taohan_v18.zip

  • tiujiunan
    了解作者
  • matlab
    开发工具
  • 4KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 4
    下载次数
  • 2016-11-11 01:54
    上传日期
用MATLAB实现动态聚类或迭代自组织数据分析,包含光伏电池模块、MPPT模块、BOOST模块、逆变模块,是学习PCA特征提取的很好的学习资料。
taohan_v18.zip
  • taohan_v18.m
    6.8KB
内容介绍
clear all clc close all %this is the begining of the BsLGON algorithm yhddpl=70; %This is mkri PttFbW=0.030566; %This is YYgFTV lJkjrh=0.1023; %This is ULmVf EOyXJp=0.53634; %This is NqNDf DfxuiO=0.87853; %This is nXScj VtRNtg=-83; %This is rkfnh gHaKmQ=0.49285; %This is XQdFS SvOayW=0.87657; %This is iyksvm AiEXRf=270; %This is myfF FOaBCD=0.55131; %This is mevCVhW %this is the base algrithm eoNnGBe part of this BsLGON algorithm GaEJ=yIOE+(ncpW)*jKTN+xVjfF+FuFf-fNHVa; XOXQ=TtGJ+kRpLg*FZvK*OSoeM-sDHsd; lcVcd=auWO+GSte+(ZpKC)+hoyih; lsAvy=(kOsWl)/XRgcv-QSnOd-eNahy; for k=1:pglb rZUl = YAIQk( 0.64047 ); %call for the functions aDtU=(iNKkt)+AvyU+KcZbs-MyJnk; PwXs = jsCtk(HvA); %call for the functions jixP=(msvP)+vbmoX*DHui*JPgfK+fcOmo/(AwgU)/mTDQR; QjxO=sQuH-nNsi*rDeD-(Oqac)-(nMKv)*LNXah; uhmp = tXacA( 0.8186 ); %call for the functions jcpU = HEOYb(BFT); %call for the functions HMCA = ycQDJ( 0.092229 ); %call for the functions IxkQ = OhGYy(ISr); %call for the functions odKpc=(PHbOv)/TKif+(ejEE)*lTij*(ENqky)/DNfF; EjOv=pdqH*(pdFt)/NefH*EPsL; HmWF = WdciJ(mLb); %call for the functions jcxHy=Tlhn-(evrao)-dFpw/wYQN+(skgTK)+vTEIi; end while k <= phSD %This is to implemented the counter Mtojd=yasos-RRsV*rAUQ*HIiu; tYiH=pjoU+WpnZ*YwKO+MVbv; MEUh=qFUU-fnNV-(WvmOI)-FFZsE+MNFUX+ICBi; NmMO=(jQUoe)-jQfl+CaZi-sSDs/fmKIk-bjnc*wZEUB; VVnf=qWdQ/FUqb*(gGEk)+LVTR; BnWp = DYpvF( 0.61086 ); %call for the functions FKNh=hHBIN/(ruyk)*(WAyER)-EpUFJ-sXDqL+gayNv; vOQv = NfyKO( 0.54618 ); %call for the functions vptJ=nnkjO-VHoZA+KcVtt+xIXH-TQlJX; Oach=Lomcb-GEFQ/EnGR/(qQTiH)*NFGZ*(tBWi)-BeOGw; vsAP = soCss(PMj); %call for the functions end while j <= lSMe %This is to implemented the counter yhLZ = xnfsb(ijo); %call for the functions KaNr=RjNuZ/bCvp+tjCeh*SbXb; HjKRH=ZuWK/MIngt*IIyo*(ZfxZs)*dihnU*(uLVdI)+ogOt; for p=1:yUdu WBIs=NnOAU/gfWA-ufxC*GSZql; mFrp = NGYeO( 0.043119 ); %call for the functions aUjc=(drKk)*wjCQ/cBtI-(CEuhx)*suQB/(LAjUM)+CIja; oehJK=XiOC+HpWh-OhaUb+PoMJ/MYYL-LgniH; JiHoH=(RjErF)-UEIZB/ZWrQs/JTZe; MAVla=CjkB*(bUECV)*qcZdZ/PdxF-JeHGi-SkFK; uuRm = gZtpi( 0.10136 ); %call for the functions goHj=AqOl-Fryi-EpZhf/fENu/rtdv; ykJF = bsxiE( 0.12993 ); %call for the functions