<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6254db6047503a0a93cceb35/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6254db6047503a0a93cceb35/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Col<span class="_ _0"></span>or<span class="_ _1"> </span>ima<span class="_ _0"></span>ge<span class="_ _1"> </span>ret<span class="_ _0"></span>ri<span class="_ _0"></span>eval<span class="_ _1"> </span>te<span class="_ _0"></span>ch<span class="_ _0"></span>niq<span class="_ _0"></span>ue<span class="_ _1"> </span>with<span class="_ _1"> </span>lo<span class="_ _0"></span>cal<span class="_ _1"> </span>fea<span class="_ _0"></span>tur<span class="_ _0"></span>es<span class="_ _1"> </span>ba<span class="_ _0"></span>se<span class="_ _0"></span>d</div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">on<span class="_ _1"> </span>orth<span class="_ _0"></span>og<span class="_ _0"></span>onal<span class="_ _1"> </span>po<span class="_ _0"></span>ly<span class="_ _0"></span>nom<span class="_ _0"></span>ials<span class="_ _1"> </span>mo<span class="_ _0"></span>del<span class="_ _1"> </span>an<span class="_ _0"></span>d<span class="_ _1"> </span>SIFT</div><div class="t m0 x1 h3 y3 ff1 fs1 fc0 sc0 ls0 ws0">J.<span class="_ _2"> </span>Kalp<span class="_ _0"></span>an<span class="_ _0"></span>a<span class="_ _3"> </span><span class="ff2 fs2">&<span class="_ _3"> </span></span>R.<span class="_ _3"> </span>Krish<span class="_ _0"></span>namo<span class="_ _0"></span>or<span class="_ _0"></span>thi</div><div class="t m0 x1 h4 y4 ff3 fs2 fc0 sc0 ls0 ws0">Rece<span class="_ _0"></span>iv<span class="_ _0"></span>ed<span class="_ _0"></span>:<span class="_ _3"> </span>27<span class="_ _4"> </span>Dec<span class="_ _0"></span>em<span class="_ _0"></span>ber<span class="_ _4"> </span>2013<span class="_ _5"> </span>/<span class="_ _6"> </span>Revi<span class="_ _0"></span>sed<span class="_ _0"></span>:<span class="_ _4"> </span>31<span class="_ _4"> </span>Augu<span class="_ _0"></span>st<span class="_ _4"> </span>201<span class="_ _0"></span>4<span class="_ _4"> </span>/<span class="_ _6"></span>A<span class="_ _0"></span>cc<span class="_ _0"></span>ept<span class="_ _0"></span>ed:<span class="_ _4"> </span>3<span class="_ _4"> </span>Septem<span class="_ _0"></span>b<span class="_ _0"></span>er<span class="_ _4"> </span>2014<span class="_ _5"> </span>/</div><div class="t m0 x1 h4 y5 ff3 fs2 fc0 sc0 ls0 ws0">Pub<span class="_ _0"></span>lis<span class="_ _0"></span>hed<span class="_ _4"> </span>on<span class="_ _0"></span>lin<span class="_ _0"></span>e:<span class="_ _4"> </span>2<span class="_ _4"> </span>Decem<span class="_ _0"></span>ber<span class="_ _4"> </span>201<span class="_ _0"></span>4</div><div class="t m0 x1 h5 y6 ff4 fs2 fc0 sc0 ls0 ws0">#</div><div class="t m0 x2 h4 y7 ff3 fs2 fc0 sc0 ls0 ws0">Spri<span class="_ _0"></span>nge<span class="_ _0"></span>r<span class="_ _4"> </span>Sci<span class="_ _0"></span>ence<span class="_ _0"></span>+B<span class="_ _0"></span>us<span class="_ _0"></span>ines<span class="_ _0"></span>s<span class="_ _4"> </span>Med<span class="_ _0"></span>ia<span class="_ _4"> </span>New<span class="_ _4"> </span>Y<span class="_ _7"></span>or<span class="_ _0"></span>k<span class="_ _3"> </span>201<span class="_ _0"></span>4</div><div class="t m0 x1 h6 y8 ff1 fs1 fc0 sc0 ls0 ws0">Abs<span class="_ _0"></span>trac<span class="_ _0"></span>t<span class="_ _8"> </span><span class="ff3">In<span class="_ _3"> </span>this<span class="_ _3"> </span>pape<span class="_ _0"></span>r<span class="_ _0"></span>,<span class="_ _3"> </span>a<span class="_ _2"> </span>new<span class="_ _3"> </span>color<span class="_ _3"> </span>imag<span class="_ _0"></span>e<span class="_ _2"> </span>ret<span class="_ _0"></span>rie<span class="_ _0"></span>val<span class="_ _3"> </span>tech<span class="_ _0"></span>ni<span class="_ _0"></span>que<span class="_ _3"> </span>is<span class="_ _3"> </span>propos<span class="_ _0"></span>ed<span class="_ _3"> </span>with<span class="_ _3"> </span>loca<span class="_ _0"></span>l<span class="_ _2"> </span>fea<span class="_ _0"></span>tu<span class="_ _0"></span>res</span></div><div class="t m0 x1 h6 y9 ff3 fs1 fc0 sc0 ls0 ws0">give<span class="_ _0"></span>n<span class="_ _4"> </span>by<span class="_ _4"> </span>Sca<span class="_ _0"></span>le<span class="_ _4"> </span>In<span class="_ _0"></span>vari<span class="_ _0"></span>ant<span class="_ _4"> </span>Fe<span class="_ _0"></span>atu<span class="_ _0"></span>re<span class="_ _4"> </span>T<span class="_ _7"></span>ransfo<span class="_ _0"></span>rm<span class="_ _4"> </span>(S<span class="_ _0"></span>IFT)<span class="_ _4"> </span>ke<span class="_ _0"></span>y<span class="_ _4"> </span>poi<span class="_ _0"></span>nts<span class="_ _4"> </span>th<span class="_ _0"></span>at<span class="_ _4"> </span>are<span class="_ _4"> </span>d<span class="_ _0"></span>esc<span class="_ _0"></span>ribe<span class="_ _0"></span>d<span class="_ _4"> </span>in<span class="_ _4"> </span>the<span class="_ _4"> </span>in<span class="_ _0"></span>tege<span class="_ _0"></span>r<span class="_ _0"></span>-</div><div class="t m0 x1 h6 ya ff3 fs1 fc0 sc0 ls0 ws0">nat<span class="_ _0"></span>ure<span class="_ _0"></span>d,<span class="_ _2"> </span>comp<span class="_ _0"></span>uta<span class="_ _0"></span>ti<span class="_ _0"></span>onal<span class="_ _0"></span>ly<span class="_ _3"> </span>light<span class="_ _2"> </span>Ort<span class="_ _0"></span>hogo<span class="_ _0"></span>nal<span class="_ _3"> </span>Poly<span class="_ _0"></span>nomi<span class="_ _0"></span>als<span class="_ _3"> </span>T<span class="_ _0"></span>ran<span class="_ _0"></span>sfor<span class="_ _0"></span>m<span class="_ _2"> </span>(OPT<span class="_ _0"></span>)<span class="_ _2"> </span>domai<span class="_ _0"></span>n.<span class="_ _2"> </span>The<span class="_ _3"> </span>trans-</div><div class="t m0 x1 h6 yb ff3 fs1 fc0 sc0 ls0 ws0">form<span class="_ _0"></span><span class="ff5">’<span class="_ _7"></span><span class="ff3">s<span class="_ _9"> </span>poi<span class="_ _0"></span>nt<span class="_ _9"> </span>sp<span class="_ _0"></span>rea<span class="_ _0"></span>d<span class="_ _9"> </span>ope<span class="_ _0"></span>ra<span class="_ _0"></span>tors<span class="_ _2"> </span>are<span class="_ _9"> </span>deri<span class="_ _0"></span>ve<span class="_ _0"></span>d<span class="_ _9"> </span>fr<span class="_ _0"></span>om<span class="_ _9"> </span>a<span class="_ _9"> </span>ge<span class="_ _0"></span>nera<span class="_ _0"></span>ti<span class="_ _0"></span>ng<span class="_ _9"> </span>fu<span class="_ _0"></span>nc<span class="_ _0"></span>tio<span class="_ _0"></span>n,<span class="_ _9"> </span>mo<span class="_ _0"></span>difi<span class="_ _0"></span>ca<span class="_ _0"></span>tion<span class="_ _2"> </span>to<span class="_ _9"> </span>whi<span class="_ _0"></span>ch</span></span></div><div class="t m0 x1 h6 yc ff3 fs1 fc0 sc0 ls0 ws0">has<span class="_ _3"> </span>been<span class="_ _3"> </span>propo<span class="_ _0"></span>se<span class="_ _0"></span>d<span class="_ _2"> </span>for<span class="_ _3"> </span>alle<span class="_ _0"></span>via<span class="_ _0"></span>ting<span class="_ _3"> </span>com<span class="_ _0"></span>puta<span class="_ _0"></span>tio<span class="_ _0"></span>na<span class="_ _0"></span>l<span class="_ _2"> </span>co<span class="_ _0"></span>mpl<span class="_ _0"></span>exit<span class="_ _0"></span>y<span class="_ _2"> </span>fu<span class="_ _0"></span>rthe<span class="_ _0"></span>r<span class="_ _7"></span>.<span class="_ _2"> </span>The<span class="_ _3"> </span>expre<span class="_ _0"></span>ssi<span class="_ _0"></span>ve<span class="_ _3"> </span>power<span class="_ _3"> </span>of</div><div class="t m0 x1 h6 yd ff3 fs1 fc0 sc0 ls0 ws0">the<span class="_ _4"> </span>tra<span class="_ _0"></span>nsf<span class="_ _0"></span>orm<span class="_ _4"> </span>coe<span class="_ _0"></span>ffi<span class="_ _0"></span>c<span class="_ _0"></span>ient<span class="_ _0"></span>s<span class="_ _4"> </span>has<span class="_ _4"> </span>bee<span class="_ _0"></span>n<span class="_ _4"> </span>exploi<span class="_ _0"></span>te<span class="_ _0"></span>d<span class="_ _4"> </span>for<span class="_ _4"> </span>formin<span class="_ _0"></span>g<span class="_ _4"> </span>the<span class="_ _4"> </span>desc<span class="_ _0"></span>ri<span class="_ _0"></span>ptor<span class="_ _0"></span>s<span class="_ _4"> </span>of<span class="_ _4"> </span>SIFT<span class="_ _4"> </span>key<span class="_ _4"> </span>poi<span class="_ _0"></span>nts<span class="_ _4"> </span>of</div><div class="t m0 x1 h6 ye ff3 fs1 fc0 sc0 ls0 ws0">a<span class="_ _2"> </span>giv<span class="_ _0"></span>en<span class="_ _2"> </span>ima<span class="_ _0"></span>ge.<span class="_ _3"> </span>The<span class="_ _2"> </span>key<span class="_ _3"> </span>poin<span class="_ _0"></span>t<span class="_ _2"> </span>desc<span class="_ _0"></span>ri<span class="_ _0"></span>ptor<span class="_ _0"></span>s,<span class="_ _3"> </span>OPT<span class="_ _7"></span>-S<span class="_ _0"></span>IF<span class="_ _0"></span>T<span class="_ _4"> </span>so<span class="_ _3"> </span>forme<span class="_ _0"></span>d<span class="_ _2"> </span>have<span class="_ _3"> </span>good<span class="_ _3"> </span>expre<span class="_ _0"></span>ssi<span class="_ _0"></span>ve<span class="_ _3"> </span>powe<span class="_ _0"></span>r<span class="_ _0"></span>,</div><div class="t m0 x1 h6 yf ff3 fs1 fc0 sc0 ls0 ws0">des<span class="_ _0"></span>pit<span class="_ _0"></span>e<span class="_ _a"> </span>bei<span class="_ _0"></span>ng<span class="_ _9"> </span>short<span class="_ _0"></span>er<span class="_ _9"> </span>in<span class="_ _9"> </span>lengt<span class="_ _0"></span>h<span class="_ _a"> </span>and<span class="_ _9"> </span>havi<span class="_ _0"></span>ng<span class="_ _9"> </span>a<span class="_ _a"> </span>redu<span class="_ _0"></span>ced<span class="_ _9"> </span>compu<span class="_ _0"></span>ta<span class="_ _0"></span>tio<span class="_ _0"></span>na<span class="_ _0"></span>l<span class="_ _a"> </span>comp<span class="_ _0"></span>le<span class="_ _0"></span>xit<span class="_ _0"></span>y<span class="_ _7"></span>.<span class="_ _a"> </span>A<span class="_ _a"> </span>ret<span class="_ _0"></span>rie<span class="_ _0"></span>val</div><div class="t m0 x1 h6 y10 ff3 fs1 fc0 sc0 ls0 ws0">tec<span class="_ _0"></span>hniq<span class="_ _0"></span>ue<span class="_ _2"> </span>has<span class="_ _2"> </span>been<span class="_ _2"> </span>propose<span class="_ _0"></span>d<span class="_ _2"> </span>based<span class="_ _2"> </span>on<span class="_ _9"> </span>OP<span class="_ _0"></span>T<span class="_ _7"></span>-S<span class="_ _0"></span>IF<span class="_ _0"></span>T<span class="_ _9"> </span>fe<span class="_ _0"></span>atur<span class="_ _0"></span>es.<span class="_ _2"> </span>The<span class="_ _2"> </span>prop<span class="_ _0"></span>osed<span class="_ _2"> </span>retr<span class="_ _0"></span>ieva<span class="_ _0"></span>l<span class="_ _2"> </span>techn<span class="_ _0"></span>ique</div><div class="t m0 x1 h6 y11 ff3 fs1 fc0 sc0 ls0 ws0">has<span class="_ _b"> </span>bee<span class="_ _0"></span>n<span class="_ _b"> </span>exper<span class="_ _0"></span>ime<span class="_ _0"></span>nt<span class="_ _0"></span>ed<span class="_ _b"> </span>with<span class="_ _b"> </span>ima<span class="_ _0"></span>ges<span class="_ _b"> </span>from<span class="_ _5"> </span>stand<span class="_ _0"></span>ard<span class="_ _5"> </span>databa<span class="_ _0"></span>se<span class="_ _0"></span>s<span class="_ _b"> </span>such<span class="_ _b"> </span>COIL-<span class="_ _0"></span>10<span class="_ _0"></span>0<span class="_ _b"> </span>and<span class="_ _b"> </span>Core<span class="_ _0"></span>l<span class="_ _b"> </span>and<span class="_ _b"> </span>the</div><div class="t m0 x1 h6 y12 ff3 fs1 fc0 sc0 ls0 ws0">results<span class="_ _c"> </span>demonstrate<span class="_ _c"> </span>the<span class="_ _c"> </span>superio<span class="_ _0"></span>rity<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _d"> </span>proposed<span class="_ _c"> </span>descripto<span class="_ _0"></span>rs<span class="_ _c"> </span>when<span class="_ _c"> </span>compared<span class="_ _c"> </span>to<span class="_ _c"> </span>other</div><div class="t m0 x1 h6 y13 ff3 fs1 fc0 sc0 ls0 ws0">des<span class="_ _0"></span>cri<span class="_ _0"></span>ptor<span class="_ _0"></span>s.</div><div class="t m0 x1 h6 y14 ff1 fs1 fc0 sc0 ls0 ws0">Keyw<span class="_ _0"></span>or<span class="_ _0"></span>ds<span class="_ _e"> </span><span class="ff3 ls1">Content<span class="_ _b"> </span>bas<span class="_ _f"></span>ed<span class="_ _5"> </span>i<span class="_ _f"></span>mage<span class="_ _b"> </span>retriev<span class="_ _f"></span>al<span class="_ _5"> </span>(<span class="_ _f"></span>CBIR)</span></div><div class="t m0 x3 h6 y15 ff3 fs1 fc0 sc0 ls0 ws0">.