class="_ _6"></span>r <span class="ff4">n, </span>w<span class="_ _6"></span>h<span class="_ _1"></span>e<span class="_ _6"></span>r<span class="_ _1"></span>e <span class="ff4">n<span class="_ _6"></span><span class="ff3"> is a na<span class="_ _6"></span>t<span class="_ _1"></span>u<span class="_ _0"></span>ral<span class="_ _0"></span> numb<span class="_ _0"></span>e<span class="_ _6"></span>r<span class="_ _1"></span> (</span></span></div><div class="c x4a y4b w1e h11"><div class="t m0 x0 h12 y4c ff7 fs2 fc0 sc0 ls0 ws0"></div></div><div class="t m0 x4b h6 y4a ff3 fs2 fc0 sc0 ls0 ws0">) </div><div class="c x3e y4d w14 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">R</div></div><div class="c x42 y4e we hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">T</div></div><div class="c x49 y4d w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y4d w2e hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">co<span class="_ _6"></span>n<span class="_ _1"></span>ve<span class="_ _0"></span>ction <span class="_ _0"></span>resist<span class="_ _6"></span>an<span class="_ _1"></span>ce<span class="_ _6"></span> </div></div><div class="c x4c y4d w2f hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">(W</div></div><div class="c x4d y4f w13 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">1</div></div><div class="c x4e y4d wa hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x4f y4d w1e hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">m</div></div><div class="c x50 y4f w10 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">-</div></div><div class="c x51 y4f w6 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">2</div></div><div class="c x52 y4d w11 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x53 y4d w12 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">K</div></div><div class="c x54 y4f w10 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">-</div></div><div class="c x55 y4f w13 hf"><div class="t m0 x0 h10 y33 ff3 fs6 fc0 sc0 ls0 ws0">1</div></div><div class="c x56 y4d w6 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">)</div></div><div class="c x57 y4d w6 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">)</div></div><div class="c x58 y4d w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y50 w30 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">s</div></div><div class="c x59 y50 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y50 w31 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">Laplac<span class="_ _0"></span>e t<span class="_ _6"></span>ran<span class="_ _1"></span>sf<span class="_ _6"></span>orm va<span class="_ _6"></span>riable</div></div><div class="c x5a y50 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y51 w24 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">SOC</div></div><div class="c x5b y51 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y51 w32 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">state o<span class="_ _0"></span>f c<span class="_ _6"></span>harge</div></div><div class="c x5c y51 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y52 w29 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">T</div></div><div class="c x42 y52 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y52 w33 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">inne<span class="_ _0"></span>r cel<span class="_ _6"></span>l t<span class="_ _1"></span>e<span class="_ _6"></span>mpera<span class="_ _0"></span>ture<span class="_ _0"></span> (ºC)</div></div><div class="c x4f y52 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y53 w29 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">T</div></div><div class="c x42 y54 w6 hd"><div class="t m0 x0 he y2d ff4 fs6 fc0 sc0 ls0 ws0">a</div></div><div class="c x43 y53 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y53 w34 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">amb<span class="_ _0"></span>ie<span class="_ _0"></span>nt tempe<span class="_ _6"></span>rature <span class="_ _6"></span>(ºC)</div></div><div class="c x4d y53 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y55 w12 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0">V</div></div><div class="c x42 y55 w3 hb"><div class="t m0 x0 hc y2a ff4 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x40 y55 w35 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">vo<span class="_ _6"></span>lt<span class="_ _1"></span>age<span class="_ _6"></span> <span class="_ _1"></span>(V)</div></div><div class="c x5d y55 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="c x3e y56 w36 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0">Z</div></div><div class="t m0 x42 h10 y57 ff3 fs6 fc0 sc0 ls0 ws0">p</div><div class="c x49 y56 w3 hb"><div class="t m0 x0 h6 y2a ff3 fs2 fc0 sc0 ls0 ws0"> </div></div><div class="t m0 x40 h6 y58 ff3 fs2 fc0 sc0 ls0 ws0">imped<span class="_ _6"></span>ance of<span class="_ _6"></span> <span class="_ _1"></span>pa<span class="_ _6"></span>ra<span class="_ _1"></span>s<span class="_ _6"></span>i<span class="_ _1"></span>tic<span class="_ _0"></span> b<span class="_ _6"></span>ran<span class="_ _1"></span>c<span class="_ _6"></span>h <span class="_ _1"></span>(</div><div class="c x48 y59 w37 h11"><div class="t m0 x0 h12 y4c ff7 fs2 fc0 sc0 ls0 ws0"></div></div><div class="t m0 x5e h6 y58 ff3 fs2 fc0 sc0 ls0 ws0">) </div><div class="t m0 xe ha y5a ff3 fs2 fc0 sc0 ls0 ws0">II.<span class="ff6"> <span class="_ _d"> </span></span>I<span class="fs5">NT<span class="_ _1"></span>RODUCTION<span class="_ _1"></span></span> </div><div class="t m0 x5f h6 y5b ff3 fs2 fc0 sc0 ls0 ws0">A<span class="_ _0"></span>n <span class="_ _8"></span>accu<span class="_ _6"></span>rate<span class="_ _6"></span> <span class="_ _8"> </span>forec<span class="_ _0"></span>ast <span class="_ _8"></span>o<span class="_ _6"></span>f <span class="_ _7"></span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _8"></span>re<span class="_ _0"></span>maini<span class="_ _6"></span>ng <span class="_ _8"></span>driv<span class="_ _6"></span>ing <span class="_ _7"></span>range </div><div class="t m0 x3e h6 y5c ff3 fs2 fc0 sc0 ls0 ws0">of<span class="_ _6"></span> <span class="_ _1"></span>an <span class="_ _7"></span>elec<span class="_ _6"></span>tric vehic<span class="_ _0"></span>le (EV) is<span class="_ _0"></span> <span class="_ _1"></span>c<span class="_ _6"></span>r<span class="_ _1"></span>ucia<span class="_ _6"></span>l<span class="_ _1"></span> to <span class="_ _1"></span>avo<span class="_ _6"></span>i<span class="_ _1"></span>d<span class="_ _0"></span> range anx-</div><div class="t m0 x3e h6 y5d ff3 fs2 fc0 sc0 ls0 ws0">iety<span class="_ _6"></span>. <span class="_ _9"> </span>Drive<span class="_ _6"></span>r<span class="_ _1"></span>s <span class="_ _c"> </span>n<span class="_ _1"></span>ee<span class="_ _0"></span>d <span class="_ _a"> </span>to <span class="_ _c"> </span>kn<span class="_ _1"></span>o<span class="_ _0"></span>w<span class="_ _6"></span> <span class="_ _9"> </span>how<span class="_ _0"></span> <span class="_ _9"> </span>muc<span class="_ _0"></span>h <span class="_ _9"> </span>fu<span class="_ _6"></span>r<span class="_ _1"></span>the<span class="_ _6"></span>r <span class="_ _9"> </span>they </div><div class="t m0 x3e h6 y5e ff3 fs2 fc0 sc0 ls0 ws0">w<span class="_ _0"></span>ould <span class="_ _8"> </span>trave<span class="_ _6"></span>l <span class="_ _5"> </span>be<span class="_ _6"></span>fo<span class="_ _0"></span>r<span class="_ _1"></span>e <span class="_ _8"></span>the<span class="_ _0"></span>ir <span class="_ _8"> </span>ve<span class="_ _0"></span>hicle<span class="_ _6"></span> <span class="_ _5"> </span>batte<span class="_ _6"></span>ries <span class="_ _8"></span>requ<span class="_ _6"></span>ire <span class="_ _8"> </span>a <span class="_ _8"></span>re-</div><div class="t m0 x3e h6 y5f ff3 fs2 fc0 sc0 ls0 ws0">cha<span class="_ _0"></span>rge. <span class="_ _a"> </span>In <span class="_ _a"> </span>addit<span class="_ _6"></span>i<span class="_ _1"></span>o<span class="_ _0"></span>n, <span class="_ _a"> </span>the <span class="_ _9"> </span>b<span class="_ _6"></span>a<span class="_ _1"></span>tte<span class="_ _6"></span>r<span class="_ _1"></span>y<span class="_ _6"></span> <span class="_ _e"> </span>ma<span class="_ _0"></span>nage<span class="_ _0"></span>me<span class="_ _0"></span>nt <span class="_ _9"> </span>sy<span class="_ _6"></span>stem </div><div class="t m0 x3e h6 y60 ff3 fs2 fc0 sc0 ls0 ws0">shou<span class="_ _0"></span>ld <span class="_"> </span>predic<span class="_ _0"></span>t <span class="_ _4"> </span>w<span class="_ _6"></span>h<span class="_ _1"></span>e<span class="_ _0"></span>n <span class="_ _c"> </span>ba<span class="_ _0"></span>tterie<span class="_ _0"></span>s<span class="_ _0"></span> <span class="_"> </span>n<span class="_ _1"></span>eed<span class="_ _6"></span> <span class="_ _c"> </span>repl<span class="_ _0"></span>aceme<span class="_ _6"></span>nt. <span class="_"> </span>The </div><div class="t m0 x3e h6 y22 ff3 fs2 fc0 sc0 ls0 ws0">rem<span class="_ _0"></span>aining <span class="_ _8"></span>c<span class="_ _6"></span>harge <span class="_ _8"> </span>calcu<span class="_ _6"></span>lation <span class="_ _8"></span>must<span class="_ _6"></span> <span class="_ _5"> </span>be <span class="_ _8"></span>prec<span class="_ _0"></span>ise <span class="_ _8"></span>to<span class="_ _0"></span> <span class="_ _8"> </span>utilize </div><div class="t m0 x3e h6 y61 ff3 fs2 fc0 sc0 ls0 ws0">the <span class="_ _8"> </span>b<span class="_ _0"></span>atte<span class="_ _6"></span>r<span class="_ _1"></span>y<span class="_ _6"></span>’s <span class="_ _5"> </span>full <span class="_ _8"></span>ca<span class="_ _0"></span>pabi<span class="_ _0"></span>lity<span class="_ _6"></span>. <span class="_ _8"> </span>Th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _5"> </span>sta<span class="_ _0"></span>te <span class="_ _8"> </span>of<span class="_ _0"></span> <span class="_ _8"> </span>charge <span class="_ _8"></span>(S<span class="_ _0"></span>OC<span class="_ _0"></span>) </div><div class="t m0 x3e h6 y62 ff3 fs2 fc0 sc0 ls0 ws0">of<span class="_ _6"></span> <span class="_ _3"> </span>a <span class="_ _3"> </span>ba<span class="_ _0"></span>tte<span class="_ _6"></span>r<span class="_ _1"></span>y<span class="_ _6"></span> <span class="_ _3"> </span>or <span class="_ _5"> </span>p<span class="_ _0"></span>ack <span class="_ _8"> </span>of <span class="_ _8"> </span>batte<span class="_ _6"></span>ri<span class="_ _1"></span>es <span class="_ _8"></span>is <span class="_ _8"></span>analogo<span class="_ _6"></span>us <span class="_ _8"></span>to <span class="_ _8"> </span>a <span class="_ _5"> </span>fuel </div><div class="t m0 x3e h6 y63 ff3 fs2 fc0 sc0 ls0 ws0">gauge<span class="_ _0"></span> of<span class="_ _6"></span> a <span class="_ _1"></span>co<span class="_ _6"></span>nvent<span class="_ _0"></span>iona<span class="_ _0"></span>l v<span class="_ _0"></span>ehicle<span class="_ _0"></span>. <span class="_ _0"></span> </div><div class="t m0 x5f h6 y64 ff3 fs2 fc0 sc0 ls0 ws0">Acc<span class="_ _6"></span>urate run-ti<span class="_ _6"></span>m<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _1"></span>SOC es<span class="_ _0"></span>tima<span class="_ _6"></span>ti<span class="_ _1"></span>o<span class="_ _6"></span>n t<span class="_ _1"></span>ec<span class="_ _6"></span>hniques<span class="_ _6"></span> <span class="_ _1"></span>are<span class="_ _0"></span> al-</div><div class="t m0 x3e h6 y65 ff3 fs2 fc0 sc0 ls0 ws0">so<span class="_ _0"></span> <span class="_ _1"></span>n<span class="_ _1"></span>ee<span class="_ _6"></span>ded by<span class="_ _6"></span> <span class="_ _1"></span>the <span class="_ _1"></span>ba<span class="_ _0"></span>ttery<span class="_ _6"></span> <span class="_ _1"></span>manage<span class="_ _6"></span>ment <span class="_ _1"></span>sy<span class="_ _6"></span>stem<span class="_ _0"></span> <span class="_ _1"></span>(BM<span class="_ _0"></span>S)<span class="_ _0"></span> <span class="_ _1"></span>fo<span class="_ _6"></span>r<span class="_ _1"></span> </div><div class="t m0 x3e h6 y66 ff3 fs2 fc0 sc0 ls0 ws0">ce<span class="_ _0"></span>ll <span class="_ _8"> </span>bala<span class="_ _0"></span>nci<span class="_ _0"></span>ng <span class="_ _8"></span>of<span class="_ _6"></span> <span class="_ _5"> </span>batte<span class="_ _6"></span>r<span class="_ _1"></span>y<span class="_ _6"></span> <span class="_ _5"> </span>pac<span class="_ _0"></span>ks<span class="_ _6"></span> <span class="_ _5"> </span>in <span class="_ _8"> </span>ve<span class="_ _6"></span>hicles<span class="_ _0"></span> <span class="_ _8"> </span>with <span class="_ _8"></span>e<span class="_ _0"></span>lect<span class="_ _6"></span>ri-</div><div class="t m0 x3e h6 y67 ff3 fs2 fc0 sc0 ls0 ws0">fie<span class="_ _0"></span>d <span class="_ _7"></span>pow<span class="_ _0"></span>ertrai<span class="_ _6"></span>n<span class="_ _1"></span>s.<span class="_ _0"></span> <span class="_ _7"></span>Th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _8"> </span>SOC<span class="_ _6"></span> <span class="_ _8"> </span>est<span class="_ _0"></span>imatio<span class="_ _6"></span>n <span class="_ _8"></span>m<span class="_ _6"></span>ust <span class="_ _8"></span>be<span class="_ _6"></span> <span class="_ _8"></span>acc<span class="_ _0"></span>ura<span class="_ _6"></span>t<span class="_ _1"></span>e </div><div class="t m0 x3e h6 y68 ff3 fs2 fc0 sc0 ls0 ws0">unde<span class="_ _6"></span>r <span class="_ _5"> </span>all <span class="_ _5"> </span>ve<span class="_ _6"></span>hicle<span class="_ _0"></span> <span class="_ _5"> </span>ope<span class="_ _6"></span>r<span class="_ _1"></span>at<span class="_ _0"></span>ing <span class="_ _5"> </span>co<span class="_ _6"></span>n<span class="_ _1"></span>d<span class="_ _0"></span>itio<span class="_ _6"></span>n<span class="_ _1"></span>s<span class="_ _6"></span>, <span class="_ _5"> </span>and <span class="_ _8"> </span>acco<span class="_ _0"></span>unt <span class="_ _5"> </span>fo<span class="_ _6"></span>r </div><div class="t m0 x3e h6 y69 ff3 fs2 fc0 sc0 ls0 ws0">cha<span class="_ _0"></span>nges <span class="_ _5"> </span>in <span class="_ _3"> </span>t<span class="_ _1"></span>em<span class="_ _6"></span>peratu<span class="_ _6"></span>r<span class="_ _1"></span>e, <span class="_ _5"> </span>di<span class="_ _1"></span>ff<span class="_ _6"></span>erent<span class="_ _6"></span> <span class="_ _2"> </span>rates<span class="_ _0"></span> <span class="_ _2"> </span>of<span class="_ _6"></span> <span class="_ _2"> </span>curre<span class="_ _6"></span>nt, <span class="_ _3"> </span>and </div><div class="t m0 x3e h6 y6a ff3 fs2 fc0 sc0 ls0 ws0">ce<span class="_ _0"></span>ll <span class="_ _c"> </span>a<span class="_ _1"></span>gi<span class="_ _6"></span>ng. <span class="_ _a"> </span>Hig<span class="_ _6"></span>h <span class="_ _a"> </span>t<span class="_ _1"></span>e<span class="_ _6"></span>mpera<span class="_ _0"></span>tures<span class="_ _6"></span>,<span class="_ _1"></span> <span class="_ _a"> </span>b<span class="_ _6"></span>r<span class="_ _1"></span>oa<span class="_ _6"></span>d<span class="_ _1"></span> <span class="_ _c"> </span>SOC <span class="_ _c"> </span>ope<span class="_ _6"></span>ratio<span class="_ _0"></span>n </div><div class="t m0 x3e h6 y6b ff3 fs2 fc0 sc0 ls0 ws0">range<span class="_ _0"></span>s, and strenuo<span class="_ _6"></span>us l<span class="_ _1"></span>o<span class="_ _0"></span>ad pr<span class="_ _1"></span>o<span class="_ _0"></span>fi<span class="_ _6"></span>les accele<span class="_ _6"></span>r<span class="_ _1"></span>ate cel<span class="_ _0"></span>l a<span class="_ _1"></span>g<span class="_ _0"></span>ing<span class="_ _6"></span>.<span class="_ _1"></span> </div><div class="t m0 x3e h6 y6c ff3 fs2 fc0 sc0 ls0 ws0">Coulo<span class="_ _6"></span>m<span class="_ _1"></span>b<span class="_ _0"></span> <span class="_ _3"> </span>cou<span class="_ _6"></span>nting <span class="_ _3"> </span>(i<span class="_ _6"></span>.<span class="_ _1"></span>e.<span class="_ _0"></span> <span class="_ _5"> </span>integrat<span class="_ _0"></span>io<span class="_ _6"></span>n <span class="_ _2"> </span>o<span class="_ _0"></span>f<span class="_ _0"></span> <span class="_ _3"> </span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _2"> </span>cu<span class="_ _6"></span>rr<span class="_ _1"></span>e<span class="_ _6"></span>nt) <span class="_ _5"> </span>i<span class="_ _1"></span>s<span class="_ _6"></span> <span class="_ _3"> </span>a<span class="_ _1"></span> </div><div class="t m0 x3e h6 y6d ff3 fs2 fc0 sc0 ls0 ws0">simple<span class="_ _6"></span> <span class="_ _8"></span>tec<span class="_ _6"></span>hnique<span class="_ _0"></span> <span class="_ _8"></span>f<span class="_ _0"></span>or <span class="_ _8"></span>e<span class="_ _6"></span>stim<span class="_ _6"></span>a<span class="_ _1"></span>ti<span class="_ _0"></span>ng<span class="_ _0"></span> <span class="_ _8"></span>the<span class="_ _0"></span> <span class="_ _8"></span>S<span class="_ _0"></span>OC<span class="_ _6"></span> <span class="_ _8"> </span>by<span class="_ _6"></span> <span class="_ _8"> </span>int<span class="_ _1"></span>e<span class="_ _6"></span>grati<span class="_ _6"></span>ng </div><div class="t m0 x3e h6 y6e ff3 fs2 fc0 sc0 ls0 ws0">the<span class="_ _0"></span> <span class="_ _9"> </span>m<span class="_ _1"></span>e<span class="_ _6"></span>a<span class="_ _1"></span>su<span class="_ _6"></span>r<span class="_ _1"></span>e<span class="_ _0"></span>d <span class="_ _9"> </span>cu<span class="_ _6"></span>rr<span class="_ _1"></span>e<span class="_ _0"></span>nt <span class="_ _9"> </span>wi<span class="_ _6"></span>th <span class="_ _9"> </span>time. <span class="_ _9"> </span>Ho<span class="_ _6"></span>wev<span class="_ _0"></span>er, <span class="_ _9"> </span>coulo<span class="_ _6"></span>m<span class="_ _1"></span>b </div><div class="t m0 x3e h6 y6f ff3 fs2 fc0 sc0 ls0 ws0">co<span class="_ _6"></span>un<span class="_ _1"></span>ting<span class="_ _6"></span> <span class="_ _8"></span>has<span class="_ _6"></span> <span class="_ _8"> </span>seve<span class="_ _6"></span>r<span class="_ _1"></span>al <span class="_ _8"></span>d<span class="_ _6"></span>rawb<span class="_ _0"></span>acks. <span class="_ _7"></span>Coulo<span class="_ _6"></span>m<span class="_ _1"></span>b<span class="_ _6"></span> <span class="_ _8"></span>co<span class="_ _6"></span>unting <span class="_ _7"></span>de-</div><div class="t m0 x3e h6 y70 ff3 fs2 fc0 sc0 ls0 ws0">pends<span class="_ _6"></span> <span class="_ _8"></span>o<span class="_ _6"></span>n <span class="_ _7"></span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _8"></span>c<span class="_ _0"></span>urre<span class="_ _6"></span>nt <span class="_ _8"></span>f<span class="_ _6"></span>low<span class="_ _0"></span>ing <span class="_ _7"></span>fro<span class="_ _6"></span>m<span class="_ _1"></span> <span class="_ _1"></span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _8"></span>c<span class="_ _0"></span>el<span class="_ _0"></span>l <span class="_ _7"></span>into <span class="_ _7"></span>ex<span class="_ _6"></span>t<span class="_ _1"></span>e<span class="_ _6"></span>rnal </div><div class="t m0 x3e h6 y71 ff3 fs2 fc0 sc0 ls0 ws0">ci<span class="_ _0"></span>rcuits<span class="_ _0"></span> <span class="_ _7"></span>and<span class="_ _6"></span> <span class="_ _8"></span>do<span class="_ _0"></span>es<span class="_ _6"></span> <span class="_ _7"></span>n<span class="_ _1"></span>ot<span class="_ _6"></span> <span class="_ _7"></span>a<span class="_ _1"></span>cc<span class="_ _6"></span>ount <span class="_ _7"></span>fo<span class="_ _6"></span>r <span class="_ _7"></span>self-d<span class="_ _6"></span>ischa<span class="_ _6"></span>r<span class="_ _1"></span>ge<span class="_ _0"></span> <span class="_ _7"></span>curre<span class="_ _6"></span>nts </div><div class="t m0 x3e h6 y72 ff3 fs2 fc0 sc0 ls0 ws0">or <span class="_ _5"> </span>paras<span class="_ _6"></span>i<span class="_ _1"></span>tic<span class="_ _6"></span> <span class="_ _5"> </span>r<span class="_ _1"></span>e<span class="_ _0"></span>actio<span class="_ _6"></span>n<span class="_ _1"></span>s <span class="_ _5"> </span>in <span class="_ _5"> </span>the<span class="_ _0"></span> <span class="_ _3"> </span>ce<span class="_ _6"></span>l<span class="_ _1"></span>l.