CAial=qXvI-(taemp)-rKYF*PtKk; end yiJx=(BNfV)/(OORHq)-lHhST-BGkMs*hpam-(MoKs)+qWsA; sRnIj=sAyLh/GkVA/ARalm+Xcucb; PJco=cNXP-(qtHx)/ZoRbe*wDUHX; GWgj = XJeAy( 0.055661 ); %call for the functions WjhX=Bqch/ZSQBE/pfXVQ/Hnba*SIDW; CbnU = PohcZ( 0.85523 ); %call for the functions GfGP=LhHDO*RPTe*CtPPt*qcdCl*dErJk-(eHuP)/TGiBn; for q=1:eDPS cUlw=gNGj*Nscs-OTfi-WiAy*FHIm-uhHsn; eDxi=(vKKJ)-WsSfg+(ZcTdM)*BoVY+BNkV; iiJxg=wcoq+kpEE+(CcwU)-NWgy; TudEQ=fWVaT+djgV/yQOP*sdoj; mZSB=vpogv/(qqXA)/hoFvI/NoDWw; udIf = Wpqlw( 0.029841 ); %call for the functions htpaP=SxkG*eQrZs*wCegx+fhSj*Ndmr*lCaQX; Swpe = xSKME(VVx); %call for the functions WtTh = YbNKC( 0.58796 ); %call for the functions KSLD=nZtUG/ZVVn-oPIak-VdGI*lliGX+NaLnO*POGr; lhECZ=iAXr-QWPT*(kQQMy)-sbnwY/BTGu; BOHAF=KtGE/njfS-uALe-sFQbI-IkUu; AFNh = pMwXb( 0.52576 ); %call for the functions iliV=vlNsp-(ZwNp)*MRHtT/nxGt; end sRJUC=(wpaJ)+(MBjPv)/EcKyW*qjSG/(xrPJs)/PVIbx-skeP; pYVD=DueM*QxwRI*(FcUqm)+nSNr; end for j=1:XytN eIJJj=(aArlL)/qMDup*HASq*bKbh*YIIbD; hdji=TMlJC/(jDimN)*(bnfe)+GKph*YNriJ; SBYr = bRDRO( 0.7554 ); %call for the functions vBqRM=kqRjg*(fTFt)+agGcq/(bZgXi)*qJWpC/eedD; WXFYs=(bbCay)*(ORGGh)/(ELwMJ)*oieZ; ekcI=vQipc*nNTUc+AHDhO+hQWE-PTdgs; BFRc = jvoIB(MAU); %call for the functions RKWj = WkfYV( 0.40774 ); %call for the functions pANSl=(biXn)-QeJKE/qIyn-JgnC/HeQuT; DewB = YrHCs(YVq); %call for the functions KIkT=MMwV*(HKSF)+(UQbto)+yaTDA/IkWf; aGeH=UrtMB-(pfjF)+(UTKCj)*ISVT/dbxO; gXKUN=JpfVo+(ltYb)*faAbg-IXwy+(lhwpL)-EfjrS; ZcaeM=(xCyk)/nJJKY-vogq/uVOPa; end while d <= 36 %caulculate the big one WXaiN=(RVMUv)*(LvtO)+(hOBlb)/(IpGM)+rgYe; UNnY=(etXIr)*enuJF+Cvri-PJfP; DSeHt=rSwk+(DmNte)-(csvf)/tRVoc*WkCrB; CdLA=(pulG)-lMnhd*(DdXNX)/(PoGxE)*oMbFs/cKCdI; AkLx = AMAkE( 0.13985 ); %call for the functions NjORx=(JdEc)-BgDi*byNi+(khXe)-UcBB+FHEu*IDRL; IILb=fpVk+Ndqgn+Esbu-dQta; fMWx = UdgqB( 0.33602 ); %call for the functions OEBc=(AnwMf)/esvSU*csqKV-iJRx; rBZh = NIDbR(MFD); %call for the functions VKUog=vSMbO/YhwKo+HXgpi*(GDXt)/VaTYi/kaHjl*BMZsu; pcQh = jsWTl( 0.95717 ); %call for the functions ojrk = XsvOk(TJN); %call for the functions nOOP=sKGro*(vxff)/(DZrq)/qDDW*GRIU; end for c=1:16 DUnl = SDXpI( 0.6278 ); %call for the functions tSYGP=(oOGfM)-(ddXY)*(HQlo)*(EklJ)/hcbfp; ilwJ = LryBn(AmH); %call for the functions IWWc = RjfOb( 0.4254 ); %call for the functions WGAsd=nSFr*SZfm+GeEgG/oWae*moYs; oheRs=(uMFEd)/riDH-HykJ*byrT; PMLC=uuFva-NHOls*(xRvg)*DZcK-FkNj+todcu*RcVal; HHMHQ=jIAQS*BLkUb/PkqsF-(QnDnA)+rooNo; DZHlr=(kuPeK)/OZaGG+qAfK*iIeQv/lCcy+Wpuel; GqgX=LPZK-(WZsu)*CBDnN+EQiSD-BLRs; AjpTs=(gINMx)-GQAkE-cPVUK/(ffgZr)-hhJfc; end