</div><div class="t m0 x4 h6 y14 ff3 fs1 fc0 sc0 ls0 ws0">Dime<span class="_ _0"></span>ns<span class="_ _0"></span>iona<span class="_ _0"></span>li<span class="_ _0"></span>ty<span class="_ _5"> </span>redu<span class="_ _0"></span>ct<span class="_ _0"></span>ion</div><div class="t m0 x5 h6 y15 ff3 fs1 fc0 sc0 ls0 ws0">.</div><div class="t m0 x6 h6 y14 ff3 fs1 fc0 sc0 ls0 ws0">Ort<span class="_ _0"></span>hog<span class="_ _0"></span>ona<span class="_ _0"></span>l</div><div class="t m0 x1 h6 y16 ff3 fs1 fc0 sc0 ls0 ws0">poly<span class="_ _0"></span>no<span class="_ _0"></span>mia<span class="_ _0"></span>ls</div><div class="t m0 x7 h6 y17 ff3 fs1 fc0 sc0 ls0 ws0">.</div><div class="t m0 x8 h6 y16 ff3 fs1 fc0 sc0 ls0 ws0">SIF<span class="_ _0"></span>T<span class="_ _5"> </span>keyp<span class="_ _0"></span>oin<span class="_ _0"></span>t<span class="_ _5"> </span>desc<span class="_ _0"></span>ript<span class="_ _0"></span>or<span class="_ _0"></span>s</div><div class="t m0 x1 h3 y18 ff1 fs1 fc0 sc0 ls0 ws0">1<span class="_ _2"> </span>Intr<span class="_ _0"></span>od<span class="_ _0"></span>ucti<span class="_ _0"></span>o<span class="_ _0"></span>n</div><div class="t m0 x1 h6 y19 ff3 fs1 fc0 sc0 ls2 ws0">Several<span class="_ _4"> </span>Content<span class="_ _4"> </span>Based<span class="_ _4"> </span>Image<span class="_ _4"> </span>Retrieval<span class="_ _4"> </span>(CBIR)<span class="_ _4"> </span>t<span class="ls3">echniques<span class="_ _4"> </span>h<span class="_ _f"></span>ave<span class="_ _4"> </span>been<span class="_ _4"> </span>proposed<span class="_ _4"> </span>based<span class="_ _4"> </span>on<span class="_ _4"> </span>various</span></div><div class="t m0 x1 h6 y1a ff3 fs1 fc0 sc0 ls4 ws0">global<span class="_ _2"> </span>and<span class="_ _9"> </span>local<span class="_ _9"> </span>low<span class="_ _2"> </span>level<span class="_ _9"> </span>features.<span class="_ _2"> </span>Ritendra<span class="_ _9"> </span>[<span class="fc1 ls5">29</span><span class="ls6">]<span class="_ _9"> </span>report<span class="_ _9"> </span>that<span class="_ _2"> </span>the<span class="_ _9"> </span>trends<span class="_ _9"> </span>of<span class="_ _9"> </span>CBIR<span class="_ _2"> </span>res<span class="_ _f"></span>earch<span class="_ _9"> </span>have</span></div><div class="t m0 x1 h6 y1b ff3 fs1 fc0 sc0 ls7 ws0">switched<span class="_ _a"> </span>from<span class="_ _a"> </span>global<span class="_ _a"> </span>features<span class="_ _a"> </span>to<span class="_ _a"> </span>local<span class="_ _a"> </span>features,<span class="_ _a"> </span>which<span class="_ _1"> </span>is<span class="_ _9"> </span>proved<span class="_ _1"> </span>as<span class="_ _a"> </span>a<span class="_ _a"> </span>practical<span class="_ _a"> </span>way<span class="_ _a"> </span>to<span class="_ _a"> </span>handle</div><div class="t m0 x1 h7 y1c ff5 fs1 fc0 sc0 ls0 ws0">“<span class="ff3 ls2">semantic<span class="_ _2"> </span>gap</span>”<span class="ff3 ls8">.<span class="_ _9"> </span>Local<span class="_ _2"> </span>features<span class="_ _9"> </span>are<span class="_ _9"> </span>more<span class="_ _2"> </span>reliabl<span class="_ _f"></span>e<span class="_ _2"> </span>f<span class="_ _f"></span>or<span class="_ _9"> </span>several<span class="_ _2"> </span>reasons:<span class="_ _9"> </span></span><span class="ff6">−<span class="_ _9"> </span><span class="ff3 ls9">they<span class="_ _2"> </span>isolate<span class="_ _9"> </span>occlusions,</span></span></div><div class="t m0 x1 h6 y1d ff3 fs1 fc0 sc0 ls0 ws0">isola<span class="_ _f"></span>te<span class="_ _c"> </span>cl<span class="_ _f"></span>utter<span class="_ _d"> </span>and<span class="_ _d"> </span>the<span class="_ _d"> </span>backgr<span class="_ _f"></span>ound<span class="_ _d"> </span>and<span class="_ _c"> </span>al<span class="_ _f"></span>so<span class="_ _d"> </span>accommo<span class="_ _f"></span>date<span class="_ _d"> </span>parti<span class="_ _f"></span>al<span class="_ _d"> </span>appear<span class="_ _f"></span>ance<span class="_ _d"> </span>varia<span class="_ _f"></span>tion.</div><div class="t m0 x1 h6 y1e ff3 fs1 fc0 sc0 lsa ws0">Mikolajczyk<span class="_ _9"> </span>et<span class="_ _9"> </span>al.<span class="_ _9"> </span>in<span class="_ _a"> </span>[<span class="fc1 ls5">26</span><span class="ls2">]<span class="_ _9"> </span>report<span class="_ _9"> </span>that<span class="_ _a"> </span>the<span class="_ _9"> </span>method<span class="_ _9"> </span>used<span class="_ _a"> </span>for<span class="_ _9"> </span>local<span class="_ _9"> </span>feature<span class="_ _a"> </span>identification<span class="_ _9"> </span>does<span class="_ _9"> </span>n<span class="_ _f"></span>ot</span></div><div class="t m0 x1 h6 y1f ff3 fs1 fc0 sc0 lsb ws0">affect<span class="_ _b"> </span>the<span class="_ _b"> </span>method<span class="_ _4"> </span>employed<span class="_ _b"> </span>to<span class="_ _4"> </span>describe<span class="_ _b"> </span>the<span class="_ _4"> </span>local<span class="_ _4"> </span>f<span class="lsc">eatures.<span class="_ _b"> </span>They<span class="_ _4"> </span>also<span class="_ _b"> </span>conclude<span class="_ _4"> </span>that<span class="_ _4"> </span>the<span class="_ _b"> </span>description</span></div><div class="t m0 x1 h6 y20 ff3 fs1 fc0 sc0 lsd ws0">of<span class="_ _9"> </span>the<span class="_ _9"> </span>local<span class="_ _9"> </span>features<span class="_ _9"> </span>depends<span class="_ _9"> </span>much<span class="_ _9"> </span>on<span class="_ _9"> </span>the<span class="_ _2"> </span>rep<span class="_ _f"></span>re<span class="ls9">sentation<span class="_ _9"> </span>used<span class="_ _9"> </span>to<span class="_ _2"> </span>model<span class="_ _9"> </span>image<span class="_ _9"> </span>patches<span class="_ _9"> </span>around</span></div><div class="t m0 x1 h6 y21 ff3 fs1 fc0 sc0 lse ws0">interest<span class="_ _9"> </span>points.<span class="_ _a"> </span>This<span class="_ _a"> </span>report<span class="_ _9"> </span>gives<span class="_ _a"> </span>scope<span class="_ _a"> </span>for<span class="_ _a"> </span>two<span class="_ _9"> </span><span class="lsf">independent<span class="_ _a"> </span>processes<span class="_ _a"> </span>-<span class="_ _9"> </span>identification<span class="_ _a"> </span>of<span class="_ _a"> </span>local</span></div><div class="t m0 x1 h6 y22 ff3 fs1 fc0 sc0 ls4 ws0">features<span class="_ _3"> </span>and<span class="_ _2"> </span>description<span class="_ _3"> </span>of<span class="_ _2"> </span>the<span class="_ _2"> </span>identified<span class="_ _3"> </span>local<span class="_ _2"> </span>features.</div><div class="t m0 x1 h4 y23 ff3 fs2 fc0 sc0 ls0 ws0">Mul<span class="_ _0"></span>ti<span class="_ _0"></span>med<span class="_ _4"> </span>T<span class="_ _7"></span>ools<span class="_ _4"> </span>App<span class="_ _0"></span>l<span class="_ _4"> </span>(2016<span class="_ _0"></span>)<span class="_ _4"> </span>75:4<span class="_ _0"></span>9<span class="ff5">–</span><span class="ls10">69</span></div><div class="t m0 x1 h4 y24 ff3 fs2 fc0 sc0 ls0 ws0">DOI<span class="_ _4"> </span>10.1<span class="_ _0"></span>0<span class="_ _0"></span>07/<span class="_ _0"></span>s1<span class="_ _7"></span>1042-<span class="_ _0"></span>01<span class="_ _0"></span>4-2<span class="_ _0"></span>262<span class="_ _0"></span>-1</div><div class="t m0 x1 h8 y25 ff3 fs2 fc0 sc0 ls11 ws0">J.<span class="_ _3"> </span>Kalpan<span class="_ _f"></span>a<span class="_ _b"> </span>(<span class="ff7 ls0">*<span class="ff3">)</span></span></div><div class="t m0 x9 h9 y26 ff8 fs3 fc0 sc0 ls0 ws0">:</div><div class="t m0 xa h4 y25 ff3 fs2 fc0 sc0 ls0 ws0">R.<span class="_ _4"> </span>Kris<span class="_ _0"></span>hna<span class="_ _0"></span>mo<span class="_ _0"></span>ort<span class="_ _0"></span>hi</div><div class="t m0 x1 h4 y27 ff3 fs2 fc0 sc0 ls0 ws0">Ima<span class="_ _0"></span>ge<span class="_ _4"> </span>V<span class="_ _7"></span>ision<span class="_ _4"> </span>Labo<span class="_ _0"></span>rat<span class="_ _0"></span>or<span class="_ _0"></span>y<span class="_ _7"></span>,<span class="_ _4"> </span>Dept.<span class="_ _4"> </span>of<span class="_ _4"> </span>CSE,<span class="_ _b"> </span>Anna<span class="_ _4"> </span>Unive<span class="_ _0"></span>rs<span class="_ _0"></span>it<span class="_ _0"></span>y<span class="_ _4"> </span>of<span class="_ _3"> </span>T<span class="_ _7"></span>echn<span class="_ _0"></span>olo<span class="_ _0"></span>gy<span class="_ _7"></span>,<span class="_ _4"> </span>Ti<span class="_ _0"></span>ruc<span class="_ _0"></span>hira<span class="_ _0"></span>p<span class="_ _0"></span>all<span class="_ _0"></span>i<span class="_ _4"> </span>620<span class="_ _4"> </span>024,<span class="_ _4"> </span>Indi<span class="_ _0"></span>a</div><div class="t m0 x1 h4 y28 ff3 fs2 fc0 sc0 ls0 ws0">e-m<span class="_ _0"></span>ail<span class="_ _0"></span>:<span class="_ _4"> </span>kalp<span class="_ _0"></span>anal<span class="_ _0"></span>ak@<span class="_ _0"></span>g<span class="_ _0"></span>mai<span class="_ _0"></span>l.co<span class="_ _0"></span>m</div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[2.037103,0.000000,0.000000,2.037103,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6254db6047503a0a93cceb35/bg2.jpg"><div class="t m0 xb h6 y29 ff3 fs1 fc0 sc0 ls12 ws0">Among<span class="_ _4"> </span>the<span class="_ _4"> </span>t<span class="_ _f"></span>echniques<span class="_ _4"> </span>based<span class="_ _3"> </span>on<span class="_ _4"> </span>local<span class="_ _4"> </span>f<span class="_ _f"></span>eatures,<span class="_ _4"> </span>SIFT<span class="_ _4"> </span>[<span class="fc1 ls13">23</span><span class="lsb">]<span class="_ _4"> </span>has<span class="_ _4"> </span>been<span class="_ _3"> </span>accepted<span class="_ _b"> </span>as<span class="_ _3"> </span>the<span class="_ _4"> </span>state-of-art</span></div><div class="t m0 x1 h6 y2a ff3 fs1 fc0 sc0 ls0 ws0">tech<span class="_ _0"></span>niqu<span class="_ _0"></span>e.<span class="_ _1"> </span>Howeve<span class="_ _0"></span>r<span class="_ _0"></span>,<span class="_ _1"> </span>it<span class="_ _c"> </span>is<span class="_ _1"> </span>plague<span class="_ _0"></span>d<span class="_ _c"> </span>by<span class="_ _1"> </span>two<span class="_ _c"> </span>dr<span class="_ _0"></span>awb<span class="_ _0"></span>ack<span class="_ _0"></span>s<span class="_ _c"> </span>wi<span class="_ _0"></span>th<span class="_ _c"> </span>re<span class="_ _0"></span>spe<span class="_ _0"></span>ct<span class="_ _1"> </span>to<span class="_ _c"> </span>its<span class="_ _1"> </span>descri<span class="_ _0"></span>ptor<span class="_ _0"></span>s<span class="_ _c"> </span>-<span class="_ _1"> </span>the</div><div class="t m0 x1 h6 y2b ff3 fs1 fc0 sc0 ls14 ws0">computational<span class="_ _9"> </span>complexity<span class="_ _9"> </span>and<span class="_ _9"> </span>length<span class="_ _a"> </span>of<span class="_ _9"> </span>its<span class="_ _9"> </span>desc<span class="lsa">riptor<span class="_ _0"></span>.<span class="_ _9"> </span>Many<span class="_ _9"> </span>refinements<span class="_ _9"> </span>to<span class="_ _a"> </span>the<span class="_ _9"> </span>original<span class="_ _a"> </span>SIFT</span></div><div class="t m0 x1 h6 y2c ff3 fs1 fc0 sc0 ls15 ws0">descriptors<span class="_ _a"> </span>have<span class="_ _a"> </span>been<span class="_ _9"> </span>prop<span class="_ _f"></span>osed<span class="_ _9"> </span>in<span class="_ _a"> </span>order<span class="_ _1"> </span>to<span class="_ _9"> </span>overc<span class="ls3">ome<span class="_ _a"> </span>its<span class="_ _a"> </span>drawb<span class="_ _f"></span>acks.<span class="_ _a"> </span>For<span class="_ _a"> </span>instance,<span class="_ _a"> </span>a<span class="_ _a"> </span>reduced-</span></div><div class="t m0 x1 h6 y2d ff3 fs1 fc0 sc0 ls16 ws0">length<span class="_ _b"> </span>SIFT<span class="_ _4"> </span>feature<span class="_ _b"> </span>descriptor<span class="_ _4"> </span>is<span class="_ _b"> </span>possible<span class="_ _4"> </span>as<span class="_ _b"> </span>there<span class="_ _4"> </span>is<span class="_ _b"> </span>a<span class="_ _4"> </span>scope<span class="_ _b"> </span>for<span class="_ _4"> </span>removal<span class="_ _4"> </span>of<span class="_ _b"> </span>redund<span class="_ _f"></span>ancy<span class="_ _b"> </span>within<span class="_ _4"> </span>the</div><div class="t m0 x1 h6 y2e ff3 fs1 fc0 sc0 ls17 ws0">SIFT<span class="_ _b"> </span>key<span class="_ _b"> </span>point<span class="_ _b"> </span>descripto<span class="_ _f"></span>rs.