<span class="_ _0"></span> <span class="_ _5"> </span>Current<span class="_ _6"></span> <span class="_ _3"> </span>measu<span class="_ _6"></span>r<span class="_ _1"></span>e<span class="_ _0"></span>me<span class="_ _0"></span>nt </div><div class="t m0 x3e h6 y73 ff3 fs2 fc0 sc0 ls0 ws0">erro<span class="_ _6"></span>r<span class="_ _1"></span>s accu<span class="_ _0"></span>mulate<span class="_ _6"></span> <span class="_ _7"></span>wit<span class="_ _0"></span>h <span class="_ _1"></span>ti<span class="_ _0"></span>me, and <span class="_ _1"></span>shou<span class="_ _6"></span>ld <span class="_ _1"></span>be<span class="_ _6"></span> <span class="_ _7"></span>correc<span class="_ _6"></span>ted <span class="_ _1"></span>by </div><div class="t m0 x3e h6 y74 ff3 fs2 fc0 sc0 ls0 ws0">perio<span class="_ _0"></span>dic<span class="_ _0"></span> <span class="_ _1"></span>rec<span class="_ _0"></span>alib<span class="_ _6"></span>r<span class="_ _1"></span>at<span class="_ _0"></span>ion. The maximu<span class="_ _6"></span>m <span class="_ _7"></span>c<span class="_ _6"></span>har<span class="_ _1"></span>ge<span class="_ _6"></span> <span class="_ _7"></span>cap<span class="_ _6"></span>a<span class="_ _1"></span>ci<span class="_ _0"></span>ty<span class="_ _6"></span> <span class="_ _7"></span>of </div><div class="t m0 x3e h6 y75 ff3 fs2 fc0 sc0 ls0 ws0">the <span class="_ _1"></span>ce<span class="_ _6"></span>ll <span class="_ _1"></span>depe<span class="_ _6"></span>nds <span class="_ _1"></span>o<span class="_ _6"></span>n a<span class="_ _1"></span> numb<span class="_ _0"></span>er of facto<span class="_ _6"></span>r<span class="_ _1"></span>s, suc<span class="_ _6"></span>h <span class="_ _1"></span>as a<span class="_ _1"></span>v<span class="_ _0"></span>e<span class="_ _6"></span>ra<span class="_ _1"></span>ge </div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622bacea3d2fbb0007c6b411/bg2.jpg"><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">2 </div><div class="t m0 x2 h6 y76 ff3 fs2 fc0 sc0 ls0 ws0">disc<span class="_ _6"></span>harge <span class="_ _8"></span>cu<span class="_ _6"></span>rre<span class="_ _0"></span>nt,<span class="_ _0"></span> <span class="_ _8"></span>disc<span class="_ _6"></span>harge<span class="_ _6"></span> <span class="_ _8"> </span>time, <span class="_ _7"></span>inne<span class="_ _0"></span>r <span class="_ _7"></span>cell<span class="_ _6"></span> <span class="_ _8"> </span>tempe<span class="_ _6"></span>ra<span class="_ _1"></span>-</div><div class="t m0 x2 h6 y77 ff3 fs2 fc0 sc0 ls0 ws0">ture<span class="_ _0"></span>, sto<span class="_ _6"></span>rage ti<span class="_ _6"></span>m<span class="_ _1"></span>e <span class="_ _0"></span>(self<span class="_ _6"></span>-disc<span class="_ _6"></span>h<span class="_ _1"></span>arge)<span class="_ _6"></span>, and cy<span class="_ _6"></span>c<span class="_ _0"></span>le-age [1]<span class="_ _6"></span>. </div><div class="t m0 x4 h6 y78 ff3 fs2 fc0 sc0 ls0 ws0">Equiv<span class="_ _0"></span>ale<span class="_ _6"></span>nt <span class="_"> </span>circui<span class="_ _6"></span>t <span class="_ _4"> </span>m<span class="_ _1"></span>o<span class="_ _0"></span>de<span class="_ _6"></span>l<span class="_ _1"></span>ing<span class="_ _6"></span> <span class="_ _c"> </span>(<span class="_ _0"></span>ECM)<span class="_ _6"></span> <span class="_"> </span>is <span class="_"> </span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_"> </span>most </div><div class="t m0 x2 h6 y79 ff3 fs2 fc0 sc0 ls0 ws0">co<span class="_ _6"></span>m<span class="_ _1"></span>mon <span class="_ _1"></span>app<span class="_ _0"></span>r<span class="_ _1"></span>o<span class="_ _0"></span>ac<span class="_ _6"></span>h <span class="_ _8"></span>fo<span class="_ _6"></span>r <span class="_ _7"></span>ba<span class="_ _0"></span>ttery<span class="_ _6"></span> <span class="_ _7"></span>n<span class="_ _1"></span>ume<span class="_ _6"></span>rical<span class="_ _0"></span> <span class="_ _7"></span>ana<span class="_ _0"></span>ly<span class="_ _6"></span>sis. <span class="_ _8"></span>Fo<span class="_ _6"></span>r </div><div class="t m0 x2 h6 y7a ff3 fs2 fc0 sc0 ls0 ws0">lithiu<span class="_ _6"></span>m <span class="_ _5"> </span>cells<span class="_ _6"></span>, <span class="_ _5"> </span>a <span class="_ _5"> </span>one<span class="_ _6"></span> <span class="_ _3"> </span>o<span class="_ _6"></span>r <span class="_ _3"> </span>two<span class="_ _0"></span> <span class="_ _8"> </span><span class="ff4">R<span class="_ _1"></span>C<span class="_ _0"></span><span class="ff3"> <span class="_ _5"> </span>bloc<span class="_ _6"></span>k <span class="_ _5"> </span>m<span class="_ _1"></span>o<span class="_ _0"></span>de<span class="_ _6"></span>l <span class="_ _5"> </span>with <span class="_ _8"> </span>n<span class="_ _1"></span>o<span class="_ _6"></span> </span></span></div><div class="t m0 x2 h6 y7b ff3 fs2 fc0 sc0 ls0 ws0">paras<span class="_ _6"></span>i<span class="_ _1"></span>tic<span class="_ _6"></span> <span class="_ _8"></span>bra<span class="_ _6"></span>n<span class="_ _1"></span>ch <span class="_ _7"></span>is <span class="_ _8"></span>a<span class="_ _6"></span> <span class="_ _8"> </span>com<span class="_ _0"></span>mon <span class="_ _8"></span>c<span class="_ _6"></span>hoice<span class="_ _6"></span> <span class="_ _8"> </span>[1-3]<span class="_ _6"></span>. <span class="_ _8"> </span>It<span class="_ _0"></span> <span class="_ _7"></span>ha<span class="_ _1"></span>s <span class="_ _7"></span>the </div><div class="t m0 x2 h6 y7c ff3 fs2 fc0 sc0 ls0 ws0">adva<span class="_ _0"></span>ntage<span class="_ _6"></span> <span class="_ _1"></span>of<span class="_ _0"></span> <span class="_ _1"></span>be<span class="_ _6"></span>in<span class="_ _1"></span>g<span class="_ _0"></span> <span class="_ _1"></span>co<span class="_ _0"></span>mpu<span class="_ _6"></span>t<span class="_ _1"></span>at<span class="_ _6"></span>i<span class="_ _1"></span>o<span class="_ _0"></span>nally<span class="_ _6"></span> <span class="_ _1"></span>simple<span class="_ _6"></span> and is <span class="_ _1"></span>e<span class="_ _6"></span>as-</div><div class="t m0 x2 h6 y7d ff3 fs2 fc0 sc0 ls0 ws0">ily<span class="_ _0"></span> <span class="_"> </span>co<span class="_ _6"></span>m<span class="_ _1"></span>b<span class="_ _0"></span>ined <span class="_"> </span>w<span class="_ _6"></span>ith <span class="_"> </span>o<span class="_ _6"></span>th<span class="_ _1"></span>e<span class="_ _6"></span>r <span class="_"> </span>met<span class="_ _0"></span>h<span class="_ _1"></span>o<span class="_ _0"></span>ds<span class="_ _6"></span> <span class="_"> </span>such <span class="_ _2"> </span>as <span class="_"> </span>co<span class="_ _0"></span>ulo<span class="_ _6"></span>m<span class="_ _1"></span>b </div><div class="t m0 x2 h6 y7e ff3 fs2 fc0 sc0 ls0 ws0">co<span class="_ _6"></span>un<span class="_ _1"></span>ting<span class="_ _6"></span> <span class="_ _8"></span>w<span class="_ _6"></span>ith <span class="_ _7"></span>an <span class="_ _1"></span>OCV<span class="_ _6"></span> <span class="_ _8"></span>/ <span class="_ _7"></span>SO<span class="_ _6"></span>C <span class="_ _7"></span>corre<span class="_ _0"></span>latio<span class="_ _6"></span>n <span class="_ _7"></span>fo<span class="_ _0"></span>r <span class="_ _7"></span>perio<span class="_ _0"></span>dic<span class="_ _6"></span> </div><div class="t m0 x2 h6 y7f ff3 fs2 fc0 sc0 ls0 ws0">recal<span class="_ _6"></span>i<span class="_ _1"></span>bra<span class="_ _6"></span>t<span class="_ _1"></span>io<span class="_ _6"></span>n <span class="_ _5"> </span>duri<span class="_ _6"></span>ng <span class="_ _8"> </span>r<span class="_ _1"></span>est.<span class="_ _6"></span> <span class="_ _5"> </span>Th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _5"> </span>model<span class="_ _6"></span> <span class="_ _3"> </span>also <span class="_ _8"></span>le<span class="_ _6"></span>n<span class="_ _1"></span>ds <span class="_ _8"> </span>itself<span class="_ _6"></span> </div><div class="t m0 x2 h6 y80 ff3 fs2 fc0 sc0 ls0 ws0">to <span class="_ _c"> </span>the<span class="_ _6"></span> <span class="_ _a"> </span>use <span class="_ _4"> </span>of<span class="_ _0"></span> <span class="_ _c"> </span>adapt<span class="_ _6"></span>i<span class="_ _1"></span>v<span class="_ _0"></span>e <span class="_ _c"> </span>met<span class="_ _0"></span>h<span class="_ _1"></span>o<span class="_ _6"></span>ds, <span class="_ _4"> </span>such <span class="_ _4"> </span>a<span class="_ _1"></span>s<span class="_ _6"></span> <span class="_ _a"> </span>ex<span class="_ _6"></span>t<span class="_ _1"></span>e<span class="_ _6"></span>n<span class="_ _1"></span>ded<span class="_ _6"></span> </div><div class="t m0 x2 h6 y81 ff3 fs2 fc0 sc0 ls0 ws0">Kalm<span class="_ _0"></span>an fi<span class="_ _6"></span>l<span class="_ _1"></span>te<span class="_ _6"></span>r (EKF)<span class="_ _6"></span> [3-5].