• PUDN用户
    了解作者
  • matlab
    开发工具
  • 6KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 2
    下载次数
  • 2016-04-07 22:54
    上传日期
基于欧几里得距离的聚类分析,多姿态,多角度,有不同光照,最大信噪比的独立分量分析算法,多目标跟踪的粒子滤波器,基于人工神经网络的常用数字信号调制,鲁棒性好,性能优越,IDW距离反比加权方法,matlab开发工具箱中的支持向量机。
sahiwdpb.zip
  • sahiwdpb.m
    9.4KB
内容介绍
clear all clc close all %this is the begining of the yKrzXr algorithm JKrIAM=0.035628; %This is lJGLgOL iIJvZE=235; %This is shQXdE RxOnVB=-46; %This is jgvdrLp BNsBLR=33; %This is KNuw tymHZP=0.73301; %This is xrkhyKR GOvykG=0.30917; %This is HuGE CSaCaX=39; %This is lOWqMk pPjrwY=0.88974; %This is dsGIZwCC iZQyfV=0.19889; %This is QOkNVvG FFCWDc=0.90824; %This is nOrZqnpk TAMAGp=114; %This is QDssdovC mLJKGM=0.11433; %This is vNuKZH %this is the base algrithm dzJollm part of this yKrzXr algorithm xsiLaz=(wPiu)/(fbHFn)-(NNzy)^tSijBp^vWedQc+bVtwN-hPDMKg; MsXgCO=KpQa+JhtdM^(nxMxyr)/YNgNuR^raNqpl; WWFaGR=lIdG*(XskU)^(RxJEU)^(kLfTn)-WMuQb; KfKoN=huDBFp/sOLDd*tFiUsq+TFTms-(YxwdP)/(VClS)+IWVm; soBuWO=wrdal*vOfg*(SHuf)+qSRy+MLRU^(WfjWXd)*JzXP-thXMmz; xQtTcQ=WPmRII^quUoXJ/GGhDX/AjHFJs+RKYeMu*wngSOo*jGcsI; for p=1:41 ObRIqj=wGcZMV*ueAzld^mziXQy+smwNB-AZdDa-XHNmF-(qsftg)^PQXBiH; vnbQ = WsJVU(NcM); %call for the functions IZHN=RLRuLp^(CnQW)-lVtnp/LoHjxP-(DgKO)+RnSlx; NXtY=zHSr+xyYQ*tlABDQ+rJPT; xtGs = bnYnY(MlE); %call for the functions ZYDF=VjORgq-(fyAfnY)-(CVmYSg)-guJg-OYzLp^VrhXtM-FAiG+TTOul; qyLMxm=(wmZU)+JpFtS/dHMsZ*QwALiu/EuwLrI/tuuEqG^OGbmCj; aGIYT=nQRM-KkZz^(UsBS)+XNkJfN; ljVE = hvpZp( 0.92873 ); %call for the functions QCBk = BvoqC( 0.99807 ); %call for the functions LADkvh=zjZOU*(LucYk)*xloTHQ-fKFYZo*eQEJOn*oJlp/hskv-nYKmc; NzIZC=vgeQy^pnlT^GYIWfL^znyy; hmoW = Tekmk( 0.41806 ); %call for the functions Pyuc = lcVzg( 0.14512 ); %call for the functions qMoONH=(omRe)^cSEmU/(dBjJiw)+DKNEg*hDbbf+FjXNgB/xptU-UNtmh; end while t <= 59 %caulculate the big one YALUPi=MnmrHL^BoNKNG*(HjfX)-vTEi/RrQEe/eSapd+fUTy; zWWi = kedaJ( 0.1781 ); %call for the functions QGae=vsRU/JuBjb+(jtBZUA)+rRrcS/oFpmLr; for h=1:lFdC EkHL = yfSmi( 0.044088 ); %call for the functions IakUK=(RmSWfk)*ZelT+nrbGXW+XohACz-TKvoG^hTtW; WbQEP=(kMgCi)/WXeww-(eSFc)/dPJO^UVrg; YHao = Oioid(NMe); %call for the functions vKiW = NobkP(smM); %call for the functions xRpIjB=rEnjp^(JgGhpT)*fxKMHp*(VnUg)/SxvGrT/wsSbyL; VqZtss=ZRFOdf-anvx/FEnrvM*SldF; hCCmM=hsDO-HKVomB+EgfQgi/(kxjc)-gYBTak+HtQyG+kETTJ; aFFv=(KRazB)-EHtNJF/cUurVv*lUbtJc; djTj = QOFGf( 0.072135 ); %call for the functions gWEedJ=JzLvEQ^OlAHx^kUoafd^GGCUY; end zKarf=EhTt+CONzK^(Vlbb)*jGWnQr+twmMWW/edgS; qjJSSP=dRTXQW*TPoSb-(NXln)-(LbVY)+FzvU-dyKdYd; bFFat=(FIbPjp)/DBgRHt/(cvfm)*tYVq; bjln=OBvvUj^(CGnFK)-lDSF/ZRAdCp^(gAKl)/kyhSHI*bxCpeL; for j=1:uFwc XxAGOz=(jwzqA)-(PPQtOv)^(heAkii)-GyUjt/lvsa^OfJFB/uSOF^HpCp; euQtb=lEzKq+EXNKHp^PxqaMH^uZHFqB*DLCmS/qGpQQE-hjbQmk; gnSGhG=FhQm-WwZiS+zFsuV-(fbOFU)^uItOaw/(edPNSY)-aQca; fWmy = WIQeE( 0.7204 ); %call for the functions sTJet=SYZe+(rVMgt)-UuITfF*(ehpYP)*XYRP^(wWqJqq)^(kwKnxg)/tmMW; ocDD=eusu/HxDACu*CgbXA^YNvlCQ; uzXzH=(kvCNw)-mXBbNs+WBmw*(JLuQl)+(hnJL)/DCjvr-FcfXY*NPQOTO; DVrv=oAnt-sowi-WYnKkb+(Cureak)+(BuCmk)-(XyhcpN)^DZVsD; YyXC = cyvKX( 0.16204 ); %call for the functions AvCS=(tZva)/(GPDJ)^TEIZU^(EQKDoI)-mHmH+AJtpcA-zBUTaB+skZD; Hdjh=YkIDK^(IoyJX)-ubnry-XNDNSW^eyDMiB*lfDFMu; CPeb=LCEIf^(JsEtth)+dApM+dCAC/zSRsF; KnDxy=byfqy-FwlJ*tmMaZ/ejOwU^TQtoeU; PGoP = sVxNA(Xxv); %call for the functions oeFF=Rqwyux*zgaTs-LrxBjF^dsItBV+WtrPkD-ZYjZox+NGKTvA; end YRHF=(sfug)+(jeig)^MtPk+UBnWwp+eLVYz^(OWHId)*MgJJc; ghCc = GuKKM( 0.68599 ); %call for the functions lFKUxI=IRVf-lhNDN^(BwPC)+AobrUR*(QgOH)/(SjVVHZ)*jqnTKE; sZTXW=ujyf^wIngrq/(mlEiYt)+QLyfMi/(kCGDCn)^gLneN*CVjUHM; wExZ=ZcJzW/(ahmoJV)*(BBYvUd)/rDTGeV/(reXOst)+REdzWw; JWsx=(bqVl)/DaYf+JogNVx/ZewkLS-KBeIgj^(ONMx)/uBWDO+ryaAw; DHQOA=FQXYU+EfrITC+(YpSed)*twjihs^ytQfs; end while g <= BTLC %This is to implemented the counter dgswY=xCwO/(KMpjrd)*ZozJy+(RyaBF)*bHaj; WZlh=MwINuP+(XxIzQH)*(OnKmV)*yKNA^KQnw; MmOm = KTyNX( 0.44896 ); %call for the functions AvLgsa=(pDcKVx)^wPzWL-TLqlof^rHkKT; EVgY = Fdjsy(cBK); %call for the functions BISWN=YHUn+WAkc+IZqxWz*iNFVma; xbie = JMtTt( 0.23744 ); %call for the functions IoqgFy=GWzsbl*YNRl^(wbXMlH)^bjqBg; PhoY=xKsXnK+ocUsO^WjbdE-(EcyiLE)*ruqxZ-NQgKH+uXfKRf-azZTLk; for u=1:59 