<span class="_ _b"> </span>Several<span class="_ _b"> </span>techniques<span class="_ _4"> </span>tha<span class="lse">t<span class="_ _b"> </span>aim<span class="_ _b"> </span>at<span class="_ _4"> </span>reduction<span class="_ _b"> </span>in<span class="_ _b"> </span>the<span class="_ _4"> </span>length<span class="_ _b"> </span>of<span class="_ _b"> </span>the<span class="_ _4"> </span>descriptor</span></div><div class="t m0 x1 h6 y2f ff3 fs1 fc0 sc0 lse ws0">have<span class="_ _4"> </span>been<span class="_ _4"> </span>attempted<span class="_ _b"> </span>a<span class="_ _f"></span>nd<span class="_ _4"> </span>one<span class="_ _4"> </span>such<span class="_ _4"> </span>attempt<span class="_ _4"> </span>has<span class="_ _4"> </span>been<span class="_ _4"> </span>with<span class="_ _4"> </span>the<span class="_ _4"> </span>dimensionality<span class="_ _4"> </span>reduction<span class="_ _4"> </span>algorithm,</div><div class="t m0 x1 h6 y30 ff3 fs1 fc0 sc0 ls2 ws0">PCA,<span class="_ _9"> </span>where<span class="_ _a"> </span>the<span class="_ _a"> </span>inherent<span class="_ _a"> </span>drawback<span class="_ _a"> </span>is<span class="_ _a"> </span>its<span class="_ _9"> </span>comp<span class="_ _f"></span>utational<span class="_ _9"> </span>com<span class="_ _f"></span>plexity<span class="_ _9"> </span>[<span class="fc1 ls0">6</span><span class="ls7">].<span class="_ _9"> </span>Eventually<span class="_ _0"></span>,<span class="_ _9"> </span>compara-</span></div><div class="t m0 x1 h6 y31 ff3 fs1 fc0 sc0 ls7 ws0">tively<span class="_ _5"> </span>less<span class="_ _b"> </span>computationally<span class="_ _b"> </span>intensive<span class="_ _b"> </span>transforms<span class="_ _5"> </span>such<span class="_ _b"> </span>as<span class="_ _b"> </span>DST<span class="_ _7"></span>,<span class="_ _b"> </span>DCT<span class="_ _b"> </span>that<span class="_ _b"> </span>closely<span class="_ _b"> </span>approximate<span class="_ _5"> </span>PCA</div><div class="t m0 x1 h6 y32 ff3 fs1 fc0 sc0 ls18 ws0">in<span class="_ _a"> </span>removing<span class="_ _1"> </span>the<span class="_ _a"> </span>redundancy<span class="_ _1"> </span>in<span class="_ _a"> </span>the<span class="_ _1"> </span>captured<span class="_ _a"> </span>inf<span class="_ _f"></span><span class="ls17">ormation.<span class="_ _a"> </span>However,<span class="_ _a"> </span>the<span class="_ _a"> </span>computation<span class="_ _1"> </span>of<span class="_ _a"> </span>these</span></div><div class="t m0 x1 h6 y33 ff3 fs1 fc0 sc0 lse ws0">transformation<span class="_ _b"> </span>matrices<span class="_ _4"> </span>is<span class="_ _b"> </span>still<span class="_ _4"> </span>not<span class="_ _4"> </span>that<span class="_ _b"> </span>light.<span class="_ _4"> </span>In<span class="_ _b"> </span>thi<span class="_ _f"></span><span class="ls2">s<span class="_ _b"> </span>direction,<span class="_ _4"> </span>Orthogonal<span class="_ _b"> </span>P</span>olynomials<span class="_ _4"> </span>Transform</div><div class="t m0 x1 h6 y34 ff3 fs1 fc0 sc0 ls7 ws0">(OPT),<span class="_ _b"> </span>with<span class="_ _b"> </span>integer-<span class="_ _b"> </span>natured<span class="_ _b"> </span>coefficients<span class="_ _b"> </span>and<span class="_ _b"> </span>computational<span class="_ _4"> </span>light-weightedness<span class="_ _b"> </span>as<span class="_ _b"> </span>its<span class="_ _4"> </span>other<span class="_ _b"> </span>merits</div><div class="t m0 x1 h6 y35 ff3 fs1 fc0 sc0 ls2 ws0">is<span class="_ _4"> </span>considered<span class="_ _3"> </span>for<span class="_ _3"> </span>forming<span class="_ _4"> </span>the<span class="_ _3"> </span>descriptors<span class="_ _3"> </span>of<span class="_ _3"> </span>SIFT<span class="_ _3"> </span>key<span class="_ _4"> </span>points.<span class="_ _3"> </span>Like<span class="_ _3"> </span>in<span class="_ _3"> </span>any<span class="_ _4"> </span>other<span class="_ _3"> </span>transform,<span class="_ _3"> </span>OPT<span class="ff5 ls0">’<span class="_ _7"></span><span class="ff3">s</span></span></div><div class="t m0 x1 h6 y36 ff3 fs1 fc0 sc0 ls19 ws0">lowest<span class="_ _c"> </span>frequency<span class="_ _1"> </span>tr<span class="_ _f"></span>ansform<span class="_ _1"> </span>coefficients<span class="_ _c"> </span>ta<span class="ls1a">ke<span class="_ _c"> </span>the<span class="_ _1"> </span>greatest<span class="_ _c"> </span>part<span class="_ _c"> </span>of<span class="_ _1"> </span>e<span class="_ _f"></span>nergy<span class="_ _c"> </span>and<span class="_ _1"> </span>corresponding</span></div><div class="t m0 x1 h6 y37 ff3 fs1 fc0 sc0 ls1b ws0">coefficients<span class="_ _2"> </span>have<span class="_ _9"> </span>particular<span class="_ _9"> </span>information<span class="_ _9"> </span>regar<span class="ls4">ding<span class="_ _2"> </span>low<span class="_ _9"> </span>level<span class="_ _9"> </span>features<span class="_ _9"> </span>such<span class="_ _9"> </span>as<span class="_ _9"> </span>color<span class="_"> </span>,<span class="_ _2"> </span>texture<span class="_ _9"> </span>and</span></div><div class="t m0 x1 h6 y38 ff3 fs1 fc0 sc0 ls1c ws0">edge<span class="_ _3"> </span>[<span class="fc1 ls5">18<span class="_ _f"></span></span><span class="ls1d">].</span></div><div class="t m0 xb h6 y39 ff3 fs1 fc0 sc0 ls0 ws0">In<span class="_ _1"> </span>th<span class="_ _0"></span>e<span class="_ _1"> </span>prop<span class="_ _0"></span>ose<span class="_ _0"></span>d<span class="_ _1"> </span>work<span class="_ _0"></span>,<span class="_ _a"> </span>OPT<span class="_ _7"></span>-S<span class="_ _0"></span>IF<span class="_ _0"></span>T<span class="_ _7"></span>,<span class="_ _1"> </span>loc<span class="_ _0"></span>ali<span class="_ _0"></span>zat<span class="_ _0"></span>ion<span class="_ _a"> </span>of<span class="_ _1"> </span>key<span class="_ _a"> </span>point<span class="_ _0"></span>s<span class="_ _1"> </span>and<span class="_ _a"> </span>descri<span class="_ _0"></span>pti<span class="_ _0"></span>on<span class="_ _a"> </span>of<span class="_ _1"> </span>the<span class="_ _1"> </span>key</div><div class="t m0 x1 h6 y3a ff3 fs1 fc0 sc0 ls0 ws0">poin<span class="_ _0"></span>ts<span class="_ _a"> </span>are<span class="_ _a"> </span>hand<span class="_ _0"></span>led<span class="_ _a"> </span>as<span class="_ _a"> </span>two<span class="_ _a"> </span>indepe<span class="_ _0"></span>nd<span class="_ _0"></span>ent<span class="_ _a"> </span>iss<span class="_ _0"></span>ues<span class="_ _a"> </span>where<span class="_ _9"> </span>local<span class="_ _0"></span>izi<span class="_ _0"></span>ng<span class="_ _a"> </span>of<span class="_ _1"> </span>key<span class="_ _a"> </span>poin<span class="_ _0"></span>ts<span class="_ _a"> </span>is<span class="_ _a"> </span>done<span class="_ _a"> </span>as<span class="_ _1"> </span>in</div><div class="t m0 x1 h6 y3b ff3 fs1 fc0 sc0 ls0 ws0">Lowe<span class="_ _0"></span><span class="ff5">’<span class="_ _7"></span><span class="ff3 ls1e">s[<span class="_ _10"></span><span class="fc1 ls0">23<span class="fc0">]<span class="_ _b"> </span>imp<span class="_ _0"></span>leme<span class="_ _0"></span>nt<span class="_ _0"></span>atio<span class="_ _0"></span>n.<span class="_ _5"> </span>The<span class="_ _b"> </span>key<span class="_ _b"> </span>point<span class="_ _0"></span>s<span class="_ _b"> </span>so<span class="_ _b"> </span>ident<span class="_ _0"></span>ifi<span class="_ _0"></span>ed<span class="_ _b"> </span>are<span class="_ _b"> </span>not<span class="_ _5"> </span>descri<span class="_ _0"></span>be<span class="_ _0"></span>d<span class="_ _b"> </span>in<span class="_ _4"> </span>the<span class="_ _5"> </span>pixel<span class="_ _b"> </span>dom<span class="_ _0"></span>ain</span></span></span></span></div><div class="t m0 x1 h6 y3c ff3 fs1 fc0 sc0 ls0 ws0">as<span class="_ _9"> </span>in<span class="_ _a"> </span>the<span class="_ _9"> </span>origi<span class="_ _0"></span>na<span class="_ _0"></span>l<span class="_ _a"> </span>imp<span class="_ _0"></span>leme<span class="_ _0"></span>nt<span class="_ _0"></span>ati<span class="_ _0"></span>on,<span class="_ _9"> </span>inst<span class="_ _0"></span>ead<span class="_ _9"> </span>the<span class="_ _0"></span>y<span class="_ _a"> </span>are<span class="_ _9"> </span>descr<span class="_ _0"></span>ibe<span class="_ _0"></span>d<span class="_ _9"> </span>in<span class="_ _a"> </span>the<span class="_ _9"> </span>ortho<span class="_ _0"></span>gon<span class="_ _0"></span>al<span class="_ _9"> </span>poly<span class="_ _0"></span>nomi<span class="_ _0"></span>a<span class="_ _0"></span>ls</div><div class="t m0 x1 h6 y3d ff3 fs1 fc0 sc0 ls0 ws0">tra<span class="_ _0"></span>nsf<span class="_ _0"></span>orm<span class="_ _b"> </span>domain<span class="_ _b"> </span>using<span class="_ _b"> </span>the<span class="_ _4"> </span>trans<span class="_ _0"></span>fo<span class="_ _0"></span>rm<span class="ff5">’<span class="_ _7"></span><span class="ff3">s<span class="_ _4"> </span>low<span class="_ _4"> </span>frequ<span class="_ _0"></span>enc<span class="_ _0"></span>y<span class="_ _4"> </span>coe<span class="_ _0"></span>ffi<span class="_ _0"></span>cie<span class="_ _0"></span>nt<span class="_ _0"></span>s.<span class="_ _4"> </span>In<span class="_ _4"> </span>this<span class="_ _b"> </span>work,<span class="_ _4"> </span>the<span class="_ _b"> </span>parad<span class="_ _0"></span>igm</span></span></div><div class="t m0 x1 h6 y3e ff3 fs1 fc0 sc0 ls0 ws0">shift<span class="_ _8"> </span>from<span class="_ _8"> </span>the<span class="_ _d"> </span>pix<span class="_ _f"></span>el-<span class="_"> </span>b<span class="_ _f"></span>ased<span class="_ _8"> </span>descr<span class="_ _f"></span>ipt<span class="_ _f"></span>ors<span class="_ _d"> </span>to<span class="_ _8"> </span>the<span class="_ _d"> </span>tr<span class="_ _f"></span>ansf<span class="_ _f"></span>orm<span class="_ _d"> </span>c<span class="_ _f"></span>oeffic<span class="_ _f"></span>ient<span class="_ _f"></span>-bas<span class="_ _f"></span>ed<span class="_ _d"> </span>des<span class="_ _f"></span>crip<span class="_ _f"></span>tors<span class="_ _8"> </span>is</div><div class="t m0 x1 h6 y3f ff3 fs1 fc0 sc0 ls1f ws0">attempted<span class="_ _c"> </span>with<span class="_ _c"> </span>a<span class="_ _1"> </span>motive<span class="_ _c"> </span>of<span class="_ _1"> </span>r<span class="_ _f"></span>educing<span class="_ _c"> </span>the<span class="_ _1"> </span>length<span class="_ _c"> </span>of<span class="_ _1"> </span>th<span class="_ _f"></span>e<span class="_ _1"> </span>d<span class="_ _f"></span>escriptor,<span class="_ _1"> </span>ta<span class="_ _f"></span>king<span class="_ _1"> </span>ad<span class="_ _f"></span>vantage<span class="_ _c"> </span>of<span class="_ _1"> </span>the</div><div class="t m0 x1 h6 y40 ff3 fs1 fc0 sc0 ls0 ws0">inh<span class="_ _0"></span>ere<span class="_ _0"></span>nt<span class="_ _9"> </span>redu<span class="_ _0"></span>nd<span class="_ _0"></span>anc<span class="_ _0"></span>y<span class="_ _9"> </span>amon<span class="_ _0"></span>g<span class="_ _9"> </span>adjo<span class="_ _0"></span>inin<span class="_ _0"></span>g<span class="_ _9"> </span>pixe<span class="_ _0"></span>ls<span class="_ _0"></span>.<span class="_ _9"> </span>Henc<span class="_ _0"></span>e,<span class="_ _9"> </span>in<span class="_ _9"> </span>form<span class="_ _0"></span>ing<span class="_ _9"> </span>th<span class="_ _0"></span>ese<span class="_ _9"> </span>des<span class="_ _0"></span>cri<span class="_ _0"></span>pt<span class="_ _0"></span>ors<span class="_ _0"></span>,<span class="_ _9"> </span>the<span class="_ _9"> </span>basi<span class="_ _0"></span>c</div><div class="t m0 x1 h6 y41 ff3 fs1 fc0 sc0 ls0 ws0">unit<span class="_ _4"> </span>of<span class="_ _3"> </span>pro<span class="_ _0"></span>ces<span class="_ _0"></span>sing<span class="_ _4"> </span>is<span class="_ _4"> </span>block<span class="_ _4"> </span>inste<span class="_ _0"></span>ad<span class="_ _4"> </span>of<span class="_ _3"> </span>pixel<span class="_ _0"></span>s<span class="_ _3"> </span>as<span class="_ _4"> </span>again<span class="_ _0"></span>st<span class="_ _3"> </span>the<span class="_ _4"> </span>orig<span class="_ _0"></span>inal<span class="_ _4"> </span>prop<span class="_ _0"></span>osa<span class="_ _0"></span>l.<span class="_ _4"> </span>The<span class="_ _3"> </span>adv<span class="_ _0"></span>ant<span class="_ _0"></span>age<span class="_ _4"> </span>of</div><div class="t m0 x1 h6 y42 ff3 fs1 fc0 sc0 ls0 ws0">des<span class="_ _0"></span>cri<span class="_ _0"></span>ptor<span class="_ _0"></span>s<span class="_ _b"> </span>formed<span class="_ _b"> </span>in<span class="_ _4"> </span>this<span class="_ _4"> </span>way<span class="_ _b"> </span>is<span class="_ _4"> </span>that<span class="_ _4"> </span>it<span class="_ _4"> </span>prov<span class="_ _0"></span>ide<span class="_ _0"></span>s<span class="_ _4"> </span>a<span class="_ _4"> </span>redu<span class="_ _0"></span>cti<span class="_ _0"></span>on<span class="_ _4"> </span>in<span class="_ _4"> </span>time<span class="_ _b"> </span>compl<span class="_ _0"></span>exi<span class="_ _0"></span>ty<span class="_ _b"> </span>for<span class="_ _4"> </span>calcu<span class="_ _0"></span>lat<span class="_ _0"></span>ing</div><div class="t m0 x1 h6 y43 ff3 fs1 fc0 sc0 ls0 ws0">the<span class="_ _2"> </span>des<span class="_ _0"></span>cri<span class="_ _0"></span>ptor<span class="_ _0"></span>s.