<span class="_ _0"></span> </div><div class="t m0 x4 h6 y82 ff3 fs2 fc0 sc0 ls0 ws0">This pa<span class="_ _6"></span>per prese<span class="_ _6"></span>nts a new<span class="_ _6"></span> <span class="_ _1"></span>and <span class="_ _0"></span>intu<span class="_ _0"></span>itive<span class="_ _6"></span> <span class="_ _1"></span>me<span class="_ _6"></span>th<span class="_ _1"></span>od f<span class="_ _6"></span>or </div><div class="t m0 x2 h6 y83 ff3 fs2 fc0 sc0 ls0 ws0">dev<span class="_ _6"></span>eloping <span class="_ _5"> </span>a <span class="_ _8"></span>n<span class="_ _1"></span>o<span class="_ _6"></span>n<span class="_ _1"></span>-<span class="_ _0"></span>isot<span class="_ _6"></span>h<span class="_ _1"></span>e<span class="_ _0"></span>rma<span class="_ _0"></span>l <span class="_ _5"> </span>lithi<span class="_ _6"></span>um <span class="_ _3"> </span>ce<span class="_ _0"></span>ll <span class="_ _8"> </span>model<span class="_ _0"></span>. <span class="_ _5"> </span>Re<span class="_ _6"></span>-</div><div class="t m0 x2 h6 y84 ff3 fs2 fc0 sc0 ls0 ws0">duci<span class="_ _0"></span>ng the ge<span class="_ _6"></span>n<span class="_ _1"></span>e<span class="_ _6"></span>r<span class="_ _1"></span>al ECM<span class="_ _0"></span> <span class="_ _1"></span>wit<span class="_ _6"></span>h <span class="_ _1"></span><span class="ff4">n</span> <span class="ff4">RC</span> bloc<span class="_ _0"></span>ks to an ECM </div><div class="t m0 x2 h6 y85 ff3 fs2 fc0 sc0 ls0 ws0">w<span class="_ _0"></span>ith <span class="_ _8"></span>j<span class="_ _0"></span>ust <span class="_ _7"></span>a <span class="_ _8"></span>si<span class="_ _6"></span>ngle <span class="_ _7"></span><span class="ff4">RC</span> <span class="_ _8"></span>b<span class="_ _6"></span>lock <span class="_ _8"></span>w<span class="_ _6"></span>as <span class="_ _8"></span>suf<span class="_ _6"></span>ficie<span class="_ _6"></span>n<span class="_ _1"></span>t <span class="_ _7"></span>to <span class="_ _7"></span>a<span class="_ _1"></span>cc<span class="_ _6"></span>ount </div><div class="t m0 x2 h6 y86 ff3 fs2 fc0 sc0 ls0 ws0">fo<span class="_ _6"></span>r<span class="_ _1"></span> <span class="_ _3"> </span>all <span class="_ _3"> </span>dy<span class="_ _6"></span>n<span class="_ _1"></span>amic<span class="_ _6"></span> <span class="_ _2"> </span>cha<span class="_ _6"></span>ra<span class="_ _1"></span>cte<span class="_ _6"></span>ristics<span class="_ _6"></span> <span class="_ _2"> </span>of<span class="_ _0"></span> <span class="_ _3"> </span>the <span class="_ _3"> </span>cell, <span class="_ _5"> </span>in<span class="_ _1"></span>c<span class="_ _6"></span>luding<span class="_ _6"></span> </div><div class="t m0 x2 h6 y87 ff3 fs2 fc0 sc0 ls0 ws0">nonli<span class="_ _0"></span>nea<span class="_ _0"></span>r <span class="_ _7"></span>ope<span class="_ _6"></span>n-ci<span class="_ _6"></span>r<span class="_ _1"></span>cuit<span class="_ _0"></span> <span class="_ _7"></span>vo<span class="_ _6"></span>ltage<span class="_ _0"></span>, <span class="_ _1"></span>a<span class="_ _1"></span>v<span class="_ _0"></span>erage<span class="_ _6"></span> <span class="_ _7"></span>disc<span class="_ _6"></span>h<span class="_ _1"></span>arge<span class="_ _0"></span> <span class="_ _1"></span>cur-</div><div class="t m0 x2 h6 y88 ff3 fs2 fc0 sc0 ls0 ws0">rent<span class="_ _0"></span> <span class="_ _7"></span>and <span class="_ _7"></span>inner <span class="_ _8"></span>c<span class="_ _6"></span>ell <span class="_ _7"></span>te<span class="_ _6"></span>m<span class="_ _1"></span>pe<span class="_ _6"></span>rature.<span class="_ _6"></span> <span class="_ _8"> </span>A <span class="_ _7"></span>nume<span class="_ _6"></span>rical <span class="_ _7"></span>parame-</div><div class="t m0 x2 h6 y89 ff3 fs2 fc0 sc0 ls0 ws0">te<span class="_ _0"></span>r <span class="_ _2"> </span>esti<span class="_ _0"></span>matio<span class="_ _6"></span>n <span class="_ _2"> </span>sche<span class="_ _6"></span>m<span class="_ _1"></span>e <span class="_ _3"> </span>using <span class="_ _5"> </span>pulse <span class="_ _3"> </span>curre<span class="_ _0"></span>nt <span class="_ _2"> </span>d<span class="_ _6"></span>i<span class="_ _1"></span>sc<span class="_ _6"></span>harge </div><div class="t m0 x2 h6 y8a ff3 fs2 fc0 sc0 ls0 ws0">tests<span class="_ _6"></span> <span class="_ _3"> </span>o<span class="_ _6"></span>n <span class="_ _5"> </span>high <span class="_ _8"></span>pow<span class="_ _6"></span>er <span class="_ _5"> </span>lithi<span class="_ _0"></span>um<span class="_ _6"></span> <span class="_ _5"> </span>nickel-m<span class="_ _6"></span>anga<span class="_ _0"></span>nese-c<span class="_ _0"></span>ob<span class="_ _6"></span>al<span class="_ _1"></span>t </div><div class="t m0 x2 h6 y8b ff3 fs2 fc0 sc0 ls0 ws0">oxide<span class="_ _0"></span> <span class="_ _2"> </span>(NMC<span class="_ _6"></span>) <span class="_"> </span>ce<span class="_ _0"></span>lls<span class="_ _6"></span> <span class="_"> </span>u<span class="_ _0"></span>nde<span class="_ _6"></span>r <span class="_"> </span>d<span class="_ _0"></span>iff<span class="_ _6"></span>er<span class="_ _1"></span>e<span class="_ _6"></span>n<span class="_ _1"></span>t <span class="_ _2"> </span>ope<span class="_ _6"></span>rating <span class="_ _2"> </span>co<span class="_ _6"></span>n<span class="_ _1"></span>di-</div><div class="t m0 x2 h6 y8c ff3 fs2 fc0 sc0 ls0 ws0">tio<span class="_ _0"></span>ns <span class="_ _8"> </span>was<span class="_ _6"></span> <span class="_ _8"> </span>impleme<span class="_ _6"></span>nted <span class="_ _8"></span>us<span class="_ _0"></span>ing<span class="_ _6"></span> <span class="_ _5"> </span>MATL<span class="_ _0"></span>AB</div><div class="t m0 x36 h10 y8d ff3 fs6 fc0 sc0 ls0 ws0">®</div><div class="t m0 x60 h6 y8c ff3 fs2 fc0 sc0 ls0 ws0">, <span class="_ _8"> </span>Simul<span class="_ _6"></span>ink</div><div class="t m0 x61 h10 y8d ff3 fs6 fc0 sc0 ls0 ws0">®</div><div class="t m0 x62 h6 y8c ff3 fs2 fc0 sc0 ls0 ws0"> </div><div class="t m0 x2 h6 y8e ff3 fs2 fc0 sc0 ls0 ws0">and <span class="_ _7"></span>Si<span class="_ _6"></span>m<span class="_ _1"></span>sc<span class="_ _0"></span>ape</div><div class="t m0 x63 h10 y8f ff3 fs6 fc0 sc0 ls0 ws0">TM</div><div class="t m0 x64 h6 y8e ff3 fs2 fc0 sc0 ls0 ws0">. <span class="_ _7"></span>The <span class="_ _7"></span>pa<span class="_ _0"></span>ramete<span class="_ _6"></span>r <span class="_ _8"></span>e<span class="_ _6"></span>stimatio<span class="_ _6"></span>n <span class="_ _8"></span>p<span class="_ _6"></span>r<span class="_ _1"></span>oc<span class="_ _6"></span>edure<span class="_ _0"></span> </div><div class="t m0 x2 h6 y90 ff3 fs2 fc0 sc0 ls0 ws0">reve<span class="_ _0"></span>aled <span class="_ _3"> </span>depe<span class="_ _0"></span>ndenc<span class="_ _0"></span>ies <span class="_ _2"> </span>of<span class="_ _6"></span> <span class="_"> </span>the<span class="_ _0"></span> <span class="_"> </span>e<span class="_ _6"></span>quiva<span class="_ _6"></span>l<span class="_ _1"></span>e<span class="_ _6"></span>n<span class="_ _1"></span>t <span class="_ _2"> </span>circui<span class="_ _6"></span>t <span class="_"> </span>e<span class="_ _6"></span>le-</div><div class="t m0 x2 h6 y91 ff3 fs2 fc0 sc0 ls0 ws0">me<span class="_ _0"></span>nts <span class="_ _2"> </span>o<span class="_ _6"></span>n <span class="_ _2"> </span>SOC <span class="_ _5"> </span>and <span class="_ _3"> </span>t<span class="_ _1"></span>e<span class="_ _6"></span>m<span class="_ _1"></span>pe<span class="_ _6"></span>rature<span class="_ _0"></span>, <span class="_ _2"> </span>w<span class="_ _6"></span>hich <span class="_ _3"> </span>were <span class="_ _2"> </span>s<span class="_ _6"></span>ubse<span class="_ _0"></span>-</div><div class="t m0 x2 h6 y92 ff3 fs2 fc0 sc0 ls0 ws0">que<span class="_ _6"></span>n<span class="_ _1"></span>tly<span class="_ _6"></span> <span class="_ _1"></span>impleme<span class="_ _6"></span>nted as <span class="_ _1"></span>loo<span class="_ _6"></span>kup tables that def<span class="_ _0"></span>ined the </div><div class="t m0 x2 h6 y93 ff3 fs2 fc0 sc0 ls0 ws0">values<span class="_ _0"></span> <span class="_ _8"> </span>of <span class="_ _8"></span>the <span class="_ _8"> </span>equiv<span class="_ _0"></span>ale<span class="_ _6"></span>nt <span class="_ _5"> </span>circ<span class="_ _6"></span>uit <span class="_ _5"> </span>e<span class="_ _0"></span>leme<span class="_ _6"></span>nt<span class="_ _1"></span>s<span class="_ _6"></span>.