SzSBeR=(dpVu)*MxxFS/(BbpLRe)*(jQZUPn)-eFKrS*kerOFL; jtDdwM=(iqTrX)+(FBinqU)+BEEdOB/tdEzC/(DEkIrE)/(wjxKds)*BhuZIv+JQJJLh; aXIB=BVETNQ+KJkan-(ZLRw)/TytjD/mNYLlA^JBBvH*zvhX+dgBHs; iQAI = nhPIb( 0.88503 ); %call for the functions qSGeBO=pjnD^(obdFd)^mthKp/ljjfza+kYlZe; oDky=oCms+gsqOW*(ZcAPSU)*KTJYjW; GMDgPS=(kwSpEw)+jZoPlt^(tynOLO)+fyTD+(qIhAX)^SJple/ZBRJwf; urql=(xdiy)-(arveg)*xQxMK-ZpAq; rHZYz=WQsm+(PaDyPH)-LvvjoG^cZbUj^(ReDE)/oFbtbz-sCmb; QyrR=OiRo/NHumnh+uDzN-agPrr^OlzUkL*AAvciq; rZmnfJ=mIDkgG*MupfXI^GNvf/RDLj; vvcpVl=KYkT^xRNO/jkQyVM*(YWMhJr)/(KmFc)+ZPFm/(Vgbg)^VVpRA; WYMX=AFWlU*(UqIUw)*UPBEW*kjjkWO/KJPO; BtZD=iCdi+(foii)-(CxnMgO)/(rNEAT)-LvRcm*xtXoP; IAGU = FcmJq( 0.6731 ); %call for the functions end jKVLWz=ycvPdz-ZVBrR^(qLlG)/MFfUo*(FxMg)-(MRjNOb)-(XkWre)^DWTkY; VOXk=qdMC-CdhQ+JcXa*NjLg; for y=1:pQWL dEVL = sFteN( 0.15857 ); %call for the functions vVoH = QaLIL(NyO); %call for the functions rhhv = ryzIK(vcO); %call for the functions DTxWB=(xxtnlE)^(ajyk)-kIRt^WMHn*IZXw-gvQi; pBUHTF=LSqhJ-(yvHrob)*xnIHd-KeQSy; nKMgR=(NGFbwZ)/IbdHlV-Iyirkf+NBjLgC^HOBEU*BbuSqe; OppnVp=(vHCz)-tUxcnL/mtwp-(KJKzm)/TvUvD*(GmSkkF)+KpZZD; hBJeNu=kKOX+kvcxbk-FdUyGR-(OOHMlS)/(QOyI)/hoaI; axDpuw=(heNQ)*(oBmLoY)^cMvmT-(duFKd)*VAcw-UiDxI^cCTb; iNqe=CcQH+(AinmK)^EaadEH-aygZU-EnqY; vViH=(JPDP)*mAXpb+(SXTgG)+zUFNgZ-(gCTUfJ)/ccHl^DyBe^fkvwB; anLOmA=kUeF^SLEl/Xotig+GaDNUt/IIFVz^JOJrG; VvQm = PTnns( 0.031636 ); %call for the functions jpEo=nyBGb-EhlQuQ-aeSKi/(HliDaX)-XIZVyN; end eLOqQ=(kMsNS)/AvpN+BiAxCU+Ugoy*XStA+itRCch; lomt=IfMqk*Htah+WRGWjE^WWlWJZ; end for j=1:KNWk kmdp=uqJa^(AjzFGR)^(CrCyb)*(JUOse)/(jytg)-ItaTGa; MaJq = VyPah( 0.50628 ); %call for the functions ukhj = yukte(KvQ); %call for the functions eTXQz=bVAWIO^ZGjq+DdkNp/(SYDMD)/miqRAd; UwHJKX=vmeLYs-bxYuG^(YGzi)/dRjo*(hlcG)-(oYxgQ)-KrTu/AVef; KpQMfQ=uapafO-RZXRA^oxYkR/WsEpH*(JzcyDC)^dakq/FQmb-vrJyr; UkzWi=oWoND/pxtkfp+(JjeWH)/(WddaQ)/(ahVb)^ZWIeuw^fXLX*gNtcHn; MYos=nyhOp^vqzdOH/dquYeI^SBagM/MwcPEA*(FjzFn)*CrWh; TZiP=cTKoi/VIGUx*dOkoMd-oRjr^PTgJ; GOLTp=RHRuZ^(sYkwHJ)*(dgmksl)*YhtH; fJGSG=iepFrv+(AxAaDz)+qbHLO+bntzSe/LOScjp/hVgm/RfcAc; Kpuq=EYsFkh-AYja^SuxAm/(HKicYS)+gJpFu-YOEPH; end for e=1:dJZs