<span class="_ _3"> </span>Based<span class="_ _2"> </span>on<span class="_ _2"> </span>the<span class="_ _2"> </span>ide<span class="_ _0"></span>ntifi<span class="_ _0"></span>ca<span class="_ _0"></span>tion<span class="_ _3"> </span>of<span class="_ _2"> </span>SIFT<span class="_ _2"> </span>feat<span class="_ _0"></span>ur<span class="_ _0"></span>es<span class="_ _2"> </span>and<span class="_ _2"> </span>desc<span class="_ _0"></span>rib<span class="_ _0"></span>ing<span class="_ _3"> </span>them<span class="_ _2"> </span>in<span class="_ _2"> </span>the<span class="_ _2"> </span>OPT</div><div class="t m0 x1 h6 y44 ff3 fs1 fc0 sc0 ls0 ws0">doma<span class="_ _0"></span>in<span class="_ _0"></span>,<span class="_ _2"> </span>an<span class="_ _2"> </span>image<span class="_ _3"> </span>retri<span class="_ _0"></span>ev<span class="_ _0"></span>al<span class="_ _3"> </span>techn<span class="_ _0"></span>iqu<span class="_ _0"></span>e<span class="_ _2"> </span>has<span class="_ _2"> </span>bee<span class="_ _0"></span>n<span class="_ _2"> </span>prop<span class="_ _0"></span>os<span class="_ _0"></span>ed.</div><div class="t m0 xb h6 y45 ff3 fs1 fc0 sc0 ls0 ws0">The<span class="_ _9"> </span>ma<span class="_ _0"></span>in<span class="_ _9"> </span>con<span class="_ _0"></span>tri<span class="_ _0"></span>but<span class="_ _0"></span>io<span class="_ _0"></span>ns<span class="_ _9"> </span>of<span class="_ _9"> </span>th<span class="_ _0"></span>e<span class="_ _9"> </span>work<span class="_ _2"> </span>in<span class="_ _9"> </span>this<span class="_ _9"> </span>pa<span class="_ _0"></span>per<span class="_ _2"> </span>are:<span class="_ _9"> </span>1)<span class="_ _9"> </span>Pro<span class="_ _0"></span>pos<span class="_ _0"></span>ing<span class="_ _2"> </span>a<span class="_ _a"> </span>modi<span class="_ _0"></span>fi<span class="_ _0"></span>cat<span class="_ _0"></span>ion<span class="_ _9"> </span>t<span class="_ _0"></span>o<span class="_ _9"> </span>the</div><div class="t m0 x1 h6 y46 ff3 fs1 fc0 sc0 ls0 ws0">earl<span class="_ _0"></span>ier<span class="_ _b"> </span>repo<span class="_ _0"></span>rte<span class="_ _0"></span>d<span class="_ _4"> </span>gene<span class="_ _0"></span>rati<span class="_ _0"></span>ng<span class="_ _b"> </span>functi<span class="_ _0"></span>on<span class="_ _b"> </span>of<span class="_ _3"> </span>the<span class="_ _b"> </span>orthog<span class="_ _0"></span>ona<span class="_ _0"></span>l<span class="_ _4"> </span>pol<span class="_ _0"></span>yno<span class="_ _0"></span>mia<span class="_ _0"></span>ls<span class="_ _4"> </span>tra<span class="_ _0"></span>nsfo<span class="_ _0"></span>rm<span class="_ _b"> </span>2)<span class="_ _3"> </span>Desc<span class="_ _0"></span>ri<span class="_ _0"></span>bin<span class="_ _0"></span>g<span class="_ _4"> </span>the</div><div class="t m0 x1 h6 y47 ff3 fs1 fc0 sc0 ls0 ws0">SIF<span class="_ _0"></span>T<span class="_ _9"> </span>k<span class="_ _0"></span>ey<span class="_ _2"> </span>points<span class="_ _2"> </span>with<span class="_ _2"> </span>bloc<span class="_ _0"></span>k-b<span class="_ _0"></span>ase<span class="_ _0"></span>d<span class="_ _9"> </span>l<span class="_ _0"></span>ow<span class="_ _2"> </span>level<span class="_ _2"> </span>infor<span class="_ _0"></span>mat<span class="_ _0"></span>io<span class="_ _0"></span>n<span class="_ _9"> </span>ob<span class="_ _0"></span>tai<span class="_ _0"></span>ned<span class="_ _2"> </span>from<span class="_ _2"> </span>the<span class="_ _2"> </span>trans<span class="_ _0"></span>form<span class="_ _2"> </span>and<span class="_ _2"> </span>3)</div><div class="t m0 x1 h6 y48 ff3 fs1 fc0 sc0 ls0 ws0">Pro<span class="_ _0"></span>pos<span class="_ _0"></span>ing<span class="_ _b"> </span>an<span class="_ _4"> </span>image<span class="_ _b"> </span>retri<span class="_ _0"></span>eva<span class="_ _0"></span>l<span class="_ _4"> </span>techn<span class="_ _0"></span>iqu<span class="_ _0"></span>e<span class="_ _b"> </span>based<span class="_ _b"> </span>on<span class="_ _4"> </span>the<span class="_ _4"> </span>loca<span class="_ _0"></span>l<span class="_ _4"> </span>featur<span class="_ _0"></span>es<span class="_ _b"> </span>give<span class="_ _0"></span>n<span class="_ _4"> </span>by<span class="_ _4"> </span>SIFT<span class="_ _7"></span>,<span class="_ _b"> </span>desc<span class="_ _0"></span>ribe<span class="_ _0"></span>d<span class="_ _4"> </span>in</div><div class="t m0 x1 h6 y49 ff3 fs1 fc0 sc0 ls0 ws0">the<span class="_ _b"> </span>orth<span class="_ _0"></span>ogo<span class="_ _0"></span>nal<span class="_ _b"> </span>pol<span class="_ _0"></span>yno<span class="_ _0"></span>mia<span class="_ _0"></span>ls<span class="_ _b"> </span>domain<span class="_ _0"></span>.<span class="_ _b"> </span>The<span class="_ _b"> </span>organi<span class="_ _0"></span>za<span class="_ _0"></span>tio<span class="_ _0"></span>n<span class="_ _b"> </span>of<span class="_ _4"> </span>the<span class="_ _4"> </span>pape<span class="_ _0"></span>r<span class="_ _b"> </span>is<span class="_ _4"> </span>as<span class="_ _4"> </span>follo<span class="_ _0"></span>ws<span class="_ _0"></span>:<span class="_ _b"> </span>In<span class="_ _4"> </span>secti<span class="_ _0"></span>on<span class="_ _b"> </span><span class="fc1">2</span><span class="ls20">,a</span></div><div class="t m0 x1 h6 y4a ff3 fs1 fc0 sc0 ls0 ws0">revi<span class="_ _0"></span>ew<span class="_ _4"> </span>of<span class="_ _3"> </span>the<span class="_ _4"> </span>litera<span class="_ _0"></span>tur<span class="_ _0"></span>e<span class="_ _4"> </span>is<span class="_ _3"> </span>give<span class="_ _0"></span>n<span class="_ _3"> </span>and<span class="_ _4"> </span>in<span class="_ _3"> </span>sect<span class="_ _0"></span>ion<span class="_ _4"> </span><span class="fc1">3</span>,<span class="_ _3"> </span>the<span class="_ _4"> </span>frame<span class="_ _0"></span>wo<span class="_ _0"></span>rk<span class="_ _3"> </span>for<span class="_ _4"> </span>ortho<span class="_ _0"></span>go<span class="_ _0"></span>nal<span class="_ _4"> </span>poly<span class="_ _0"></span>nomi<span class="_ _0"></span>a<span class="_ _0"></span>ls<span class="_ _4"> </span>is</div><div class="t m0 x1 h6 y4b ff3 fs1 fc0 sc0 ls0 ws0">outl<span class="_ _0"></span>in<span class="_ _0"></span>ed<span class="_ _c"> </span>and<span class="_ _1"> </span>a<span class="_ _c"> </span>modifi<span class="_ _0"></span>cat<span class="_ _0"></span>io<span class="_ _0"></span>n<span class="_ _c"> </span>sugg<span class="_ _0"></span>est<span class="_ _0"></span>ed<span class="_ _c"> </span>to<span class="_ _c"> </span>t<span class="_ _0"></span>he<span class="_ _c"> </span>mo<span class="_ _0"></span>del<span class="_ _1"> </span>is<span class="_ _c"> </span>propo<span class="_ _0"></span>sed.<span class="_ _1"> </span>Secti<span class="_ _0"></span>on<span class="_ _c"> </span><span class="fc1">4<span class="_ _c"> </span></span>de<span class="_ _0"></span>scri<span class="_ _0"></span>be<span class="_ _0"></span>s<span class="_ _c"> </span>the</div><div class="t m0 x1 h6 y4c ff3 fs1 fc0 sc0 ls0 ws0">pro<span class="_ _0"></span>pos<span class="_ _0"></span>ed<span class="_ _9"> </span>SIFT<span class="_ _a"> </span>key<span class="_ _9"> </span>point<span class="_ _9"> </span>descr<span class="_ _0"></span>ipt<span class="_ _0"></span>or<span class="_ _7"></span>,<span class="_ _1"> </span>OP<span class="_ _0"></span>T<span class="_ _7"></span>-S<span class="_ _0"></span>IFT<span class="_ _3"> </span>and<span class="_ _a"> </span>the<span class="_ _a"> </span>ima<span class="_ _0"></span>ge<span class="_ _a"> </span>retri<span class="_ _0"></span>eva<span class="_ _0"></span>l<span class="_ _9"> </span>techn<span class="_ _0"></span>iqu<span class="_ _0"></span>e<span class="_ _a"> </span>base<span class="_ _0"></span>d<span class="_ _a"> </span>on</div><div class="t m0 x1 h6 y4d ff3 fs1 fc0 sc0 ls0 ws0">it.<span class="_ _b"> </span>In<span class="_ _b"> </span>secti<span class="_ _0"></span>on<span class="_ _b"> </span><span class="fc1">5</span>,<span class="_ _4"> </span>a<span class="_ _4"> </span>coh<span class="_ _0"></span>esiv<span class="_ _0"></span>e<span class="_ _b"> </span>summa<span class="_ _0"></span>ry<span class="_ _b"> </span>of<span class="_ _4"> </span>the<span class="_ _b"> </span>expe<span class="_ _0"></span>rim<span class="_ _0"></span>ents<span class="_ _5"> </span>condu<span class="_ _0"></span>cted<span class="_ _5"> </span>is<span class="_ _4"> </span>disc<span class="_ _0"></span>usse<span class="_ _0"></span>d<span class="_ _b"> </span>along<span class="_ _b"> </span>wit<span class="_ _0"></span>h<span class="_ _b"> </span>their</div><div class="t m0 x1 h6 y4e ff3 fs1 fc0 sc0 ls0 ws0">resu<span class="_ _0"></span>lt<span class="_ _0"></span>s<span class="_ _2"> </span>follo<span class="_ _0"></span>we<span class="_ _0"></span>d<span class="_ _2"> </span>by<span class="_ _2"> </span>conc<span class="_ _0"></span>lud<span class="_ _0"></span>ing<span class="_ _3"> </span>rema<span class="_ _0"></span>rks<span class="_ _3"> </span>in<span class="_ _2"> </span>sectio<span class="_ _0"></span>n<span class="_ _2"> </span><span class="fc1">6</span>.</div><div class="t m0 x1 h3 y4f ff1 fs1 fc0 sc0 ls0 ws0">2<span class="_ _2"> </span>Rela<span class="_ _0"></span>ted<span class="_ _3"> </span>works</div><div class="t m0 x1 h6 y50 ff3 fs1 fc0 sc0 ls0 ws0">SIF<span class="_ _0"></span>T<span class="_ _3"> </span>has<span class="_ _4"> </span>been<span class="_ _4"> </span>adopt<span class="_ _0"></span>ed<span class="_ _3"> </span>in<span class="_ _4"> </span>image<span class="_ _4"> </span>retri<span class="_ _0"></span>eva<span class="_ _0"></span>l<span class="_ _3"> </span>app<span class="_ _0"></span>lica<span class="_ _0"></span>tio<span class="_ _0"></span>ns<span class="_ _4"> </span>beca<span class="_ _0"></span>use<span class="_ _4"> </span>of<span class="_ _3"> </span>its<span class="_ _3"> </span>capa<span class="_ _0"></span>bi<span class="_ _0"></span>lit<span class="_ _0"></span>y<span class="_ _3"> </span>to<span class="_ _3"> </span>desc<span class="_ _0"></span>ri<span class="_ _0"></span>be<span class="_ _3"> </span>the</div><div class="t m0 x1 h6 y51 ff3 fs1 fc0 sc0 ls0 ws0">loc<span class="_ _0"></span>al<span class="_ _2"> </span>image<span class="_ _2"> </span>stru<span class="_ _0"></span>ctu<span class="_ _0"></span>res<span class="_ _2"> </span>in<span class="_ _2"> </span>a<span class="_ _9"> </span>way<span class="_ _2"> </span>that<span class="_ _2"> </span>is<span class="_ _9"> </span>ro<span class="_ _0"></span>bust<span class="_ _2"> </span>aga<span class="_ _0"></span>ins<span class="_ _0"></span>t<span class="_ _2"> </span>chang<span class="_ _0"></span>es<span class="_ _2"> </span>in<span class="_ _9"> </span>vi<span class="_ _0"></span>ewp<span class="_ _0"></span>oin<span class="_ _0"></span>t,<span class="_ _2"> </span>illum<span class="_ _0"></span>ina<span class="_ _0"></span>tion<span class="_ _2"> </span>and</div><div class="t m0 x1 h6 y52 ff3 fs1 fc0 sc0 ls0 ws0">eve<span class="_ _0"></span>n<span class="_ _4"> </span>some<span class="_ _4"> </span>forms<span class="_ _4"> </span>of<span class="_ _4"> </span>affi<span class="_ _0"></span>ne<span class="_ _4"> </span>dist<span class="_ _0"></span>or<span class="_ _0"></span>tion<span class="_ _0"></span>.<span class="_ _4"> </span>It<span class="_ _3"> </span>con<span class="_ _0"></span>sist<span class="_ _0"></span>s<span class="_ _4"> </span>of<span class="_ _4"> </span>two<span class="_ _4"> </span>indepe<span class="_ _0"></span>nd<span class="_ _0"></span>ent<span class="_ _4"> </span>proc<span class="_ _0"></span>ess<span class="_ _0"></span>es<span class="_ _4"> </span>-<span class="_ _3"> </span>loc<span class="_ _0"></span>ali<span class="_ _0"></span>zat<span class="_ _0"></span>ion<span class="_ _4"> </span>of</div><div class="t m0 x1 h6 y53 ff3 fs1 fc0 sc0 ls0 ws0">key<span class="_ _9"> </span>poi<span class="_ _0"></span>nts<span class="_ _9"> </span>and<span class="_ _9"> </span>the<span class="_ _9"> </span>de<span class="_ _0"></span>scri<span class="_ _0"></span>pt<span class="_ _0"></span>ion<span class="_ _9"> </span>of<span class="_ _9"> </span>the<span class="_ _0"></span>m.<span class="_ _9"> </span>Mikol<span class="_ _0"></span>aj<span class="_ _0"></span>czy<span class="_ _0"></span>k<span class="_ _9"> </span>et<span class="_ _9"> </span>al.