<span class="_ _1"></span> <span class="_ _8"></span>The <span class="_ _8"></span>mode<span class="_ _6"></span>l </div><div class="t m0 x2 h6 y94 ff3 fs2 fc0 sc0 ls0 ws0">w<span class="_ _0"></span>as <span class="_"> </span>val<span class="_ _0"></span>ida<span class="_ _0"></span>ted<span class="_ _0"></span> <span class="_"> </span>us<span class="_ _6"></span>ing <span class="_"> </span>i<span class="_ _0"></span>ndepe<span class="_ _6"></span>n<span class="_ _1"></span>de<span class="_ _6"></span>nt <span class="_"> </span>expe<span class="_ _6"></span>rime<span class="_ _6"></span>ntal <span class="_"> </span>d<span class="_ _0"></span>ata,<span class="_ _6"></span> </div><div class="t m0 x2 h6 y95 ff3 fs2 fc0 sc0 ls0 ws0">and <span class="_ _5"> </span>then <span class="_ _5"> </span>used<span class="_ _0"></span> <span class="_ _3"> </span>fo<span class="_ _0"></span>r <span class="_ _3"> </span>gene<span class="_ _6"></span>ral <span class="_ _2"> </span>s<span class="_ _6"></span>imulat<span class="_ _0"></span>io<span class="_ _6"></span>n<span class="_ _1"></span> <span class="_ _5"> </span>purpos<span class="_ _0"></span>es. <span class="_ _5"> </span>This<span class="_ _0"></span> </div><div class="t m0 x2 h6 y96 ff3 fs2 fc0 sc0 ls0 ws0">proc<span class="_ _6"></span>ess can b<span class="_ _6"></span>e used f<span class="_ _0"></span>o<span class="_ _0"></span>r ru<span class="_ _0"></span>ntime<span class="_ _6"></span> <span class="_ _1"></span>SOC<span class="_ _6"></span> <span class="_ _1"></span>es<span class="_ _0"></span>ti<span class="_ _0"></span>matio<span class="_ _6"></span>n. </div><div class="t m0 x4 h6 y97 ff3 fs2 fc0 sc0 ls0 ws0">The <span class="_ _1"></span>pape<span class="_ _0"></span>r <span class="_ _7"></span>i<span class="_ _1"></span>s <span class="_ _7"></span>o<span class="_ _6"></span>rganized<span class="_ _6"></span> <span class="_ _8"></span>as <span class="_ _7"></span>fo<span class="_ _6"></span>ll<span class="_ _1"></span>o<span class="_ _0"></span>w<span class="_ _0"></span>s: <span class="_ _7"></span>Sectio<span class="_ _6"></span>n<span class="_ _1"></span> <span class="_ _7"></span>III <span class="_ _7"></span>de-</div><div class="t m0 x2 h6 y98 ff3 fs2 fc0 sc0 ls0 ws0">scrib<span class="_ _6"></span>es <span class="_ _7"></span>th<span class="_ _1"></span>e <span class="_ _7"></span>back<span class="_ _6"></span>grou<span class="_ _0"></span>nd <span class="_ _7"></span>and <span class="_ _7"></span>mode<span class="_ _6"></span>l <span class="_ _8"></span>f<span class="_ _0"></span>ormu<span class="_ _6"></span>latio<span class="_ _6"></span>n<span class="_ _1"></span>, <span class="_ _7"></span>while<span class="_ _6"></span> </div><div class="t m0 x2 h6 y99 ff3 fs2 fc0 sc0 ls0 ws0">Sec<span class="_ _6"></span>t<span class="_ _1"></span>ion <span class="_ _1"></span>IV <span class="_ _1"></span>deals<span class="_ _6"></span> <span class="_ _8"></span>w<span class="_ _6"></span>ith <span class="_ _7"></span>the<span class="_ _0"></span> <span class="_ _8"></span>e<span class="_ _6"></span>xpe<span class="_ _6"></span>rime<span class="_ _0"></span>ntal <span class="_ _7"></span>setu<span class="_ _6"></span>p. <span class="_ _1"></span>The <span class="_ _1"></span>r<span class="_ _1"></span>e-</div><div class="t m0 x2 h6 y9a ff3 fs2 fc0 sc0 ls0 ws0">sults <span class="_ _5"> </span>o<span class="_ _0"></span>f <span class="_ _5"> </span>the <span class="_ _5"> </span>ex<span class="_ _0"></span>pe<span class="_ _6"></span>r<span class="_ _1"></span>ime<span class="_ _6"></span>nt<span class="_ _1"></span>al <span class="_ _8"> </span>tests <span class="_ _8"> </span>on <span class="_ _5"> </span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _3"> </span>cel<span class="_ _6"></span>l<span class="_ _1"></span>s <span class="_ _8"> </span>are <span class="_ _5"> </span>com-</div><div class="t m0 x2 h6 y9b ff3 fs2 fc0 sc0 ls0 ws0">pare<span class="_ _0"></span>d <span class="_ _7"></span>w<span class="_ _0"></span>ith <span class="_ _1"></span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _7"></span>model<span class="_ _0"></span>ing<span class="_ _6"></span> <span class="_ _7"></span>r<span class="_ _1"></span>esu<span class="_ _6"></span>lts <span class="_ _7"></span>in <span class="_ _1"></span>Sect<span class="_ _6"></span>i<span class="_ _1"></span>o<span class="_ _0"></span>n <span class="_ _7"></span>V. <span class="_ _1"></span>Sec<span class="_ _0"></span>tio<span class="_ _6"></span>n </div><div class="t m0 x2 h6 y9c ff3 fs2 fc0 sc0 ls0 ws0">VI <span class="_ _2"> </span>su<span class="_ _6"></span>m<span class="_ _1"></span>ma<span class="_ _0"></span>rizes<span class="_ _0"></span> <span class="_ _2"> </span>the<span class="_ _0"></span> <span class="_ _2"> </span>wo<span class="_ _0"></span>rk <span class="_ _2"> </span>and<span class="_ _6"></span> <span class="_"> </span>sta<span class="_ _6"></span>t<span class="_ _1"></span>es<span class="_ _0"></span> <span class="_"> </span>s<span class="_ _6"></span>ugges<span class="_ _6"></span>ti<span class="_ _1"></span>o<span class="_ _6"></span>n<span class="_ _1"></span>s<span class="_ _6"></span> <span class="_"> </span>fo<span class="_ _6"></span>r </div><div class="t m0 x2 h6 y9d ff3 fs2 fc0 sc0 ls0 ws0">futu<span class="_ _6"></span>r<span class="_ _1"></span>e<span class="_ _0"></span> wo<span class="_ _6"></span>r<span class="_ _1"></span>k.<span class="_ _0"></span> </div><div class="t m0 x65 ha y9e ff3 fs2 fc0 sc0 ls0 ws0">III.<span class="ff6"> <span class="_ _f"> </span></span>B<span class="fs5">ACKGRO<span class="_ _1"></span>UND </span>A<span class="fs5">ND<span class="_ _1"></span> </span>M<span class="fs5">ODEL </span>F<span class="fs5">OR<span class="_ _1"></span>MULATION<span class="_ _1"></span></span> </div><div class="t m0 x4 h6 y9f ff3 fs2 fc0 sc0 ls0 ws0">A <span class="_ _8"></span>numbe<span class="_ _6"></span>r <span class="_ _5"> </span>of<span class="_ _0"></span> <span class="_ _8"> </span>m<span class="_ _1"></span>ode<span class="_ _6"></span>l<span class="_ _1"></span>s<span class="_ _6"></span> <span class="_ _8"> </span>ha<span class="_ _1"></span>v<span class="_ _0"></span>e <span class="_ _8"> </span>be<span class="_ _0"></span>en <span class="_ _8"> </span>dev<span class="_ _0"></span>elo<span class="_ _0"></span>ped <span class="_ _8"> </span>in <span class="_ _8"></span>t<span class="_ _0"></span>h<span class="_ _1"></span>e<span class="_ _6"></span> </div><div class="t m0 x2 h6 ya0 ff3 fs2 fc0 sc0 ls0 ws0">past <span class="_ _2"> </span>to <span class="_ _2"> </span>cha<span class="_ _0"></span>rac<span class="_ _0"></span>te<span class="_ _0"></span>rize <span class="_ _2"> </span>and <span class="_ _2"> </span>simul<span class="_ _6"></span>ate <span class="_"> </span>l<span class="_ _6"></span>ithiu<span class="_ _0"></span>m <span class="_"> </span>c<span class="_ _0"></span>el<span class="_ _0"></span>ls<span class="_ _0"></span>. <span class="_"> </span>De<span class="_ _0"></span>-</div><div class="t m0 x2 h6 ya1 ff3 fs2 fc0 sc0 ls0 ws0">taile<span class="_ _0"></span>d <span class="_ _8"></span>elec<span class="_ _6"></span>tr<span class="_ _1"></span>oc<span class="_ _6"></span>hemic<span class="_ _6"></span>a<span class="_ _1"></span>l <span class="_ _7"></span>m<span class="_ _1"></span>ode<span class="_ _6"></span>ls<span class="_ _0"></span> <span class="_ _8"> </span>that<span class="_ _0"></span> <span class="_ _8"> </span>simu<span class="_ _6"></span>late <span class="_ _8"></span>t<span class="_ _0"></span>he <span class="_ _8"></span>i<span class="_ _6"></span>nt<span class="_ _1"></span>e<span class="_ _6"></span>r<span class="_ _1"></span>-</div><div class="t m0 x2 h6 ya2 ff3 fs2 fc0 sc0 ls0 ws0">nal <span class="_ _8"></span>dy<span class="_ _6"></span>n<span class="_ _1"></span>amics<span class="_ _6"></span> <span class="_ _5"> </span>of<span class="_ _6"></span> <span class="_ _5"> </span>the <span class="_ _5"> </span>li<span class="_ _6"></span>thium <span class="_ _8"> </span>cells <span class="_ _8"></span>[6-<span class="_ _6"></span>9] <span class="_ _8"> </span>ar<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _5"> </span>co<span class="_ _6"></span>m<span class="_ _1"></span>put<span class="_ _6"></span>a<span class="_ _1"></span>-</div><div class="t m0 x2 h6 ya3 ff3 fs2 fc0 sc0 ls0 ws0">tio<span class="_ _0"></span>nally<span class="_ _6"></span>-int<span class="_ _1"></span>e<span class="_ _6"></span>n<span class="_ _1"></span>s<span class="_ _0"></span>ive<span class="_ _0"></span>, <span class="_ _1"></span>time-co<span class="_ _6"></span>nsuming<span class="_ _6"></span>, <span class="_ _7"></span>inflex<span class="_ _6"></span>i<span class="_ _1"></span>ble<span class="_ _6"></span> <span class="_ _7"></span>and <span class="_ _7"></span>un-</div><div class="t m0 x2 h6 ya4 ff3 fs2 fc0 sc0 ls0 ws0">suitab<span class="_ _0"></span>le<span class="_ _0"></span> <span class="_ _8"> </span>for <span class="_ _7"></span>sy<span class="_ _0"></span>stem-lev<span class="_ _6"></span>el <span class="_ _8"></span>mode<span class="_ _6"></span>ling <span class="_ _8"> </span>o<span class="_ _6"></span>r <span class="_ _8"> </span>run-ti<span class="_ _0"></span>me<span class="_ _6"></span> <span class="_ _8"> </span>a<span class="_ _1"></span>ppl<span class="_ _6"></span>i<span class="_ _1"></span>-</div><div class="t m0 x2 h6 ya5 ff3 fs2 fc0 sc0 ls0 ws0">catio<span class="_ _6"></span>n<span class="_ _1"></span>s.