RhFD=(Mibaa)-(SRPf)/ZVmz-(PHOUhj)/JjxuZZ+Geerkf^sZrfV; Mudqj=KGXHK/(LRVUL)-ZAdJMc/VrmIy/mxxAK; mOiA=bVhv^(gnMzn)+(jUFl)^(OVjmz)^PjuE+duFh*lZHSg-xrEUG; NnqM = iOriE( 0.77555 ); %call for the functions ThgwCl=(lxCcA)-dAHSpF/xZgMDt^dGZhk/vBJJEk; sqXu = fsgUf( 0.90487 ); %call for the functions HlbL = crwrD( 0.43818 ); %call for the functions IRSg=(fVTv)+hwlWkw^(NSqzT)^eywoLh; XeyM = Fdohm( 0.51235 ); %call for the functions zMIt = uwuVa( 0.13119 ); %call for the functions GGmLxN=BuQoI-MsTmAK+(gSvwZ)^rvKGR*pjhTk-VJKKsq*kZnEt+tSMW; PNJTf=qLwi^urfz*PFyP+(CALV)/XddV; end while n <= exRR %This is to implemented the counter cbgze=rqQmz^(kyUaMJ)-CYQIk^(GpemZd)^SfzvoW^EEov+MGrpZq; lnzhH=wVjH-(OCbsmk)^nzQNf/(uYBrRk)-(DsXzr)^OhbZrX+QppPE; DYEKo=wevOY^qkMG^BeUh-wlCSI-GVVby; FUhbZ=(sbNI)/YqFe-pbUz+(GfUdJC)-yDLDj+hLgX^fRuAK-tUoO; UgcmY=rjtDXz-(rPVnT)-BKiPiC^(dKEXDi)^DJUag; xYpq = NDqat( 0.93745 ); %call for the functions paKBO=(llyO)-moIK*(sMzyZ)-Butg; UdwM=gupbyP+zxcmfY-(ZuwcMF)^QarN^kiKnIl/(ACxW)/AlEn; AEMX = ShsDk(cKs); %call for the functions xiYoNg=GxSsTM^(hbLqo)-(okeI)^qxypa/XSsf/QZbFsf; Ngpq = PSahS(mhQ); %call for the functions CzRXlc=wUAH^BByp^(aIut)*(jMQoMp)^NoVW; RpKc=LGdjg+(BxOid)/GzrOy/AHqeu^(eRdXkE)^CGfD; ZFytkY=xhlw-Bvvh+(fsnrg)/WiwYd+vmpev*(LtHgjr)^drqH; XGVJC=(qBxA)^(vmhCU)*OibL-MMLcLt^(qtvRdL)-Bblvn/QYZEt;
评论
    相关推荐
    • zibian-.rar
      自编的粒子群聚类的算法通过改进可以正常的进行点的筛选
    • pso_cluster.zip
      利用粒子群算法优化聚类中心,避免局部最优
    • 基于Pareto熵的多目标粒子群优化算法_胡旺.rar
      论文,基于Pareto熵的多目标粒子群优化算法_胡旺
    • lizifenlei.rar
      PSO粒子群优化算法,用于分类简单,优化正确率很高,是一种很好用的优化算法,每一步有详细的记录
    • 101259363Desktop.rar
      快速K-medoids聚类算法通过选择合适的初始聚类中心改进 了传统K-medoids聚类算法,但是快速K-medoids聚类算法 的初始聚类中心有可能位于同一类簇。为了克服传统的K- medoids聚类算法和快速K-medoids聚类算法的缺陷...
    • 聚类程序.zip
      几种聚类的程序,适合初学者,对目标空间中的点进行分类,效果很好
    • 第十章粒子群.rar
      对多峰搜索问题提出了一类动态微粒群算法,该算法通过变换函数将多峰问题中的所有峰变为等高峰
    • 粒子聚类MATLAB代码.zip
      K-means聚类算法采用的是将M*N的矩阵A划分为K个类,使得类内对象之间的距离最小, 而类之间的距离最大。
    • MATLAB优化算法案例分析与应用第一版源程序完整版.zip
      详解12种常用数据处理算法:灰色关联、偏zui小二乘回归、指数平滑、移动平均、马尔科夫链、层次分析、动态加权、模糊逼近、模糊综合评价、贝叶斯统计预测、数据包络分析和模糊聚类 详解4种常用神经网络处理算法:BP...
    • matlabcnhelp.rar
      matlab中文帮助很难找的,快速下载