<span class="_ _9"> </span>[<span class="fc1">26</span>]<span class="_ _9"> </span>have<span class="_ _9"> </span>re<span class="_ _0"></span>port<span class="_ _0"></span>ed<span class="_ _9"> </span>tha<span class="_ _0"></span>t<span class="_ _9"> </span>the<span class="_ _9"> </span>local</div><div class="t m0 x1 h6 y54 ff3 fs1 fc0 sc0 ls0 ws0">feat<span class="_ _0"></span>ur<span class="_ _0"></span>es<span class="_ _2"> </span>given<span class="_ _2"> </span>by<span class="_ _9"> </span>SI<span class="_ _0"></span>FT<span class="_ _2"> </span>[<span class="fc1">23</span>]<span class="_ _2"> </span>are<span class="_ _9"> </span>th<span class="_ _0"></span>e<span class="_ _9"> </span>mos<span class="_ _0"></span>t<span class="_ _2"> </span>robust<span class="_ _2"> </span>and<span class="_ _2"> </span>disti<span class="_ _0"></span>nc<span class="_ _0"></span>tive<span class="_ _0"></span>.<span class="_ _2"> </span>The<span class="_ _9"> </span>o<span class="_ _0"></span>rigi<span class="_ _0"></span>nal<span class="_ _2"> </span>SIFT<span class="_ _4"> </span>app<span class="_ _0"></span>roa<span class="_ _0"></span>ch</div><div class="t m0 x1 h6 y55 ff3 fs1 fc0 sc0 ls0 ws0">only<span class="_ _c"> </span>us<span class="_ _0"></span>es<span class="_ _c"> </span>grey<span class="_ _c"> </span>sc<span class="_ _0"></span>ale<span class="_ _c"> </span>in<span class="_ _0"></span>tensi<span class="_ _0"></span>ties<span class="_ _1"> </span>and<span class="_ _c"> </span>there<span class="_ _0"></span>fore<span class="_ _c"> </span>col<span class="_ _0"></span>our<span class="_ _c"> </span>di<span class="_ _0"></span>ffe<span class="_ _0"></span>renc<span class="_ _0"></span>es<span class="_ _c"> </span>prod<span class="_ _0"></span>uce<span class="_ _c"> </span>am<span class="_ _0"></span>bigu<span class="_ _0"></span>itie<span class="_ _0"></span>s.<span class="_ _c"> </span>T<span class="_ _7"></span>o</div><div class="t m0 x1 h6 y56 ff3 fs1 fc0 sc0 ls0 ws0">eli<span class="_ _0"></span>mina<span class="_ _0"></span>te<span class="_ _9"> </span>mism<span class="_ _0"></span>atch<span class="_ _0"></span>e<span class="_ _0"></span>s<span class="_ _a"> </span>betwe<span class="_ _0"></span>en<span class="_ _9"> </span>obj<span class="_ _0"></span>ect<span class="_ _0"></span>s<span class="_ _a"> </span>of<span class="_ _9"> </span>simila<span class="_ _0"></span>r<span class="_ _9"> </span>textur<span class="_ _0"></span>e<span class="_ _9"> </span>and<span class="_ _a"> </span>geom<span class="_ _0"></span>etr<span class="_ _0"></span>y<span class="_ _9"> </span>but<span class="_ _a"> </span>dif<span class="_ _0"></span>feri<span class="_ _0"></span>ng<span class="_ _9"> </span>col<span class="_ _0"></span>our<span class="_ _7"></span>,</div><div class="t m0 x1 h4 y23 ff3 fs2 fc0 sc0 ls21 ws0">50<span class="_ _11"> </span>Multimed<span class="_ _3"> </span>T<span class="_"> </span>ools<span class="_ _4"> </span>App<span class="_ _f"></span>l<span class="_ _3"> </span>(2016)<span class="_ _3"> </span>75:<span class="_ _f"></span>49<span class="ff5 ls0">–</span><span class="ls10">69</span></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[2.037103,0.000000,0.000000,2.037103,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6254db6047503a0a93cceb35/bg3.jpg"><div class="t m0 x1 h6 y29 ff3 fs1 fc0 sc0 ls0 ws0">col<span class="_ _0"></span>our<span class="_ _2"> </span>info<span class="_ _0"></span>rma<span class="_ _0"></span>tion<span class="_ _2"> </span>also<span class="_ _2"> </span>needs<span class="_ _2"> </span>to<span class="_ _9"> </span>be<span class="_ _2"> </span>augm<span class="_ _0"></span>ent<span class="_ _0"></span>ed<span class="_ _2"> </span>to<span class="_ _9"> </span>the<span class="_ _2"> </span>desc<span class="_ _0"></span>ript<span class="_ _0"></span>or<span class="_ _7"></span>.<span class="_ _9"> </span>Ma<span class="_ _0"></span>ny<span class="_ _2"> </span>propos<span class="_ _0"></span>al<span class="_ _0"></span>s<span class="_ _9"> </span>ha<span class="_ _0"></span>ve<span class="_ _2"> </span>been</div><div class="t m0 x1 h6 y2a ff3 fs1 fc0 sc0 ls0 ws0">made<span class="_ _1"> </span>in<span class="_ _c"> </span>this<span class="_ _c"> </span>d<span class="_ _0"></span>ire<span class="_ _0"></span>cti<span class="_ _0"></span>on<span class="_ _c"> </span>su<span class="_ _0"></span>ch<span class="_ _c"> </span>a<span class="_ _0"></span>s<span class="_ _c"> </span>Col<span class="_ _0"></span>our<span class="_ _c"> </span>S<span class="_ _0"></span>IFT<span class="_ _c"> </span>[<span class="_ _0"></span><span class="fc1">10<span class="fc0">],<span class="_ _1"> </span>SIFT<span class="_ _12"></span>-CCH<span class="_ _1"> </span>[<span class="fc1">8</span>]<span class="_ _c"> </span>but<span class="_ _1"> </span>a<span class="_ _c"> </span>major<span class="_ _0"></span>ity<span class="_ _c"> </span>of<span class="_ _1"> </span>these</span></span></div><div class="t m0 x1 h6 y2b ff3 fs1 fc0 sc0 ls0 ws0">meth<span class="_ _0"></span>od<span class="_ _0"></span>s<span class="_ _2"> </span>add<span class="_ _3"> </span>heavi<span class="_ _0"></span>ly<span class="_ _2"> </span>to<span class="_ _2"> </span>the<span class="_ _3"> </span>comput<span class="_ _0"></span>at<span class="_ _0"></span>iona<span class="_ _0"></span>l<span class="_ _2"> </span>com<span class="_ _0"></span>ple<span class="_ _0"></span>xit<span class="_ _0"></span>y<span class="_ _2"> </span>of<span class="_ _2"> </span>SIFT<span class="_ _12"></span>.</div><div class="t m0 xb h6 y2c ff3 fs1 fc0 sc0 lsf ws0">In<span class="_ _b"> </span>addition,<span class="_ _4"> </span>the<span class="_ _4"> </span>computational<span class="_ _4"> </span>complexity<span class="_ _4"> </span>and<span class="_ _b"> </span>the<span class="_ _4"> </span>length<span class="_ _4"> </span>of<span class="_ _4"> </span>the<span class="_ _b"> </span>descriptors<span class="_ _4"> </span>of<span class="_ _4"> </span>SIFT<span class="_ _b"> </span>key<span class="_ _4"> </span>points</div><div class="t m0 x1 h6 y2d ff3 fs1 fc0 sc0 ls1a ws0">prevent<span class="_ _c"> </span>its<span class="_ _1"> </span>application<span class="_ _c"> </span>in<span class="_ _c"> </span>computationally<span class="_ _1"> </span>light<span class="_ _c"> </span>environments<span class="_ _c"> </span>such<span class="_ _1"> </span>as<span class="_ _c"> </span>mobile<span class="_ _c"> </span>OS.<span class="_ _1"> </span>T<span class="_"> </span>owar<span class="_"> </span>ds</div><div class="t m0 x1 h6 y2e ff3 fs1 fc0 sc0 ls0 ws0">all<span class="_ _0"></span>evia<span class="_ _0"></span>ti<span class="_ _0"></span>ng<span class="_ _1"> </span>the<span class="_ _c"> </span>de<span class="_ _0"></span>fic<span class="_ _0"></span>ienc<span class="_ _0"></span>i<span class="_ _0"></span>es,<span class="_ _1"> </span>Bay<span class="_ _1"> </span>et<span class="_ _c"> </span>al.<span class="_ _1"> </span>pro<span class="_ _0"></span>pos<span class="_ _0"></span>ed<span class="_ _1"> </span>Speed<span class="_ _0"></span>ed-U<span class="_ _0"></span>p<span class="_ _1"> </span>Robus<span class="_ _0"></span>t<span class="_ _c"> </span>F<span class="_ _0"></span>eat<span class="_ _0"></span>ure<span class="_ _0"></span>s<span class="_ _c"> </span>(S<span class="_ _0"></span>URF<span class="_ _0"></span>)<span class="_ _1"> </span>[<span class="fc1">4</span>]</div><div class="t m0 x1 h6 y2f ff3 fs1 fc0 sc0 ls3 ws0">descriptor<span class="_"> </span>,<span class="_ _2"> </span>the<span class="_ _2"> </span>length<span class="_ _2"> </span>o<span class="_ _f"></span>f<span class="_ _2"> </span>which<span class="_ _2"> </span>is<span class="_ _9"> </span>64<span class="_ _2"> </span>dimensions<span class="_ _2"> </span>but<span class="_ _9"> </span>its<span class="_ _2"> </span>discriminative<span class="_ _2"> </span>power<span class="_ _9"> </span>is<span class="_ _2"> </span>not<span class="_ _2"> </span>supreme<span class="_ _9"> </span>as</div><div class="t m0 x1 h6 y30 ff3 fs1 fc0 sc0 ls15 ws0">reviewed<span class="_ _2"> </span>by<span class="_ _9"> </span>Mikolajczyk<span class="_ _2"> </span>et<span class="_ _2"> </span>al.<span class="_ _9"> </span>in<span class="_ _2"> </span>[<span class="fc1 ls5">26</span><span class="ls14">].<span class="_ _2"> </span>Gradient<span class="_ _9"> </span>Location<span class="_ _2"> </span>and<span class="_ _2"> </span>Orie<span class="ls7">ntation<span class="_ _2"> </span>Histogram<span class="_ _9"> </span>(GLOH)</span></span></div><div class="t m0 x1 h6 y31 ff3 fs1 fc0 sc0 ls0 ws0">[<span class="fc1 ls5">26</span><span class="lsf">]<span class="_ _9"> </span>has<span class="_ _a"> </span>a<span class="_ _1"> </span>good<span class="_ _9"> </span>discriminative<span class="_ _1"> </span>power<span class="_ _a"> </span>but<span class="_ _a"> </span>is<span class="_ _a"> </span>computationally<span class="_ _a"> </span>expensive.<span class="_ _1"> </span>In<span class="_ _a"> </span>yet<span class="_ _a"> </span>another<span class="_ _a"> </span>move</span></div><div class="t m0 x1 h6 y32 ff3 fs1 fc0 sc0 lse ws0">towards<span class="_ _3"> </span>reducing<span class="_ _2"> </span>the<span class="_ _2"> </span>querying<span class="_ _2"> </span>time,<span class="_ _3"> </span>Gao<span class="_ _2"> </span>et<span class="_ _2"> </span>al.<span class="_ _3"> </span>[<span class="fc1 ls0">9</span><span class="ls9">]<span class="_ _2"> </span>added<span class="_ _3"> </span>all<span class="_ _2"> </span>the<span class="_ _3"> </span>SIFT<span class="_ _2"> </span>features<span class="_ _2"> </span>of<span class="_ _3"> </span>the<span class="_ _2"> </span>image<span class="_ _2"> </span>and</span></div><div class="t m0 x1 h6 y33 ff3 fs1 fc0 sc0 ls22 ws0">used<span class="_ _b"> </span>the<span class="_ _4"> </span>resultant<span class="_ _4"> </span>128<span class="_ _4"> </span>dimensional<span class="_ _4"> </span>featu<span class="_ _f"></span>re<span class="_ _b"> </span>to<span class="_ _4"> </span>represent<span class="_ _4"> </span>the<span class="_ _4"> </span>key<span class="_ _4"> </span>point.<span class="_ _4"> </span>Jone<span class="_ _4"> </span>et<span class="_ _4"> </span>al.<span class="_ _b"> </span>[<span class="_ _f"></span><span class="fc1 ls5">13</span><span class="ls23">]<span class="_ _b"> </span>process<span class="_ _4"> </span>only</span></div><div class="t m0 x1 h6 y34 ff3 fs1 fc0 sc0 ls9 ws0">partial<span class="_ _4"> </span>information<span class="_ _3"> </span>and<span class="_ _4"> </span>determine<span class="_ _4"> </span>two<span class="_ _3"> </span>orientations<span class="_ _4"> </span>along<span class="_ _4"> </span>with<span class="_ _3"> </span>only<span class="_ _4"> </span>one<span class="_ _3"> </span>diagonal<span class="_ _4"> </span>edge.<span class="_ _4"> </span>However,</div><div class="t m0 x1 h6 y35 ff3 fs1 fc0 sc0 lsa ws0">it<span class="_ _b"> </span>has<span class="_ _4"> </span>been<span class="_ _b"> </span>observed<span class="_ _4"> </span>that<span class="_ _4"> </span>with<span class="_ _b"> </span>bot<span class="_ _f"></span>h<span class="_ _b"> </span>these<span class="_ _4"> </span>methods,<span class="_ _b"> </span>th<span class="ls7">e<span class="_ _4"> </span>discriminative<span class="_ _b"> </span>property<span class="_ _4"> </span>is<span class="_ _4"> </span>less.<span class="_ _b"> </span>In<span class="_ _4"> </span>the<span class="_ _b"> </span>event</span></div><div class="t m0 x1 h6 y36 ff3 fs1 fc0 sc0 lsf ws0">of<span class="_ _b"> </span>failure<span class="_ _b"> </span>of<span class="_ _b"> </span>such<span class="_ _4"> </span>approximations<span class="_ _b"> </span>of<span class="_ _b"> </span>the<span class="_ _4"> </span>descriptors,<span class="_ _b"> </span>several<span class="_ _b"> </span>methods<span class="_ _4"> </span>for<span class="_ _b"> </span>dimensionality<span class="_ _4"> </span>reduction</div><div class="t m0 x1 h6 y37 ff3 fs1 fc0 sc0 ls22 ws0">are<span class="_ _b"> </span>reported<span class="_ _4"> </span>based<span class="_ _b"> </span>mainly<span class="_ _4"> </span>on<span class="_ _b"> </span>Principal<span class="_ _4"> </span>Compone<span class="_ _f"></span><span class="ls24">nt<span class="_ _b"> </span>Analys<span class="_ _f"></span>is<span class="_ _b"> </span>(PCA)<span class="_ _b"> </span>and<span class="_ _4"> </span>Independent<span class="_ _4"> </span>Component</span></div><div class="t m0 x1 h6 y38 ff3 fs1 fc0 sc0 ls9 ws0">Analysis<span class="_ _a"> </span>(ICA).<span class="_ _9"> </span>However,<span class="_ _9"> </span>these<span class="_ _a"> </span>t<span class="ls25">echniques<span class="_ _9"> </span>are<span class="_ _a"> </span>time<span class="_ _a"> </span>consuming<span class="_ _9"> </span>[<span class="fc1 ls5">15</span><span class="lsb">].<span class="_ _a"> </span>Ke<span class="_ _a"> </span>et<span class="_ _9"> </span>al.