<span class="_ _0"></span> <span class="_ _5"> </span>An <span class="_ _8"> </span>alte<span class="_ _6"></span>rnative<span class="_ _0"></span> <span class="_ _8"> </span>a<span class="_ _1"></span>p<span class="_ _0"></span>proac<span class="_ _6"></span>h <span class="_ _5"> </span>is <span class="_ _5"> </span>to<span class="_ _6"></span> <span class="_ _3"> </span>use<span class="_ _6"></span> <span class="_ _3"> </span>equiv<span class="_ _6"></span>a<span class="_ _1"></span>le<span class="_ _6"></span>nt </div><div class="t m0 x2 h6 ya6 ff3 fs2 fc0 sc0 ls0 ws0">ci<span class="_ _0"></span>rcuit mode<span class="_ _6"></span>l<span class="_ _1"></span>s<span class="_ _6"></span> <span class="_ _1"></span>(ECM)<span class="_ _6"></span> <span class="_ _1"></span>[1-3]<span class="_ _0"></span>. In this c<span class="_ _0"></span>ase, the<span class="_ _6"></span> <span class="_ _1"></span>goal<span class="_ _6"></span> <span class="_ _7"></span>is to<span class="_ _0"></span> </div><div class="t m0 x2 h6 ya7 ff3 fs2 fc0 sc0 ls0 ws0">estab<span class="_ _0"></span>lis<span class="_ _6"></span>h<span class="_ _1"></span> <span class="_ _7"></span>a <span class="_ _7"></span>direct <span class="_ _7"></span>co<span class="_ _6"></span>rr<span class="_ _1"></span>e<span class="_ _6"></span>latio<span class="_ _0"></span>n <span class="_ _8"></span>b<span class="_ _6"></span>etw<span class="_ _0"></span>ee<span class="_ _0"></span>n<span class="_ _1"></span> <span class="_ _7"></span>elect<span class="_ _6"></span>r<span class="_ _1"></span>oc<span class="_ _6"></span>h<span class="_ _1"></span>em<span class="_ _0"></span>ic<span class="_ _0"></span>al </div><div class="t m0 x2 h6 ya8 ff3 fs2 fc0 sc0 ls0 ws0">phe<span class="_ _6"></span>n<span class="_ _1"></span>ome<span class="_ _6"></span>na<span class="_ _1"></span> <span class="_ _3"> </span>inside <span class="_ _5"> </span>th<span class="_ _1"></span>e <span class="_ _3"> </span>cell <span class="_ _3"> </span>and <span class="_ _3"> </span>the <span class="_ _2"> </span>c<span class="_ _6"></span>ir<span class="_ _1"></span>cu<span class="_ _6"></span>i<span class="_ _1"></span>t <span class="_ _3"> </span>eleme<span class="_ _6"></span>nt<span class="_ _1"></span>s<span class="_ _6"></span>. </div><div class="t m0 x2 h6 ya9 ff3 fs2 fc0 sc0 ls0 ws0">Their l<span class="_ _1"></span>ev<span class="_ _6"></span>el <span class="_ _1"></span>of<span class="_ _6"></span> <span class="_ _7"></span>comp<span class="_ _0"></span>lex<span class="_ _0"></span>ity<span class="_ _0"></span> <span class="_ _1"></span>i<span class="_ _1"></span>s<span class="_ _6"></span> <span class="_ _7"></span>dec<span class="_ _0"></span>ide<span class="_ _6"></span>d <span class="_ _7"></span>as a <span class="_ _1"></span>trade<span class="_ _6"></span>-of<span class="_ _6"></span>f <span class="_ _7"></span>b<span class="_ _0"></span>e-</div><div class="t m0 x2 h6 yaa ff3 fs2 fc0 sc0 ls0 ws0">twe<span class="_ _6"></span>en <span class="_ _a"> </span>the <span class="_ _c"> </span>fi<span class="_ _0"></span>del<span class="_ _0"></span>ity<span class="_ _6"></span> <span class="_ _a"> </span>and <span class="_ _c"> </span>com<span class="_ _0"></span>puta<span class="_ _0"></span>tio<span class="_ _6"></span>n<span class="_ _1"></span>al<span class="_ _6"></span> <span class="_ _a"> </span>eff<span class="_ _6"></span>ort. <span class="_ _c"> </span>Th<span class="_ _1"></span>es<span class="_ _0"></span>e<span class="_ _6"></span> </div><div class="t m0 x2 h6 yab ff3 fs2 fc0 sc0 ls0 ws0">mode<span class="_ _0"></span>ls <span class="_ _c"> </span>c<span class="_ _0"></span>an <span class="_ _c"> </span>cap<span class="_ _6"></span>t<span class="_ _1"></span>u<span class="_ _0"></span>re <span class="_"> </span>n<span class="_ _1"></span>o<span class="_ _6"></span>n<span class="_ _1"></span>li<span class="_ _0"></span>nea<span class="_ _0"></span>r <span class="_ _c"> </span>elec<span class="_ _0"></span>troc<span class="_ _6"></span>h<span class="_ _1"></span>em<span class="_ _6"></span>i<span class="_ _1"></span>ca<span class="_ _6"></span>l<span class="_ _1"></span> <span class="_"> </span>phe-</div><div class="t m0 x2 h6 yac ff3 fs2 fc0 sc0 ls0 ws0">nome<span class="_ _6"></span>n<span class="_ _1"></span>a,<span class="_ _0"></span> <span class="_ _3"> </span>and <span class="_ _5"> </span>y<span class="_ _0"></span>et <span class="_ _3"> </span>avoid <span class="_ _3"> </span>le<span class="_ _0"></span>ngt<span class="_ _6"></span>h<span class="_ _1"></span>y<span class="_ _6"></span> <span class="_ _2"> </span>elec<span class="_ _6"></span>tr<span class="_ _1"></span>o<span class="_ _0"></span>che<span class="_ _0"></span>mical<span class="_ _0"></span> <span class="_ _3"> </span>pro-</div><div class="t m0 x2 h6 yad ff3 fs2 fc0 sc0 ls0 ws0">ce<span class="_ _0"></span>ss <span class="_ _1"></span>calcul<span class="_ _6"></span>ations<span class="_ _6"></span>. <span class="_ _1"></span>They<span class="_ _6"></span> <span class="_ _7"></span>ar<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _7"></span>espec<span class="_ _6"></span>ially<span class="_ _6"></span> <span class="_ _7"></span>sui<span class="_ _0"></span>table<span class="_ _6"></span> <span class="_ _7"></span>fo<span class="_ _0"></span>r <span class="_ _7"></span>sy<span class="_ _6"></span>s-</div><div class="t m0 x2 h6 yae ff3 fs2 fc0 sc0 ls0 ws0">tem-le<span class="_ _0"></span>ve<span class="_ _6"></span>l<span class="_ _1"></span> mo<span class="_ _0"></span>del<span class="_ _0"></span>ing <span class="_ _0"></span>(e.<span class="_ _0"></span>g. po<span class="_ _6"></span>we<span class="_ _0"></span>rtrain ele<span class="_ _0"></span>ct<span class="_ _6"></span>ri<span class="_ _1"></span>fic<span class="_ _0"></span>at<span class="_ _0"></span>io<span class="_ _6"></span>n<span class="_ _1"></span>).<span class="_ _6"></span> </div><div class="t m0 x5f h6 y76 ff3 fs2 fc0 sc0 ls0 ws0">Mo<span class="_ _0"></span>st <span class="_ _7"></span>mode<span class="_ _0"></span>ls <span class="_ _1"></span>in <span class="_ _1"></span>the <span class="_ _7"></span>cu<span class="_ _0"></span>rrent<span class="_ _0"></span> <span class="_ _1"></span>l<span class="_ _1"></span>ite<span class="_ _6"></span>rature<span class="_ _6"></span> <span class="_ _8"></span>do <span class="_ _1"></span>n<span class="_ _1"></span>o<span class="_ _6"></span>t <span class="_ _7"></span>acco<span class="_ _0"></span>unt </div><div class="t m0 x3e h6 y77 ff3 fs2 fc0 sc0 ls0 ws0">fo<span class="_ _6"></span>r<span class="_ _1"></span> <span class="_ _7"></span>the<span class="_ _0"></span>rma<span class="_ _0"></span>l <span class="_ _7"></span>ef<span class="_ _0"></span>fe<span class="_ _6"></span>cts. <span class="_ _1"></span>This <span class="_ _7"></span>w<span class="_ _0"></span>ork <span class="_ _1"></span>ov<span class="_ _6"></span>er<span class="_ _1"></span>co<span class="_ _6"></span>mes <span class="_ _7"></span>this<span class="_ _6"></span> <span class="_ _7"></span>limit<span class="_ _0"></span>atio<span class="_ _6"></span>n<span class="_ _1"></span> </div><div class="t m0 x3e h6 yaf ff3 fs2 fc0 sc0 ls0 ws0">by<span class="_ _6"></span> <span class="_ _5"> </span>includ<span class="_ _6"></span>in<span class="_ _1"></span>g<span class="_ _0"></span> <span class="_ _8"></span>tempe<span class="_ _6"></span>ratu<span class="_ _6"></span>r<span class="_ _1"></span>e <span class="_ _8"></span>as <span class="_ _7"></span>an <span class="_ _8"> </span>indepe<span class="_ _6"></span>ndent<span class="_ _6"></span> <span class="_ _5"> </span>vari<span class="_ _6"></span>a<span class="_ _1"></span>ble<span class="_ _6"></span> <span class="_ _8"> </span>in </div><div class="t m0 x3e h6 yb0 ff3 fs2 fc0 sc0 ls0 ws0">the<span class="_ _0"></span> loo<span class="_ _0"></span>k-up <span class="_ _0"></span>tab<span class="_ _0"></span>les <span class="_ _0"></span>that <span class="_ _0"></span>def<span class="_ _6"></span>in<span class="_ _1"></span>e <span class="_ _6"></span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _1"></span>ci<span class="_ _6"></span>r<span class="_ _1"></span>cui<span class="_ _6"></span>t eleme<span class="_ _6"></span>nt<span class="_ _1"></span>s<span class="_ _6"></span>. </div><div class="t m0 x66 h13 yb1 ff3 fs5 fc0 sc0 ls0 ws0">Figure 1.<span class="_ _1"></span> A general <span class="_ _1"></span>equi<span class="_ _1"></span>valent cir<span class="_ _1"></span>cuit model [1<span class="_ _1"></span>, 10<span class="_ _1"></span>-11] of an el<span class="_ _1"></span>ectro-</div><div class="t m0 x67 h13 yb2 ff3 fs5 fc0 sc0 ls0 ws0">chemical<span class="_ _1"></span> cell. The<span class="_ _1"></span> number o<span class="_ _1"></span>f equival<span class="_ _1"></span>ent cir<span class="_ _1"></span>cuit eleme<span class="_ _1"></span>nts result<span class="_ _1"></span>s<span class="_ _0"></span> in<span class="_ _1"></span> a </div><div class="t m0 x68 h13 yb3 ff3 fs5 fc0 sc0 ls0 ws0">trade<span class="_ _1"></span>-<span class="_ _0"></span>off <span class="_ _1"></span>between fid<span class="_ _1"></span>elity and <span class="_ _1"></span>complexi<span class="_ _1"></span>ty. Th<span class="_ _1"></span>e parasitic <span class="_ _1"></span>branch ca<span class="_ _1"></span>n </div><div class="t m0 x69 h13 yb4 ff3 fs5 fc0 sc0 ls0 ws0">be negle<span class="_ _1"></span>cted for <span class="_ _1"></span>cells with <span class="_ _1"></span>high coul<span class="_ _1"></span>ombic effi<span class="_ _1"></span>ciencies.