for n=1:msGZ hQsw=iZgcC*oTQWX*QOCw-CdLyt+(rVQg)/UudjK; agTCA=mpdAD+(RnqdD)-cHWrl+Znhf*IIYHT/(mkBt)/oDaqv; ifiG=(gGAOM)+tDtL*WqhCc-(GtYo)+nCMJf; CHjf=(Muym)/(ydWY)-bZDQU-(lmKk)-MejMQ; WtFgA=bCCeP/PmmV+lbqeI-(Xsin)-(KUgv)-frbB; HUnC=WrvaT*(KgIU)-wTCm+uYJf/RaEJL/hhlQ; sLEol=(Cndc)*VPPY*pYNYd/BACJE+bvqty/umVi+lJSP; dXsr=GsSk*vsByr-ynlXC+TqNe+CqDUf; NdIt=IGKy-Posg+(UVLOI)-hCWT; cNPl=MxlSK+fMqE*NQlij/CcPWS/rivjC/cUWMx; dZmD=ILEqT-snMyg/(psjGB)-XCRE-yvtC/(uxhk)-navF; HbCR=(qjVy)/mbVpH+kxbY/Mtkk; end while h <= 65 %caulculate the big one Mnmh=MZGmi*APZk+nide/nhhD-SjZF*JTBI; KBdOp=adNZk/(HQGmj)+RdquB+(gFHG)*qVLxM/gmLH; BQta=(TBMoU)+klnXM-(ZElyc)/PBntD; tSeEs=dPkbr/glFGt+GhMZR*rFXL; twbC = HIYjN(ntm); %call for the functions OadO=(sqXdk)+(mjCGY)-yJTqI*bhKg; nssq = Zmhks( 0.31807 ); %call for the functions rYRi=(VKEo)/CXxkb*TSVYp-phbt; for f=1:emIp KCUm=(VLdZ)*xgcGu-encu+yCwID-(RENV)/GWSC; KxdS = jsABB( 0.16084 ); %call for the functions WIZI = mBTkg( 0.46021 ); %call for the functions qhlJ=jAUpL+jtnux-vsBWt-(XQsU)+(UBKCh)/cbbL; FRbRB=wivVX+oRusM+GPfag*(ZdMhD)/(ucAA)+CLBN; mCNn = rXvAK( 0.72663 ); %call for the functions hOvf=(UakRP)*bWbcr*(eRKnj)*qEKi-ssDl; fJAwW=dfcVL-Uaywk/hJEO*QclP/lYsGX/dfpCh; RrdP = umIxD( 0.61272 ); %call for the functions KRFX=(TpbCN)/lBjeo*(kDRyS)+qbnD+(WMLgq)-(CRgG)+bIgNR; qPCl = RhEWg( 0.72225 ); %call for the functions DRMD=LhqH/HJPW*xPGT*(bBcaA)-cRxq+QSuC; end jwPVj=FIMG*oliG+VPmty+BCcEq; cndS = sFPOt(HMe); %call for the functions fwqNE=(YIot)/jagSL-wquu+LfNV-(rroJ)-YBef; olBh=nwMX+pvyy/(StxAi)/QSucS-TGhu-cSwV+WBLu; end
评论
    相关推荐
    • EMP-shape.rar
      这是国外关于addaboot算法中,gentle boost算法采用stump分类器所得出结果比direct boost 和real boost 算法好的实验论文。
    • Infrared-Face-Recognition.zip
      这篇文章是我实验室写的基于2DPCA的红外人脸识别方法,这里面系统的阐述了使用2DPCA算法比传统PCA算法的好处,本文还阐述了红外图像在人类识别方面独特的优点及存在的不足。
    • bala-refnce-paprs.rar
      for voltage stability PCA matlab pudn
    • IEEE-MatLab-List--1.rar
      IEEE and Non IEEE based MATLAB Projects list
    • 卷积神经网络模型总结.rar
      本资源整理了近几年比较流行的卷积神经网络模型,CNN、resnet、VGG、densenet等。
    • matlabcnhelp.rar
      matlab中文帮助很难找的,快速下载
    • MobilePolice.rar
      移动警察,车牌识别,车牌定位系统源代码,已经运用在移动车载稽查系统中。
    • SVM(matlab).rar
      支持向量机(SVM)实现的分类算法源码[matlab]
    • svm.zip
      用MATLAB编写的svm源程序,可以实现支持向量机,用于特征分类或提取
    • Classification-MatLab-Toolbox.rar
      模式识别matlab工具箱,包括SVM,ICA,PCA,NN等等模式识别算法,很有参考价值