<span class="_ _a"> </span>in<span class="_ _a"> </span>their<span class="_ _a"> </span>work,</span></span></div><div class="t m0 x1 h6 y39 ff3 fs1 fc0 sc0 ls7 ws0">PCA-SIFT<span class="_ _2"> </span>[<span class="fc1 ls5">14</span><span class="lsf">],<span class="_ _2"> </span>PCA<span class="_ _2"> </span>has<span class="_ _2"> </span>been<span class="_ _2"> </span>used<span class="_ _2"> </span>for<span class="_ _9"> </span>dimensionality<span class="_ _3"> </span>reduction<span class="_ _2"> </span>and<span class="_ _2"> </span>the<span class="_ _2"> </span>d<span class="_ _f"></span>escriptor<span class="_ _f"></span><span class="ff5 ls0">’<span class="_ _7"></span><span class="ff3 ls26">sl<span class="_ _13"></span>e<span class="_ _13"></span>n<span class="_ _13"></span>g<span class="_ _14"></span>t<span class="_ _14"></span>hi<span class="_ _13"></span>s</span></span></span></div><div class="t m0 x1 h6 y3a ff3 fs1 fc0 sc0 ls3 ws0">reduced<span class="_ _2"> </span>fro<span class="_ _f"></span>m<span class="_ _2"> </span>12<span class="_ _f"></span>8<span class="_ _2"> </span>to<span class="_ _9"> </span>36.<span class="_ _9"> </span>However<span class="_"> </span>,<span class="_ _2"> </span>computing<span class="_ _9"> </span>eig<span class="lsa">envectors<span class="_ _2"> </span>is<span class="_ _9"> </span>computationally<span class="_ _2"> </span>intensive<span class="_ _9"> </span>and<span class="_ _2"> </span>if</span></div><div class="t m0 x1 h6 y3b ff3 fs1 fc0 sc0 ls4 ws0">done<span class="_ _3"> </span>on-line<span class="_ _2"> </span>can<span class="_ _2"> </span>make<span class="_ _3"> </span>the<span class="_ _2"> </span>system<span class="_ _3"> </span>relatively<span class="_ _2"> </span>slow<span class="_ _7"></span>,<span class="_ _2"> </span>in<span class="_ _3"> </span>addition<span class="_ _2"> </span>to<span class="_ _2"> </span>being<span class="_ _3"> </span>less<span class="_ _2"> </span>distinctive.</div><div class="t m0 xb h6 y3c ff3 fs1 fc0 sc0 ls0 ws0">Cons<span class="_ _0"></span>ide<span class="_ _0"></span>ri<span class="_ _0"></span>ng<span class="_ _1"> </span>the<span class="_ _1"> </span>comput<span class="_ _0"></span>ati<span class="_ _0"></span>on<span class="_ _0"></span>al<span class="_ _1"> </span>ligh<span class="_ _0"></span>t-we<span class="_ _0"></span>igh<span class="_ _0"></span>te<span class="_ _0"></span>dnes<span class="_ _0"></span>s<span class="_ _1"> </span>of<span class="_ _c"> </span>the<span class="_ _1"> </span>tra<span class="_ _0"></span>nsf<span class="_ _0"></span>or<span class="_ _0"></span>ms<span class="_ _1"> </span>when<span class="_ _1"> </span>comp<span class="_ _0"></span>are<span class="_ _0"></span>d<span class="_ _1"> </span>to</div><div class="t m0 x1 h6 y3d ff3 fs1 fc0 sc0 ls0 ws0">PCA<span class="_ _0"></span>,<span class="_ _2"> </span>employ<span class="_ _0"></span>ing<span class="_ _2"> </span>the<span class="_ _0"></span>m<span class="_ _9"> </span>is<span class="_ _2"> </span>goo<span class="_ _0"></span>d<span class="_ _9"> </span>c<span class="_ _0"></span>hoi<span class="_ _0"></span>ce<span class="_ _2"> </span>from<span class="_ _2"> </span>the<span class="_ _2"> </span>perspe<span class="_ _0"></span>cti<span class="_ _0"></span>ve<span class="_ _2"> </span>of<span class="_ _9"> </span>di<span class="_ _0"></span>me<span class="_ _0"></span>nsi<span class="_ _0"></span>onal<span class="_ _0"></span>it<span class="_ _0"></span>y<span class="_ _9"> </span>re<span class="_ _0"></span>duc<span class="_ _0"></span>tio<span class="_ _0"></span>n.<span class="_ _2"> </span>The</div><div class="t m0 x1 h6 y3e ff3 fs1 fc0 sc0 ls0 ws0">popu<span class="_ _0"></span>la<span class="_ _0"></span>r<span class="_ _3"> </span>trans<span class="_ _0"></span>form<span class="_ _0"></span>s<span class="_ _3"> </span>incl<span class="_ _0"></span>ude<span class="_ _4"> </span>Discre<span class="_ _0"></span>te<span class="_ _3"> </span>Fouri<span class="_ _0"></span>er<span class="_ _4"> </span>Tra<span class="_ _0"></span>nsf<span class="_ _0"></span>or<span class="_ _0"></span>m<span class="_ _3"> </span>(DFT)<span class="_ _3"> </span>[<span class="fc1">2</span>],<span class="_ _4"> </span>Discre<span class="_ _0"></span>te<span class="_ _3"> </span>Cosi<span class="_ _0"></span>ne<span class="_ _3"> </span>T<span class="_ _0"></span>ra<span class="_ _0"></span>nsfo<span class="_ _0"></span>rm</div><div class="t m0 x1 h6 y3f ff3 fs1 fc0 sc0 ls0 ws0">(DCT<span class="_ _0"></span>)<span class="_ _2"> </span>[<span class="fc1">1</span>],<span class="_ _2"> </span>Disc<span class="_ _0"></span>ret<span class="_ _0"></span>e<span class="_ _9"> </span>Si<span class="_ _0"></span>ne<span class="_ _2"> </span>T<span class="_ _0"></span>ran<span class="_ _0"></span>sfor<span class="_ _0"></span>m<span class="_ _2"> </span>(DST)<span class="_ _2"> </span>[<span class="fc1 ls13">25</span>],<span class="_ _2"> </span>W<span class="_ _7"></span>avel<span class="_ _0"></span>ets<span class="_ _2"> </span>T<span class="_ _0"></span>ran<span class="_ _0"></span>sfor<span class="_ _0"></span>m<span class="_ _2"> </span>[<span class="fc1">24</span>],<span class="_ _2"> </span>W<span class="_ _12"></span>alsh-<span class="_ _0"></span>Hada<span class="_ _0"></span>ma<span class="_ _0"></span>rd</div><div class="t m0 x1 h6 y40 ff3 fs1 fc0 sc0 ls27 ws0">Tr<span class="_ _f"></span>a<span class="_ _f"></span>n<span class="_ _f"></span>s<span class="_ _f"></span>f<span class="_ _15"></span>o<span class="_ _f"></span>r<span class="_ _f"></span>m<span class="_ _d"> </span>[<span class="_ _f"></span><span class="fc1 ls0">28<span class="fc0">]<span class="_ _c"> </span>and<span class="_ _c"> </span>Haar<span class="_ _c"> </span>T<span class="_ _7"></span>ransfo<span class="_ _0"></span>rm<span class="_ _c"> </span>[<span class="fc1">7</span>].<span class="_ _1"> </span>Knowle<span class="_ _0"></span>dge<span class="_ _c"> </span>ab<span class="_ _0"></span>out<span class="_ _c"> </span>low<span class="_ _c"> </span>le<span class="_ _0"></span>vel<span class="_ _c"> </span>fe<span class="_ _0"></span>atur<span class="_ _0"></span>es<span class="_ _c"> </span>ha<span class="_ _0"></span>ve<span class="_ _c"> </span>bee<span class="_ _0"></span>n</span></span></div><div class="t m0 x1 h6 y41 ff3 fs1 fc0 sc0 ls0 ws0">deri<span class="_ _0"></span>ve<span class="_ _0"></span>d<span class="_ _9"> </span>from<span class="_ _2"> </span>a<span class="_ _a"> </span>sub<span class="_ _0"></span>set<span class="_ _9"> </span>of<span class="_ _9"> </span>t<span class="_ _0"></span>he<span class="_ _9"> </span>tra<span class="_ _0"></span>nsf<span class="_ _0"></span>orm<span class="_ _9"> </span>c<span class="_ _0"></span>oef<span class="_ _0"></span>fi<span class="_ _0"></span>cie<span class="_ _0"></span>nts<span class="_ _0"></span>.<span class="_ _9"> </span>For<span class="_ _9"> </span>in<span class="_ _0"></span>sta<span class="_ _0"></span>nce<span class="_ _0"></span>,<span class="_ _9"> </span>Cha<span class="_ _0"></span>ng<span class="_ _9"> </span>et<span class="_ _9"> </span>al.<span class="_ _2"> </span>in<span class="_ _9"> </span>their<span class="_ _9"> </span>wo<span class="_ _0"></span>rk</div><div class="t m0 x1 h6 y42 ff3 fs1 fc0 sc0 ls0 ws0">[<span class="fc1">5</span>]<span class="_ _b"> </span>hav<span class="_ _0"></span>e<span class="_ _b"> </span>attemp<span class="_ _0"></span>ted<span class="_ _5"> </span>to<span class="_ _4"> </span>inter<span class="_ _0"></span>pre<span class="_ _0"></span>t<span class="_ _b"> </span>the<span class="_ _b"> </span>bloc<span class="_ _0"></span>k<span class="_ _b"> </span>edge<span class="_ _b"> </span>(BE)<span class="_ _b"> </span>patt<span class="_ _0"></span>ern<span class="_ _0"></span>s<span class="_ _b"> </span>direc<span class="_ _0"></span>tly<span class="_ _5"> </span>from<span class="_ _b"> </span>the<span class="_ _b"> </span>DCT<span class="_ _5"> </span>coe<span class="_ _0"></span>f<span class="_ _0"></span>fic<span class="_ _0"></span>ien<span class="_ _0"></span>ts<span class="_ _0"></span>.</div><div class="t m0 x1 h6 y43 ff3 fs1 fc0 sc0 ls0 ws0">Kim<span class="_ _4"> </span>and<span class="_ _4"> </span>Lee<span class="_ _3"> </span>[<span class="fc1">16<span class="_ _0"></span><span class="fc0">]<span class="_ _3"> </span>have<span class="_ _4"> </span>repo<span class="_ _0"></span>rt<span class="_ _0"></span>ed<span class="_ _4"> </span>that<span class="_ _3"> </span>the<span class="_ _4"> </span>edg<span class="_ _0"></span>e<span class="_ _3"> </span>loca<span class="_ _0"></span>tio<span class="_ _0"></span>n<span class="_ _3"> </span>is<span class="_ _4"> </span>well<span class="_ _4"> </span>captur<span class="_ _0"></span>ed<span class="_ _4"> </span>by<span class="_ _3"> </span>the<span class="_ _4"> </span>pola<span class="_ _0"></span>ritie<span class="_ _0"></span>s<span class="_ _4"> </span>of<span class="_ _3"> </span>the</span></span></div><div class="t m0 x1 h6 y44 ff3 fs1 fc0 sc0 ls0 ws0">pro<span class="_ _0"></span>jec<span class="_ _0"></span>tion<span class="_ _2"> </span>of<span class="_ _9"> </span>DCT<span class="_ _3"> </span>coef<span class="_ _0"></span>fic<span class="_ _0"></span>ien<span class="_ _0"></span>ts.<span class="_ _2"> </span>Shen<span class="_ _9"> </span>and<span class="_ _9"> </span>Se<span class="_ _0"></span>thi<span class="_ _9"> </span>ha<span class="_ _0"></span>ve<span class="_ _9"> </span>exa<span class="_ _0"></span>mi<span class="_ _0"></span>ned<span class="_ _9"> </span>th<span class="_ _0"></span>e<span class="_ _9"> </span>DCT<span class="_ _3"> </span>coef<span class="_ _0"></span>fi<span class="_ _0"></span>ci<span class="_ _0"></span>ent<span class="_ _9"> </span>pa<span class="_ _0"></span>tte<span class="_ _0"></span>rns</div><div class="t m0 x1 h6 y45 ff3 fs1 fc0 sc0 ls0 ws0">ind<span class="_ _0"></span>uce<span class="_ _0"></span>d<span class="_ _9"> </span>fr<span class="_ _0"></span>om<span class="_ _2"> </span>an<span class="_ _2"> </span>ideal<span class="_ _2"> </span>edge<span class="_ _2"> </span>mode<span class="_ _0"></span>l<span class="_ _2"> </span>in<span class="_ _9"> </span>the<span class="_ _0"></span>ir<span class="_ _2"> </span>work<span class="_ _2"> </span>[<span class="fc1">30<span class="_ _0"></span><span class="fc0">]<span class="_ _9"> </span>a<span class="_ _0"></span>nd<span class="_ _2"> </span>showed<span class="_ _3"> </span>how<span class="_ _9"> </span>t<span class="_ _0"></span>he<span class="_ _2"> </span>relat<span class="_ _0"></span>ive<span class="_ _2"> </span>value<span class="_ _0"></span>s<span class="_ _2"> </span>or</span></span></div><div class="t m0 x1 h6 y46 ff3 fs1 fc0 sc0 ls0 ws0">sign<span class="_ _0"></span>s<span class="_ _2"> </span>of<span class="_ _9"> </span>dif<span class="_ _0"></span>fe<span class="_ _0"></span>re<span class="_ _0"></span>nt<span class="_ _2"> </span>coef<span class="_ _0"></span>fic<span class="_ _0"></span>ien<span class="_ _0"></span>ts<span class="_ _2"> </span>of<span class="_ _9"> </span>a<span class="_ _2"> </span>block<span class="_ _2"> </span>can<span class="_ _2"> </span>be<span class="_ _9"> </span>use<span class="_ _0"></span>d<span class="_ _9"> </span>to<span class="_ _2"> </span>est<span class="_ _0"></span>imat<span class="_ _0"></span>e<span class="_ _2"> </span>variat<span class="_ _0"></span>ion<span class="_ _0"></span>al<span class="_ _2"> </span>edge<span class="_ _2"> </span>para<span class="_ _0"></span>met<span class="_ _0"></span>ers</div><div class="t m0 x1 h6 y47 ff3 fs1 fc0 sc0 ls0 ws0">suc<span class="_ _0"></span>h<span class="_ _9"> </span>as<span class="_ _a"> </span>ori<span class="_ _0"></span>ent<span class="_ _0"></span>ati<span class="_ _0"></span>on,<span class="_ _9"> </span>stre<span class="_ _0"></span>ngt<span class="_ _0"></span>h,<span class="_ _9"> </span>and<span class="_ _9"> </span>of<span class="_ _0"></span>fse<span class="_ _0"></span>t.<span class="_ _9"> </span>Their<span class="_ _9"> </span>sc<span class="_ _0"></span>heme<span class="_ _9"> </span>ha<span class="_ _0"></span>s<span class="_ _9"> </span>been<span class="_ _9"> </span>exte<span class="_ _0"></span>nd<span class="_ _0"></span>ed<span class="_ _9"> </span>and<span class="_ _9"> </span>refi<span class="_ _0"></span>ned<span class="_ _9"> </span>aft<span class="_ _0"></span>er<span class="_ _0"></span>-</div><div class="t m0 x1 h6 y48 ff3 fs1 fc0 sc0 ls0 ws0">ward<span class="_ _0"></span>s<span class="_ _a"> </span>by<span class="_ _1"> </span>Lee<span class="_ _a"> </span>et<span class="_ _1"> </span>al<span class="_ _0"></span>.<span class="_ _1"> </span>and<span class="_ _a"> </span>Li<span class="_ _a"> </span>et<span class="_ _1"> </span>al.