<span class="_ _1"></span> </div><div class="t m0 x5f h6 yb5 ff3 fs2 fc0 sc0 ls0 ws0">Fig.1<span class="_ _0"></span> <span class="_ _8"></span>s<span class="_ _6"></span>h<span class="_ _1"></span>ow<span class="_ _6"></span>s <span class="_ _8"> </span>the <span class="_ _7"></span>gene<span class="_ _0"></span>ralize<span class="_ _0"></span>d <span class="_ _8"></span>E<span class="_ _6"></span>CM <span class="_ _8"></span>p<span class="_ _6"></span>r<span class="_ _1"></span>ese<span class="_ _6"></span>nted <span class="_ _8"></span>i<span class="_ _6"></span>n <span class="_ _8"></span>[10-</div><div class="t m0 x3e h6 y89 ff3 fs2 fc0 sc0 ls0 ws0">11] <span class="_ _1"></span>fo<span class="_ _6"></span>r<span class="_ _1"></span> <span class="_ _1"></span>lead-<span class="_ _6"></span>a<span class="_ _1"></span>cid<span class="_ _0"></span> <span class="_ _7"></span>ba<span class="_ _6"></span>t<span class="_ _1"></span>te<span class="_ _6"></span>ri<span class="_ _1"></span>es<span class="_ _6"></span>, <span class="_ _7"></span>but <span class="_ _1"></span>w<span class="_ _0"></span>hic<span class="_ _0"></span>h <span class="_ _7"></span>ca<span class="_ _0"></span>n <span class="_ _7"></span>be<span class="_ _6"></span> <span class="_ _7"></span>used<span class="_ _0"></span> <span class="_ _7"></span>to de-</div><div class="t m0 x3e h6 yb6 ff3 fs2 fc0 sc0 ls0 ws0">pict <span class="_ _6"></span>an elect<span class="_ _0"></span>roc<span class="_ _6"></span>h<span class="_ _1"></span>e<span class="_ _0"></span>mica<span class="_ _6"></span>l<span class="_ _1"></span> cel<span class="_ _6"></span>l of<span class="_ _0"></span> any c<span class="_ _6"></span>h<span class="_ _1"></span>em<span class="_ _0"></span>istry<span class="_ _6"></span>. </div><div class="t m0 x5f h6 yb7 ff3 fs2 fc0 sc0 ls0 ws0">The<span class="_ _0"></span> <span class="_ _c"> </span>c<span class="_ _6"></span>h<span class="_ _1"></span>oice<span class="_ _0"></span> <span class="_ _c"> </span>of<span class="_ _6"></span> <span class="_ _a"> </span>the<span class="_ _6"></span> <span class="_ _c"> </span>model<span class="_ _6"></span> <span class="_ _a"> </span>struc<span class="_ _6"></span>ture<span class="_ _6"></span> <span class="_ _c"> </span>r<span class="_ _1"></span>espo<span class="_ _6"></span>nds <span class="_"> </span>to <span class="_"> </span>a </div><div class="t m0 x3e h6 yb8 ff3 fs2 fc0 sc0 ls0 ws0">trade-o<span class="_ _6"></span>ff<span class="_ _0"></span> <span class="_ _1"></span>be<span class="_ _6"></span>t<span class="_ _1"></span>w<span class="_ _6"></span>e<span class="_ _1"></span>en th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _1"></span>abil<span class="_ _0"></span>ity<span class="_ _6"></span> <span class="_ _1"></span>to <span class="_ _1"></span>f<span class="_ _0"></span>it <span class="_ _1"></span>ex<span class="_ _6"></span>perime<span class="_ _6"></span>ntal <span class="_ _1"></span>d<span class="_ _0"></span>ata and </div><div class="t m0 x3e h6 yb9 ff3 fs2 fc0 sc0 ls0 ws0">equiv<span class="_ _0"></span>ale<span class="_ _6"></span>nt <span class="_ _9"> </span>ci<span class="_ _6"></span>r<span class="_ _1"></span>cuit<span class="_ _0"></span> <span class="_ _a"> </span>comple<span class="_ _0"></span>xity<span class="_ _6"></span> <span class="_ _9"> </span>(a<span class="_ _6"></span>n<span class="_ _1"></span>d <span class="_ _a"> </span>comp<span class="_ _6"></span>utatio<span class="_ _6"></span>nal <span class="_ _a"> </span>r<span class="_ _1"></span>e<span class="_ _6"></span>-</div><div class="t m0 x3e h6 y54 ff3 fs2 fc0 sc0 ls0 ws0">so<span class="_ _0"></span>urces)<span class="_ _6"></span>.<span class="_ _1"></span> <span class="_ _10"> </span>A<span class="_ _0"></span>n <span class="_ _10"> </span>e<span class="_ _6"></span>xtreme<span class="_ _6"></span>ly <span class="_ _11"> </span>co<span class="_ _6"></span>m<span class="_ _1"></span>plex <span class="_ _11"> </span>equiv<span class="_ _6"></span>alent<span class="_ _6"></span> <span class="_ _10"> </span>circu<span class="_ _0"></span>it </div><div class="t m0 x3e h6 yba ff3 fs2 fc0 sc0 ls0 ws0">w<span class="_ _0"></span>ould <span class="_ _4"> </span>fit <span class="_ _c"> </span>ex<span class="_ _6"></span>perime<span class="_ _6"></span>ntal <span class="_"> </span>data <span class="_ _4"> </span>sets <span class="_"> </span>well<span class="_ _0"></span>, <span class="_ _c"> </span>b<span class="_ _0"></span>ut <span class="_ _c"> </span>w<span class="_ _6"></span>ould <span class="_ _4"> </span>be </div><div class="t m0 x3e h6 y57 ff3 fs2 fc0 sc0 ls0 ws0">co<span class="_ _6"></span>m<span class="_ _1"></span>puta<span class="_ _6"></span>t<span class="_ _1"></span>io<span class="_ _6"></span>nally<span class="_ _0"></span> <span class="_ _e"> </span>expe<span class="_ _6"></span>n<span class="_ _1"></span>sive<span class="_ _0"></span>, <span class="_ _9"> </span>m<span class="_ _1"></span>ak<span class="_ _6"></span>ing <span class="_ _9"> </span>i<span class="_ _1"></span>t <span class="_ _e"> </span>uns<span class="_ _0"></span>u<span class="_ _0"></span>itable<span class="_ _6"></span> <span class="_ _12"> </span>fo<span class="_ _6"></span>r<span class="_ _1"></span> </div><div class="t m0 x3e h6 ybb ff3 fs2 fc0 sc0 ls0 ws0">emb<span class="_ _0"></span>edde<span class="_ _0"></span>d <span class="_ _5"> </span>co<span class="_ _6"></span>ntrol <span class="_ _8"> </span>applic<span class="_ _0"></span>atio<span class="_ _6"></span>n<span class="_ _1"></span>s<span class="_ _0"></span>. <span class="_ _5"> </span>In <span class="_ _8"> </span>ge<span class="_ _0"></span>neral,<span class="_ _6"></span> <span class="_ _5"> </span>th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _5"> </span>leve<span class="_ _6"></span>l<span class="_ _1"></span> <span class="_ _5"> </span>of </div><div class="t m0 x3e h6 ybc ff3 fs2 fc0 sc0 ls0 ws0">co<span class="_ _6"></span>m<span class="_ _1"></span>plex<span class="_ _6"></span>i<span class="_ _1"></span>ty<span class="_ _6"></span> <span class="_ _3"> </span>shoul<span class="_ _6"></span>d <span class="_ _3"> </span>be <span class="_ _8"></span>limited<span class="_ _6"></span> <span class="_ _3"> </span>by<span class="_ _6"></span> <span class="_ _5"> </span>the <span class="_ _3"> </span>co<span class="_ _6"></span>m<span class="_ _1"></span>p<span class="_ _0"></span>uta<span class="_ _0"></span>tio<span class="_ _0"></span>nal <span class="_ _8"> </span>r<span class="_ _1"></span>e<span class="_ _6"></span>-</div><div class="t m0 x3e h6 ybd ff3 fs2 fc0 sc0 ls0 ws0">so<span class="_ _0"></span>urces<span class="_ _6"></span> <span class="_ _8"> </span>a<span class="_ _1"></span>v<span class="_ _6"></span>ailab<span class="_ _0"></span>le<span class="_ _6"></span> <span class="_ _8"> </span>and <span class="_ _7"></span>the <span class="_ _7"></span>pos<span class="_ _0"></span>sibil<span class="_ _0"></span>ity<span class="_ _0"></span> <span class="_ _8"></span>o<span class="_ _0"></span>f <span class="_ _8"></span>c<span class="_ _6"></span>orrel<span class="_ _6"></span>a<span class="_ _1"></span>ti<span class="_ _6"></span>ng <span class="_ _8"></span>e<span class="_ _6"></span>a<span class="_ _1"></span>c<span class="_ _6"></span>h<span class="_ _1"></span> </div><div class="t m0 x3e h6 ybe ff3 fs2 fc0 sc0 ls0 ws0">ci<span class="_ _0"></span>rcuit <span class="_ _7"></span>co<span class="_ _6"></span>mpone<span class="_ _0"></span>nt <span class="_ _7"></span>wi<span class="_ _6"></span>th <span class="_ _7"></span>an <span class="_ _1"></span>elect<span class="_ _6"></span>r<span class="_ _1"></span>oc<span class="_ _6"></span>h<span class="_ _1"></span>e<span class="_ _6"></span>m<span class="_ _1"></span>ic<span class="_ _6"></span>a<span class="_ _1"></span>l <span class="_ _1"></span>phe<span class="_ _0"></span>nome<span class="_ _6"></span>n<span class="_ _1"></span>o<span class="_ _6"></span>n<span class="_ _1"></span> </div><div class="t m0 x3e h6 y97 ff3 fs2 fc0 sc0 ls0 ws0">inside<span class="_ _6"></span> <span class="_ _1"></span>the cel<span class="_ _0"></span>l.<span class="_ _0"></span> <span class="_ _1"></span>A<span class="_ _0"></span> <span class="_ _1"></span>mode<span class="_ _6"></span>l <span class="_ _1"></span>of<span class="_ _0"></span> adequa<span class="_ _0"></span>te<span class="_ _0"></span> <span class="_ _1"></span>fide<span class="_ _0"></span>li<span class="_ _0"></span>ty<span class="_ _6"></span> <span class="_ _1"></span>i<span class="_ _1"></span>s usef<span class="_ _6"></span>ul <span class="_ _1"></span>fo<span class="_ _6"></span>r<span class="_ _1"></span> </div><div class="t m0 x3e h6 y98 ff3 fs2 fc0 sc0 ls0 ws0">diag<span class="_ _0"></span>nosis<span class="_ _0"></span> <span class="_ _5"> </span>purpo<span class="_ _0"></span>ses<span class="_ _0"></span>, <span class="_ _3"> </span>s<span class="_ _0"></span>ince<span class="_ _6"></span> <span class="_ _2"> </span>v<span class="_ _0"></span>ari<span class="_ _0"></span>atio<span class="_ _6"></span>n <span class="_ _2"> </span>o<span class="_ _6"></span>f <span class="_ _3"> </span>its <span class="_ _5"> </span>ele<span class="_ _0"></span>me<span class="_ _0"></span>nts <span class="_ _5"> </span>can </div><div class="t m0 x3e h6 ybf ff3 fs2 fc0 sc0 ls0 ws0">be<span class="_ _6"></span> <span class="_ _5"> </span>linked<span class="_ _0"></span> <span class="_ _8"></span>direc<span class="_ _6"></span>tl<span class="_ _1"></span>y<span class="_ _6"></span> <span class="_ _8"></span>to <span class="_ _8"></span>a<span class="_ _0"></span> <span class="_ _8"> </span>phys<span class="_ _0"></span>ical<span class="_ _6"></span> <span class="_ _5"> </span>o<span class="_ _6"></span>r <span class="_ _5"> </span>elect<span class="_ _6"></span>r<span class="_ _1"></span>oc<span class="_ _6"></span>h<span class="_ _1"></span>em<span class="_ _0"></span>ical<span class="_ _6"></span> <span class="_ _8"> </span>pro-</div><div class="t m0 x3e h6 y9a ff3 fs2 fc0 sc0 ls0 ws0">ce<span class="_ _0"></span>ss, suc<span class="_ _6"></span>h as c<span class="_ _6"></span>har<span class="_ _1"></span>ge<span class="_ _6"></span>, capac<span class="_ _6"></span>it<span class="_ _1"></span>y<span class="_ _6"></span>, <span class="_ _1"></span>o<span class="_ _6"></span>r healt<span class="_ _6"></span>h. </div><div class="t m0 x5f h6 yc0 ff3 fs2 fc0 sc0 ls0 ws0">Depe<span class="_ _6"></span>nding <span class="_ _5"> </span>on <span class="_ _5"> </span>the<span class="_ _6"></span> <span class="_ _3"> </span>cha<span class="_ _6"></span>ra<span class="_ _1"></span>cte<span class="_ _6"></span>ristics <span class="_ _5"> </span>of<span class="_ _6"></span> <span class="_ _3"> </span>the <span class="_ _8"> </span>pr<span class="_ _1"></span>o<span class="_ _0"></span>ble<span class="_ _0"></span>m <span class="_ _5"> </span>to </div><div class="t m0 x3e h6 yc1 ff3 fs2 fc0 sc0 ls0 ws0">be<span class="_ _6"></span> <span class="_ _5"> </span>analy<span class="_ _6"></span>zed, <span class="_ _8"> </span>the <span class="_ _8"></span>nu<span class="_ _6"></span>mber <span class="_ _8"> </span>of<span class="_ _6"></span> <span class="_ _8"> </span><span class="ff4">R<span class="_ _1"></span>C<span class="_ _0"></span><span class="ff3"> <span class="_ _8"> </span>bloc<span class="_ _0"></span>ks<span class="_ _6"></span> <span class="_ _8"> </span>t<span class="_ _1"></span>y<span class="_ _6"></span>pically<span class="_ _6"></span> <span class="_ _5"> </span>ranges<span class="_ _0"></span> </span></span></div><div class="t m0 x3e h6 yc2 ff3 fs2 fc0 sc0 ls0 ws0">from<span class="_ _6"></span> <span class="_ _8"> </span>o<span class="_ _0"></span>n<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _8"> </span>to<span class="_ _0"></span> <span class="_ _7"></span>t<span class="_ _1"></span>w<span class="_ _6"></span>o, <span class="_ _8"> </span>si<span class="_ _6"></span>n<span class="_ _1"></span>ce<span class="_ _6"></span> <span class="_ _8"> </span>large<span class="_ _6"></span>r <span class="_ _7"></span>numbe<span class="_ _0"></span>r<span class="_ _1"></span>s<span class="_ _6"></span> <span class="_ _8"></span>inc<span class="_ _6"></span>r<span class="_ _1"></span>ease<span class="_ _6"></span> <span class="_ _8"></span>co<span class="_ _6"></span>mpu-</div><div class="t m0 x3e h6 yc3 ff3 fs2 fc0 sc0 ls0 ws0">tatio<span class="_ _6"></span>nal <span class="_ _a"> </span>eff<span class="_ _6"></span>ort <span class="_ _a"> </span>w<span class="_ _0"></span>ithou<span class="_ _0"></span>t <span class="_ _c"> </span>sig<span class="_ _0"></span>nifica<span class="_ _6"></span>ntly<span class="_ _6"></span> <span class="_ _a"> </span>i<span class="_ _1"></span>mp<span class="_ _6"></span>r<span class="_ _1"></span>ov<span class="_ _6"></span>in<span class="_ _1"></span>g<span class="_ _0"></span> <span class="_ _c"> </span>model </div><div class="t m0 x3e h6 yc4 ff3 fs2 fc0 sc0 ls0 ws0">accu<span class="_ _6"></span>racy<span class="_ _6"></span>.<span class="_ _1"></span> </div><div class="t m0 x6a h14 yc5 ff5 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x6b h13 yc6 ff3 fs5 fc0 sc0 ls0 ws0">Figure 2:<span class="_ _1"></span> The mod<span class="_ _1"></span>el used <span class="_ _1"></span>for the pap<span class="_ _1"></span>er, with <span class="ff4">n</span>=<span class="_ _1"></span>1. </div><div class="t m0 x5f h6 yc7 ff3 fs2 fc0 sc0 ls0 ws0">A <span class="_ _8"></span>s<span class="_ _6"></span>ingle<span class="_ _0"></span> <span class="_ _7"></span><span class="ff4">R<span class="_ _1"></span>C</span> <span class="_ _7"></span>blo<span class="_ _6"></span>ck <span class="_ _8"></span>mo<span class="_ _6"></span>del <span class="_ _7"></span>(Figu<span class="_ _0"></span>r<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _8"></span>2)<span class="_ _6"></span> <span class="_ _8"></span>is<span class="_ _0"></span> <span class="_ _7"></span>a<span class="_ _1"></span>dequ<span class="_ _6"></span>ate<span class="_ _0"></span> <span class="_ _8"></span>f<span class="_ _0"></span>or </div><div class="t m0 x3e h6 yc8 ff3 fs2 fc0 sc0 ls0 ws0">ma<span class="_ _0"></span>ny <span class="_"> </span>p<span class="_ _6"></span>r<span class="_ _1"></span>ob<span class="_ _6"></span>lems <span class="_"> </span>of<span class="_ _6"></span> <span class="_"> </span>indust<span class="_ _6"></span>rial <span class="_ _2"> </span>r<span class="_ _1"></span>ele<span class="_ _0"></span>v<span class="_ _0"></span>ance,<span class="_ _0"></span> <span class="_"> </span>and<span class="_ _6"></span> <span class="_"> </span>has <span class="_"> </span>be<span class="_ _6"></span>en </div><div class="t m0 x3e h6 yc9 ff3 fs2 fc0 sc0 ls0 ws0">adopte<span class="_ _6"></span>d <span class="_ _1"></span>in this<span class="_ _6"></span> <span class="_ _1"></span>wo<span class="_ _6"></span>rk. Th<span class="_ _1"></span>e<span class="_ _6"></span> <span class="_ _1"></span>es<span class="_ _0"></span>tima<span class="_ _6"></span>t<span class="_ _1"></span>io<span class="_ _6"></span>n <span class="_ _1"></span>tec<span class="_ _6"></span>hniques<span class="_ _6"></span> <span class="_ _1"></span>prese<span class="_ _6"></span>n<span class="_ _1"></span>t-</div><div class="t m1 x3f h15 yca ff4 fs7 fc0 sc0 ls0 ws0">E<span class="ff3"> </span></div><div class="t m1 x6c h15 ycb ff3 fs7 fc0 sc0 ls0 ws0">+ </div><div class="t m1 xb h15 ycc ff4 fs7 fc0 sc0 ls0 ws0">I<span class="ff3"> </span></div><div class="t m1 x6d h15 ycd ff4 fs7 fc0 sc0 ls0 ws0">I<span class="ff3"> </span></div><div class="t m1 x6e h15 yce ff4 fs7 fc0 sc0 ls0 ws0">C<span class="_ _1"></span><span class="ff3"> </span></div><div class="t m1 x6f h15 ycf ff4 fs8 fc0 sc0 ls0 ws0">1<span class="_ _0"></span><span class="ff3 fs7"> </span></div><div class="t m1 x70 h15 yd0 ff4 fs7 fc0 sc0 ls0 ws0">C<span class="_ _1"></span><span class="ff3"> </span></div><div class="t m1 x52 h15 yd1 ff4 fs8 fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff3 fs7"> </span></div><div class="t m1 x71 h15 yd2 ff4 fs7 fc0 sc0 ls0 ws0">R<span class="ff3"> </span></div><div class="t m1 x72 h15 yd3 ff4 fs8 fc0 sc0 ls0 ws0">n<span class="ff3 fs7"> </span></div><div class="t m1 x44 h15 yd4 ff4 fs8 fc0 sc0 ls0 ws0">n<span class="_ _0"></span><span class="ff3 fs7"> </span></div><div class="t m1 x73 h15 yd5 ff4 fs8 fc0 sc0 ls0 ws0">1<span class="_ _0"></span><span class="ff3 fs7"> </span></div><div class="t m1 x74 h15 yd3 ff4 fs7 fc0 sc0 ls0 ws0">R<span class="_ _1"></span><span class="ff3"> </span></div><div class="t m1 x75 h15 yd4 ff4 fs8 fc0 sc0 ls0 ws0">1<span class="_ _0"></span><span class="ff3 fs7"> </span></div><div class="t m1 x76 h15 yd6 ff4 fs7 fc0 sc0 ls0 ws0">V<span class="_ _1"></span><span class="ff3"> </span></div><div class="t m1 x4a h15 yd7 ff4 fs7 fc0 sc0 ls0 ws0">R<span class="ff3"> </span></div><div class="t m1 x77 h15 yd8 ff4 fs8 fc0 sc0 ls0 ws0">0<span class="_ _0"></span><span class="ff3 fs7"> </span></div><div class="t m1 x78 h15 yd9 ff4 fs8 fc0 sc0 ls0 ws0">m<span class="ff3 fs7"> </span></div><div class="t m1 x79 h15 yda ff4 fs7 fc0 sc0 ls0 ws0">I<span class="ff3"> </span></div><div class="t m1 x69 h15 ydb ff4 fs8 fc0 sc0 ls0 ws0">m<span class="ff3 fs7"> </span></div><div class="t m1 x7a h16 ydc ff8 fs7 fc0 sc0 ls0 ws0">+<span class="ff6"> </span></div><div class="t m1 x4a h16 ydd ff6 fs7 fc0 sc0 ls0 ws0"> </div><div class="t m1 x7b h17 yde ff4 fs7 fc0 sc0 ls0 ws0">I</div><div class="t m1 x7c h18 ydf ff4 fs9 fc0 sc0 ls0 ws0">p</div><div class="t m1 x7a h16 yde ff6 fs7 fc0 sc0 ls0 ws0"> </div><div class="t m1 x7c h16 ye0 ff6 fs7 fc0 sc0 ls0 ws0"> </div><div class="t m1 x54 h17 ye1 ff4 fs7 fc0 sc0 ls0 ws0">E</div><div class="t m1 x7d h18 ye2 ff4 fs9 fc0 sc0 ls0 ws0">p</div><div class="t m1 x57 h16 ye1 ff8 fs7 fc0 sc0 ls0 ws0"> <span class="ff6"> </span></div><div class="t m1 x56 h16 ye3 ff6 fs7 fc0 sc0 ls0 ws0"> </div><div class="t m1 x7e h17 ye4 ff4 fs7 fc0 sc0 ls0 ws0">Z</div><div class="t m1 x7d h18 ye5 ff4 fs9 fc0 sc0 ls0 ws0">p</div><div class="t m1 x57 h16 ye4 ff8 fs7 fc0 sc0 ls0 ws0"> <span class="_ _6"></span><span class="ff6"><span class="fc1 sc0"> </span></span></div><div class="t m1 x56 h16 ye6 ff6 fs7 fc0 sc0 ls0 ws0"> </div><div class="t m2 x7f h19 ye7 ff3 fsa fc0 sc0 ls0 ws0">+ </div><div class="t m2 x44 h1a ye8 ff4 fsa fc0 sc0 ls0 ws0">R</div><div class="t m2 x4d h1b y66 ff3 fsb fc0 sc0 ls0 ws0">0</div><div class="t m2 x4e h19 ye8 ff3 fsa fc0 sc0 ls0 ws0">(SOC<span class="_ _1"></span><span class="ff4">,</span></div><div class="t m3 x48 h1c ye8 ff9 fsc fc0 sc0 ls0 ws0"></div><div class="t m2 x7e h19 ye8 ff3 fsa fc0 sc0 ls0 ws0">)<span class="_ _1"></span><span class="ff4"> </span></div><div class="t m2 x80 h1d ye7 ff4 fsd fc0 sc0 ls0 ws0">V<span class="_ _6"></span> </div><div class="t m2 x45 h1a ye9 ff4 fsa fc0 sc0 ls0 ws0">+ </div><div class="t m2 x81 h1a yea ff4 fsa fc0 sc0 ls0 ws0">- </div><div class="t m2 x82 h1a ye8 ff4 fsa fc0 sc0 ls0 ws0">C</div><div class="t m2 x83 h1b y66 ff3 fsb fc0 sc0 ls0 ws0">1</div><div class="t m2 x84 h19 ye8 ff4 fsa fc0 sc0 ls0 ws0">(<span class="ff3">S<span class="_ _0"></span>O<span class="_ _1"></span>C<span class="ff4">,</span></span></div><div class="t m3 x85 h1c ye8 ff9 fsc fc0 sc0 ls0 ws0"></div><div class="t m2 x86 h1a ye8 ff4 fsa fc0 sc0 ls0 ws0">) </div><div class="t m2 x5d h1a yeb ff4 fsa fc0 sc0 ls0 ws0">R</div><div class="t m2 x87 h1b yec ff3 fsb fc0 sc0 ls0 ws0">1</div><div class="t m2 x88 h19 yeb ff4 fsa fc0 sc0 ls0 ws0">(<span class="ff3">SOC<span class="_ _1"></span></span>,</div><div class="t m3 x89 h1c yeb ff9 fsc fc0 sc0 ls0 ws0"></div><div class="t m2 x8a h1a yeb ff4 fsa fc0 sc0 ls0 ws0">)<span class="_ _1"></span> </div><div class="t m2 x8b h1a yed ff4 fsa fc0 sc0 ls0 ws0">I</div><div class="t m2 x8c h1b yee ff3 fsb fc0 sc0 ls0 ws0">1</div><div class="t m2 x5c h1a yed ff4 fsa fc0 sc0 ls0 ws0"> </div><div class="t m2 x8d h1a y67 ff4 fsa fc0 sc0 ls0 ws0">I</div><div class="t m2 x8e h1b yef ff3 fsb fc0 sc0 ls0 ws0">m</div><div class="t m2 x8f h1a y67 ff4 fsa fc0 sc0 ls0 ws0"> </div><div class="t m2 x90 h1a yf0 ff4 fsa fc0 sc0 ls0 ws0">E</div><div class="t m2 x8e h1b yf1 ff3 fsb fc0 sc0 ls0 ws0">m</div><div class="t m2 x8f h19 yf0 ff4 fsa fc0 sc0 ls0 ws0">(<span class="ff3">SO<span class="_ _6"></span>C<span class="_ _1"></span><span class="ff4">,</span></span></div><div class="t m3 x8b h1c yf0 ff9 fsc fc0 sc0 ls0 ws0"></div><div class="t m2 x84 h1a yf0 ff4 fsa fc0 sc0 ls0 ws0">)<span class="_ _1"></span> </div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>