<span class="_ _a"> </span>in<span class="_ _1"> </span>the<span class="_ _0"></span>ir<span class="_ _a"> </span>respe<span class="_ _0"></span>cti<span class="_ _0"></span>ve<span class="_ _a"> </span>work<span class="_ _0"></span>s<span class="_ _a"> </span>[<span class="fc1">21</span>]<span class="_ _a"> </span>and<span class="_ _1"> </span>[<span class="fc1">22<span class="_ _0"></span><span class="fc0">].<span class="_ _a"> </span>Jiang<span class="_ _a"> </span>et<span class="_ _a"> </span>al.<span class="_ _1"> </span>[<span class="fc1 ls13">12</span>]</span></span></div><div class="t m0 x1 h6 y49 ff3 fs1 fc0 sc0 ls0 ws0">con<span class="_ _0"></span>str<span class="_ _0"></span>uct<span class="_ _9"> </span>a<span class="_ _a"> </span>run<span class="_ _9"> </span>lengt<span class="_ _0"></span>h<span class="_ _a"> </span>hist<span class="_ _0"></span>og<span class="_ _0"></span>ram<span class="_ _9"> </span>and<span class="_ _9"> </span>class<span class="_ _0"></span>ify<span class="_ _9"> </span>only<span class="_ _9"> </span>five<span class="_ _9"> </span>edge<span class="_ _9"> </span>patt<span class="_ _0"></span>ern<span class="_ _0"></span>s<span class="_ _9"> </span>from<span class="_ _9"> </span>the<span class="_ _a"> </span>DCT<span class="_ _2"> </span>coe<span class="_ _0"></span>ffi<span class="_ _0"></span>-</div><div class="t m0 x1 h6 y4a ff3 fs1 fc0 sc0 ls0 ws0">cie<span class="_ _0"></span>nts.<span class="_ _b"> </span>Pou<span class="_ _0"></span>r<span class="_ _4"> </span>et<span class="_ _b"> </span>al.<span class="_ _4"> </span>[<span class="fc1">27</span>]<span class="_ _b"> </span>crea<span class="_ _0"></span>te<span class="_ _b"> </span>a<span class="_ _3"> </span>his<span class="_ _0"></span>togr<span class="_ _0"></span>am<span class="_ _b"> </span>from<span class="_ _b"> </span>a<span class="_ _4"> </span>selec<span class="_ _0"></span>tiv<span class="_ _0"></span>e<span class="_ _4"> </span>set<span class="_ _b"> </span>of<span class="_ _4"> </span>DCT<span class="_ _5"> </span>co<span class="_ _0"></span>ef<span class="_ _0"></span>fic<span class="_ _0"></span>ient<span class="_ _0"></span>s<span class="_ _b"> </span>and<span class="_ _4"> </span>use<span class="_ _b"> </span>it<span class="_ _4"> </span>for</div><div class="t m0 x1 h6 y4b ff3 fs1 fc0 sc0 ls0 ws0">ind<span class="_ _0"></span>exi<span class="_ _0"></span>ng<span class="_ _2"> </span>the<span class="_ _2"> </span>ima<span class="_ _0"></span>ges.<span class="_ _3"> </span>Simil<span class="_ _0"></span>arl<span class="_ _0"></span>y<span class="_ _7"></span>,<span class="_ _2"> </span>in<span class="_ _2"> </span>[<span class="fc1">3</span>,<span class="_ _2"> </span><span class="fc1">20</span>,<span class="_ _2"> </span><span class="fc1 ls13">31</span>],<span class="_ _9"> </span>p<span class="_ _0"></span>art<span class="_ _0"></span>ial<span class="_ _2"> </span>DCT<span class="_ _b"> </span>coef<span class="_ _0"></span>fic<span class="_ _0"></span>ient<span class="_ _0"></span>s<span class="_ _2"> </span>are<span class="_ _2"> </span>sel<span class="_ _0"></span>ect<span class="_ _0"></span>ed<span class="_ _2"> </span>to<span class="_ _2"> </span>extra<span class="_ _0"></span>ct</div><div class="t m0 x1 h6 y4c ff3 fs1 fc0 sc0 ls0 ws0">the<span class="_ _9"> </span>feat<span class="_ _0"></span>ur<span class="_ _0"></span>e<span class="_ _9"> </span>vectors<span class="_ _0"></span>.<span class="_ _9"> </span>In<span class="_ _9"> </span>[<span class="fc1 ls28">11<span class="_ _f"></span></span>]<span class="_ _a"> </span>the<span class="_ _9"> </span>disc<span class="_ _0"></span>ret<span class="_ _0"></span>e<span class="_ _9"> </span>wavel<span class="_ _0"></span>et<span class="_ _9"> </span>tran<span class="_ _0"></span>sfor<span class="_ _0"></span>m<span class="_ _9"> </span>(DWT)<span class="_ _9"> </span>str<span class="_ _0"></span>uct<span class="_ _0"></span>ure<span class="_ _9"> </span>to<span class="_ _9"> </span>rearr<span class="_ _0"></span>ang<span class="_ _0"></span>e<span class="_ _9"> </span>the</div><div class="t m0 x1 h6 y4d ff3 fs1 fc0 sc0 ls0 ws0">DCT<span class="_ _5"> </span>coe<span class="_ _0"></span>f<span class="_ _0"></span>fic<span class="_ _0"></span>ien<span class="_ _0"></span>ts<span class="_ _4"> </span>bec<span class="_ _0"></span>aus<span class="_ _0"></span>e<span class="_ _4"> </span>of<span class="_ _3"> </span>the<span class="_ _b"> </span>advant<span class="_ _0"></span>ag<span class="_ _0"></span>e<span class="_ _4"> </span>of<span class="_ _3"> </span>the<span class="_ _b"> </span>DWT<span class="_ _12"></span>.<span class="_ _3"> </span>In<span class="_ _4"> </span>[<span class="fc1">33</span>],<span class="_ _4"> </span>mult<span class="_ _0"></span>ip<span class="_ _0"></span>le<span class="_ _4"> </span>DCT<span class="_ _5"> </span>coef<span class="_ _7"></span>ficie<span class="_ _0"></span>nts<span class="_ _4"> </span>are</div><div class="t m0 x1 h6 y4e ff3 fs1 fc0 sc0 ls0 ws0">ext<span class="_ _0"></span>rac<span class="_ _0"></span>ted<span class="_ _0"></span>,<span class="_ _b"> </span>corres<span class="_ _0"></span>po<span class="_ _0"></span>ndi<span class="_ _0"></span>ng<span class="_ _b"> </span>coef<span class="_ _0"></span>fi<span class="_ _0"></span>cie<span class="_ _0"></span>nts<span class="_ _b"> </span>are<span class="_ _b"> </span>summ<span class="_ _0"></span>ed<span class="_ _b"> </span>up<span class="_ _b"> </span>and<span class="_ _b"> </span>the<span class="_ _4"> </span>res<span class="_ _0"></span>ulta<span class="_ _0"></span>nt<span class="_ _b"> </span>feat<span class="_ _0"></span>ure<span class="_ _b"> </span>vec<span class="_ _0"></span>tor<span class="_ _b"> </span>is<span class="_ _b"> </span>formed<span class="_ _0"></span>.</div><div class="t m0 xb h6 y57 ff3 fs1 fc0 sc0 ls0 ws0">Capi<span class="_ _0"></span>ta<span class="_ _0"></span>liz<span class="_ _0"></span>ing<span class="_ _b"> </span>on<span class="_ _b"> </span>the<span class="_ _b"> </span>info<span class="_ _0"></span>rm<span class="_ _0"></span>ati<span class="_ _0"></span>on<span class="_ _b"> </span>that<span class="_ _5"> </span>can<span class="_ _b"> </span>be<span class="_ _4"> </span>deri<span class="_ _0"></span>ve<span class="_ _0"></span>d<span class="_ _b"> </span>from<span class="_ _b"> </span>the<span class="_ _b"> </span>tra<span class="_ _0"></span>nsfo<span class="_ _0"></span>rm<span class="_ _0"></span><span class="ff5">’<span class="_ _7"></span><span class="ff3">s<span class="_ _4"> </span>coef<span class="_ _0"></span>fi<span class="_ _0"></span>cie<span class="_ _0"></span>nts<span class="_ _5"> </span>and<span class="_ _b"> </span>the</span></span></div><div class="t m0 x1 h6 y58 ff3 fs1 fc0 sc0 ls0 ws0">inh<span class="_ _0"></span>ere<span class="_ _0"></span>nt<span class="_ _3"> </span>dimen<span class="_ _0"></span>sion<span class="_ _0"></span>al<span class="_ _0"></span>ity<span class="_ _3"> </span>redu<span class="_ _0"></span>ctio<span class="_ _0"></span>n<span class="_ _3"> </span>that<span class="_ _3"> </span>can<span class="_ _2"> </span>achi<span class="_ _0"></span>eve<span class="_ _0"></span>d<span class="_ _3"> </span>with<span class="_ _3"> </span>the<span class="_ _2"> </span>usage<span class="_ _3"> </span>of<span class="_ _3"> </span>trans<span class="_ _0"></span>form<span class="_ _0"></span>s,<span class="_ _3"> </span>the<span class="_ _3"> </span>autho<span class="_ _0"></span>rs</div><div class="t m0 x1 h6 y59 ff3 fs1 fc0 sc0 ls0 ws0">see<span class="_ _a"> </span>a<span class="_ _c"> </span>p<span class="_ _0"></span>oten<span class="_ _0"></span>ti<span class="_ _0"></span>al<span class="_ _1"> </span>in<span class="_ _a"> </span>utiliz<span class="_ _0"></span>ing<span class="_ _a"> </span>the<span class="_ _1"> </span>trans<span class="_ _0"></span>fo<span class="_ _0"></span>rm<span class="_ _1"> </span>coe<span class="_ _0"></span>f<span class="_ _0"></span>fici<span class="_ _0"></span>ent<span class="_ _0"></span>s<span class="_ _1"> </span>to<span class="_ _1"> </span>fo<span class="_ _0"></span>rm<span class="_ _1"> </span>the<span class="_ _a"> </span>descr<span class="_ _0"></span>ipt<span class="_ _0"></span>ors<span class="_ _a"> </span>for<span class="_ _1"> </span>SIFT<span class="_ _a"> </span>key</div><div class="t m0 x1 h6 y5a ff3 fs1 fc0 sc0 ls0 ws0">poin<span class="_ _0"></span>ts<span class="_ _0"></span>.<span class="_ _1"> </span>In<span class="_ _1"> </span>the<span class="_ _a"> </span>searc<span class="_ _0"></span>h<span class="_ _1"> </span>for<span class="_ _a"> </span>a<span class="_ _1"> </span>suita<span class="_ _0"></span>ble<span class="_ _a"> </span>trans<span class="_ _0"></span>form<span class="_ _0"></span>,<span class="_ _1"> </span>the<span class="_ _a"> </span>poly<span class="_ _0"></span>nom<span class="_ _0"></span>ials<span class="_ _a"> </span>trans<span class="_ _0"></span>fo<span class="_ _0"></span>rm<span class="_ _1"> </span>has<span class="_ _a"> </span>been<span class="_ _a"> </span>chos<span class="_ _0"></span>en,</div><div class="t m0 x1 h6 y5b ff3 fs1 fc0 sc0 ls0 ws0">con<span class="_ _0"></span>sid<span class="_ _0"></span>eri<span class="_ _0"></span>ng<span class="_ _4"> </span>its<span class="_ _4"> </span>comp<span class="_ _0"></span>utat<span class="_ _0"></span>io<span class="_ _0"></span>nal<span class="_ _4"> </span>ligh<span class="_ _0"></span>t-w<span class="_ _0"></span>ei<span class="_ _0"></span>ght<span class="_ _0"></span>edn<span class="_ _0"></span>es<span class="_ _0"></span>s<span class="_ _4"> </span>and<span class="_ _4"> </span>intege<span class="_ _0"></span>r<span class="_ _0"></span>-nat<span class="_ _0"></span>ur<span class="_ _0"></span>ed<span class="_ _4"> </span>coef<span class="_ _0"></span>fi<span class="_ _0"></span>cie<span class="_ _0"></span>nts<span class="_ _b"> </span>as<span class="_ _3"> </span>its<span class="_ _4"> </span>meri<span class="_ _0"></span>ts.</div><div class="t m0 x1 h6 y5c ff3 fs1 fc0 sc0 ls0 ws0">W<span class="_ _0"></span>it<span class="_ _0"></span>h<span class="_ _c"> </span>thi<span class="_ _0"></span>s,<span class="_ _1"> </span>a<span class="_ _c"> </span>para<span class="_ _0"></span>dig<span class="_ _0"></span>m<span class="_ _1"> </span>shift<span class="_ _1"> </span>from<span class="_ _1"> </span>pixel<span class="_ _1"> </span>proce<span class="_ _0"></span>ss<span class="_ _0"></span>ing<span class="_ _1"> </span>to<span class="_ _c"> </span>blo<span class="_ _0"></span>ck<span class="_ _1"> </span>proce<span class="_ _0"></span>ssin<span class="_ _0"></span>g<span class="_ _c"> </span>fo<span class="_ _0"></span>r<span class="_ _1"> </span>the<span class="_ _c"> </span>pu<span class="_ _0"></span>rpos<span class="_ _0"></span>e<span class="_ _1"> </span>of</div><div class="t m0 x1 h6 y5d ff3 fs1 fc0 sc0 ls0 ws0">form<span class="_ _0"></span>ing<span class="_ _2"> </span>the<span class="_ _2"> </span>desc<span class="_ _0"></span>rip<span class="_ _0"></span>tors<span class="_ _3"> </span>of<span class="_ _9"> </span>SIF<span class="_ _0"></span>T<span class="_ _2"> </span>key<span class="_ _9"> </span>p<span class="_ _0"></span>oint<span class="_ _0"></span>s<span class="_ _2"> </span>has<span class="_ _9"> </span>be<span class="_ _0"></span>en<span class="_ _2"> </span>atte<span class="_ _0"></span>mpt<span class="_ _0"></span>ed<span class="_ _2"> </span>in<span class="_ _9"> </span>thi<span class="_ _0"></span>s<span class="_ _2"> </span>paper<span class="_ _7"></span>.<span class="_ _2"> </span>The<span class="_ _9"> </span>ro<span class="_ _0"></span>le<span class="_ _2"> </span>of<span class="_ _9"> </span>the</div><div class="t m0 x1 h6 y5e ff3 fs1 fc0 sc0 ls0 ws0">tra<span class="_ _0"></span>nsf<span class="_ _0"></span>orm<span class="_ _9"> </span>in<span class="_ _9"> </span>this<span class="_ _2"> </span>paper<span class="_ _9"> </span>is<span class="_ _9"> </span>two<span class="_ _0"></span>-fol<span class="_ _0"></span>d:<span class="_ _9"> </span>1)<span class="_ _9"> </span>ad<span class="_ _0"></span>dre<span class="_ _0"></span>ss<span class="_ _9"> </span>the<span class="_ _9"> </span>cur<span class="_ _0"></span>se<span class="_ _9"> </span>of<span class="_ _9"> </span>dime<span class="_ _0"></span>ns<span class="_ _0"></span>ion<span class="_ _0"></span>ali<span class="_ _0"></span>ty<span class="_ _9"> </span>and<span class="_ _9"> </span>of<span class="_ _0"></span>fer<span class="_ _9"> </span>di<span class="_ _0"></span>men-</div><div class="t m0 x1 h6 y5f ff3 fs1 fc0 sc0 ls0 ws0">sion<span class="_ _0"></span>al<span class="_ _0"></span>ity<span class="_ _3"> </span>reduc<span class="_ _0"></span>tio<span class="_ _0"></span>n<span class="_ _2"> </span>thro<span class="_ _0"></span>ugh<span class="_ _3"> </span>trans<span class="_ _0"></span>fo<span class="_ _0"></span>rm<span class="_ _2"> </span>and<span class="_ _2"> </span>oth<span class="_ _0"></span>er<span class="_ _2"> </span>sta<span class="_ _0"></span>tist<span class="_ _0"></span>ic<span class="_ _0"></span>al<span class="_ _2"> </span>lea<span class="_ _0"></span>rni<span class="_ _0"></span>ng<span class="_ _2"> </span>par<span class="_ _0"></span>ame<span class="_ _0"></span>ter<span class="_ _0"></span>s<span class="_ _2"> </span>and<span class="_ _2"> </span>2)<span class="_ _2"> </span>pro<span class="_ _0"></span>vide</div><div class="t m0 x1 h6 y60 ff3 fs1 fc0 sc0 ls0 ws0">coe<span class="_ _0"></span>ffi<span class="_ _0"></span>cie<span class="_ _0"></span>nt<span class="_ _0"></span>s<span class="_ _2"> </span>tha<span class="_ _0"></span>t<span class="_ _2"> </span>refl<span class="_ _0"></span>ect<span class="_ _3"> </span>the<span class="_ _3"> </span>low<span class="_ _2"> </span>leve<span class="_ _0"></span>l<span class="_ _2"> </span>fea<span class="_ _0"></span>ture<span class="_ _0"></span>s<span class="_ _3"> </span>of<span class="_ _2"> </span>the<span class="_ _2"> </span>ima<span class="_ _0"></span>ge<span class="_ _3"> </span>so<span class="_ _2"> </span>that<span class="_ _3"> </span>they<span class="_ _3"> </span>can<span class="_ _2"> </span>be<span class="_ _2"> </span>use<span class="_ _0"></span>d<span class="_ _2"> </span>to<span class="_ _3"> </span>form<span class="_ _2"> </span>a</div><div class="t m0 x1 h6 y61 ff3 fs1 fc0 sc0 ls0 ws0">repr<span class="_ _0"></span>ese<span class="_ _0"></span>nt<span class="_ _0"></span>ati<span class="_ _0"></span>on<span class="_ _2"> </span>of<span class="_ _2"> </span>the<span class="_ _3"> </span>imag<span class="_ _0"></span>e.</div><div class="t m0 x1 h4 y23 ff3 fs2 fc0 sc0 ls0 ws0">Mul<span class="_ _0"></span>ti<span class="_ _0"></span>med<span class="_ _4"> </span>T<span class="_ _7"></span>ools<span class="_ _4"> </span>App<span class="_ _0"></span>l<span class="_ _4"> </span>(2016<span class="_ _0"></span>)<span class="_ _4"> </span>75:4<span class="_ _0"></span>9<span class="ff5">–</span><span class="ls10">69<span class="_ _11"> </span>51</span></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[2.037103,0.000000,0.000000,2.037103,0.000000,0.000000]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6254db6047503a0a93cceb35/bg4.jpg"><div class="t m0 x1 h3 y29 ff1 fs1 fc0 sc0 ls0 ws0">3<span class="_ _2"> </span>Orth<span class="_ _0"></span>ogo<span class="_ _0"></span>na<span class="_ _0"></span>l<span class="_ _2"> </span>polyn<span class="_ _0"></span>om<span class="_ _0"></span>ial<span class="_ _0"></span>s<span class="_ _2"> </span>model<span class="_ _3"> </span>for<span class="_ _3"> </span>colou<span class="_ _0"></span>r<span class="_ _2"> </span>imag<span class="_ _0"></span>es</div><div class="t m0 x1 h6 y2b ff3 fs1 fc0 sc0 ls29 ws0">The<span class="_ _c"> </span>set<span class="_ _1"> </span>of<span class="_ _c"> </span>features<span class="_ _c"> </span>of<span class="_"> </span>fered<span class="_ _1"> </span>by<span class="_ _c"> </span>different<span class="_ _c"> </span>un<span class="_"> </span>itary<span class="_ _1"> </span>transforms<span class="_ _c"> </span>like<span class="_ _c"> </span>Karhunen-Loeve<span class="_ _1"> </span>Transform</div><div class="t m0 x1 h6 y2c ff3 fs1 fc0 sc0 ls2a ws0">(KL<span class="_ _12"></span>T),<span class="_ _2"> </span>Discrete<span class="_ _2"> </span>Fourier<span class="_ _2"> </span>Transf<span class="_"> </span>orm<span class="_ _3"> </span>(DFT),<span class="_ _2"> </span>Disc<span class="lsa">rete<span class="_ _2"> </span>Cosine<span class="_ _9"> </span>T<span class="_"> </span>ransform<span class="_ _3"> </span>(DCT)<span class="_ _2"> </span>provides<span class="_ _9"> </span>features</span></div><div class="t m0 x1 h6 y2d ff3 fs1 fc0 sc0 ls8 ws0">that<span class="_ _4"> </span>are<span class="_ _3"> </span>efficient<span class="_ _4"> </span>for<span class="_ _4"> </span>classification<span class="_ _3"> </span>purposes<span class="_ _3"> </span>more<span class="_ _3"> </span><span class="ls3">than<span class="_ _4"> </span>that<span class="_ _3"> </span>of<span class="_ _4"> </span>the<span class="_ _3"> </span>original<span class="_ _3"> </span>image.<span class="_ _4"> </span>The<span class="_ _3"> </span>Orthogonal</span></div><div class="t m0 x1 h6 y2e ff3 fs1 fc0 sc0 ls3 ws0">Polynomials<span class="_ _4"> </span>Transform<span class="_ _4"> </span>belongs<span class="_ _4"> </span>to<span class="_ _4"> </span>t<span class="_ _f"></span>he<span class="_ _4"> </span>family<span class="_ _4"> </span>of<span class="_ _3"> </span>orthogonal<span class="_ _4"> </span>transforms<span class="_ _4"> </span>and<span class="_ _3"> </span>is<span class="_ _4"> </span>preferred<span class="_ _4"> </span>due<span class="_ _3"> </span>to<span class="_ _4"> </span>its</div><div class="t m0 x1 h6 y2f ff3 fs1 fc0 sc0 ls0 ws0">less<span class="_ _1"> </span>comp<span class="_ _0"></span>uta<span class="_ _0"></span>tion<span class="_ _1"> </span>comp<span class="_ _0"></span>lexi<span class="_ _0"></span>ty<span class="_ _1"> </span>when<span class="_ _1"> </span>compa<span class="_ _0"></span>red<span class="_ _1"> </span>to<span class="_ _c"> </span>DF<span class="_ _0"></span>T<span class="_ _7"></span>,<span class="_ _c"> </span>KL<span class="_ _12"></span>T<span class="_ _9"> </span>and<span class="_ _c"> </span>DC<span class="_ _0"></span>T<span class="_ _12"></span>.<span class="_ _c"> </span>At<span class="_ _1"> </span>first,<span class="_ _1"> </span>the<span class="_ _1"> </span>image</div><div class="t m0 x1 h6 y30 ff3 fs1 fc0 sc0 ls2 ws0">formation<span class="_ _3"> </span>system<span class="_ _2"> </span>is<span class="_ _2"> </span>analyzed<span class="_ _3"> </span>for<span class="_ _2"> </span>the<span class="_ _2"> </span>design<span class="_ _2"> </span>of<span class="_ _3"> </span>a<span class="_ _2"> </span>suitable<span class="_ _2"> </span>transform<span class="_ _2"> </span>for<span class="_ _3"> </span>color<span class="_ _2"> </span>images.</div><div class="t m0 x1 h6 y32 ff3 fs1 fc0 sc0 ls0 ws0">3.1<span class="_ _3"> </span>Point<span class="_ _0"></span>-sp<span class="_ _0"></span>rea<span class="_ _0"></span>d<span class="_ _2"> </span>ope<span class="_ _0"></span>rat<span class="_ _0"></span>ors<span class="_ _3"> </span>based<span class="_ _3"> </span>on<span class="_ _2"> </span>a<span class="_ _9"> </span>cl<span class="_ _0"></span>as<span class="_ _0"></span>s<span class="_ _2"> </span>of<span class="_ _2"> </span>ortho<span class="_ _0"></span>go<span class="_ _0"></span>nal<span class="_ _3"> </span>polyn<span class="_ _0"></span>omi<span class="_ _0"></span>als</div><div class="t m0 x1 h6 y34 ff3 fs1 fc0 sc0 ls0 ws0">In<span class="_ _4"> </span>orde<span class="_ _0"></span>r<span class="_ _4"> </span>to<span class="_ _4"> </span>anal<span class="_ _0"></span>yze<span class="_ _b"> </span>a<span class="_ _3"> </span>col<span class="_ _0"></span>ou<span class="_ _0"></span>r<span class="_ _4"> </span>image<span class="_ _b"> </span>for<span class="_ _4"> </span>retr<span class="_ _0"></span>ieva<span class="_ _0"></span>l<span class="_ _4"> </span>purp<span class="_ _0"></span>os<span class="_ _0"></span>es,<span class="_ _b"> </span>the<span class="_ _4"> </span>colou<span class="_ _0"></span>r<span class="_ _b"> </span>image<span class="_ _4"> </span>form<span class="_ _0"></span>at<span class="_ _0"></span>ion<span class="_ _b"> </span>syste<span class="_ _0"></span>m<span class="_ _4"> </span>is</div><div class="t m0 x1 h6 y35 ff3 fs1 fc0 sc0 ls0 ws0">con<span class="_ _0"></span>sid<span class="_ _0"></span>ere<span class="_ _0"></span>d.<span class="_ _9"> </span>As<span class="_ _9"> </span>per<span class="_ _9"> </span>the<span class="_ _a"> </span>cla<span class="_ _0"></span>ssi<span class="_ _0"></span>cal<span class="_ _9"> </span>defi<span class="_ _0"></span>nit<span class="_ _0"></span>io<span class="_ _0"></span>n<span class="_ _9"> </span>of<span class="_ _a"> </span>a<span class="_ _a"> </span>colou<span class="_ _0"></span>r<span class="_ _9"> </span>imag<span class="_ _0"></span>e,<span class="_ _9"> </span>let<span class="_ _9"> </span><span class="ff9">x<span class="_ _a"> </span></span><span class="ls2b">and<span class="_ _a"> </span></span><span class="ff9">y<span class="_ _a"> </span></span>be<span class="_ _a"> </span>the<span class="_ _9"> </span>two<span class="_ _9"> </span>spat<span class="_ _0"></span>ial</div><div class="t m0 x1 h6 y36 ff3 fs1 fc0 sc0 ls2c ws0">coordinates<span class="_ _2"> </span>a<span class="_ _f"></span>nd<span class="_ _2"> </span><span class="ff9 ls0">z<span class="_ _2"> </span></span>indicates<span class="_ _2"> </span>t<span class="_ _f"></span>he<span class="_ _2"> </span>colour<span class="_ _2"> </span>s<span class="_ _f"></span>pace,<span class="_ _2"> </span>then<span class="_ _2"> </span>t<span class="_ _f"></span>he<span class="_ _2"> </span>colour<span class="_ _2"> </span>im<span class="_ _f"></span>age<span class="_ _2"> </span>formatio<span class="_ _f"></span>n<span class="_ _2"> </span><span class="ff9 ls0">I<span class="_ _2"> </span><span class="ff3">(</span>x<span class="ff3">,<span class="_ _3"> </span></span>y<span class="_ _7"></span><span class="ff3">,<span class="ff9">z</span><span class="ls2d">)<span class="_ _3"> </span>can<span class="_ _9"> </span>be</span></span></span></div><div class="t m0 x1 h6 y37 ff3 fs1 fc0 sc0 ls0 ws0">des<span class="_ _0"></span>cri<span class="_ _0"></span>bed<span class="_ _3"> </span>as</div><div class="t m0 xc h7 y62 ff9 fs1 fc0 sc0 ls2e ws0">Ix<span class="_ _16"></span><span class="ff8 ls0">;<span class="_ _5"> </span><span class="ff9">y</span>;<span class="_ _5"> </span><span class="ff9">z<span class="_ _17"></span><span class="ffa ls2f">ðÞ<span class="_ _18"></span>¼<span class="_ _18"></span><span class="ff6 ls0">∭<span class="_ _6"></span><span class="ff9">f<span class="_ _e"> </span><span class="ffb">ξ<span class="_ _f"></span><span class="ff8">;<span class="_ _5"> </span></span>η<span class="ff8">;<span class="_ _5"> </span></span>γ<span class="_ _19"></span><span class="ffa ls30">ðÞ<span class="_ _1a"></span><span class="ff9 ls0">d<span class="ffb ls31">μξ<span class="_ _1b"></span><span class="ffa ls32">ðÞ<span class="_ _1c"></span><span class="ff9 ls0">d<span class="ffb ls31">μη<span class="_ _1d"></span><span class="ffa ls33">ðÞ<span class="_ _16"></span><span class="ff9 ls0">d<span class="ffb ls31">μγ<span class="_ _1e"></span><span class="ffa ls34">ðÞ<span class="_ _1f"> </span>ð<span class="_ _20"></span><span class="ff3 ls0">1<span class="ffa">Þ</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x1 ha y63 ff3 fs1 fc0 sc0 ls0 ws0">whe<span class="_ _0"></span>re<span class="_ _3"> </span><span class="ffb">ξ</span>,<span class="_ _d"> </span><span class="ffb">η</span>,<span class="_ _d"> </span><span class="ff9">and<span class="_ _8"> </span><span class="ffb">γ<span class="_ _3"> </span></span></span>are<span class="_ _3"> </span>coor<span class="_ _0"></span>dina<span class="_ _0"></span>te<span class="_ _0"></span>s<span class="_ _3"> </span>in<span class="_ _2"> </span>the<span class="_ _3"> </span>3-D<span class="_ _3"> </span>spa<span class="_ _0"></span>ce,<span class="_ _4"> </span>the<span class="_ _3"> </span>object<span class="_ _4"> </span>funct<span class="_ _0"></span>ion<span class="_ _4"> </span><span class="ff9">f<span class="_ _2"> </span></span>(<span class="ffb">ξ</span>,<span class="ffb">η</span>,<span class="_ _0"></span><span class="ffb">γ<span class="ff3">)<span class="_ _3"> </span>is<span class="_ _3"> </span>integr<span class="_ _0"></span>abl<span class="_ _0"></span>e</span></span></div><div class="t m0 x1 ha y64 ff3 fs1 fc0 sc0 ls0 ws0">on<span class="_ _3"> </span>a<span class="_ _2"> </span>measu<span class="_ _0"></span>re<span class="_ _3"> </span>space<span class="_ _3"> </span>and<span class="_ _3"> </span><span class="ffb">μ<span class="_ _2"> </span></span>is<span class="_ _2"> </span>a<span class="_ _2"> </span><span class="ffb">σ<span class="_ _2"> </span></span>fini<span class="_ _0"></span>te<span class="_ _3"> </span>measur<span class="_ _0"></span>e<span class="_ _3"> </span>with<span class="_ _3"> </span>an<span class="_ _2"> </span>infi<span class="_ _0"></span>nit<span class="_ _0"></span>e<span class="_ _3"> </span>numbe<span class="_ _0"></span>r<span class="_ _2"> </span>of<span class="_ _3"> </span>point<span class="_ _0"></span>s<span class="_ _2"> </span>of<span class="_ _3"> </span>incre<span class="_ _0"></span>ase<span class="_ _0"></span>.</div><div class="t m0 x1 h6 y65 ff3 fs1 fc0 sc0 ls35 ws0">The<span class="_ _b"> </span>image<span class="_ _4"> </span><span class="ff9 ls0">I<span class="_ _b"> </span></span><span class="ls36">can<span class="_ _4"> </span>be<span class="_ _b"> </span>consider<span class="_ _f"></span>ed<span class="_ _b"> </span>to<span class="_ _b"> </span>be<span class="_ _4"> </span>a<span class="_ _b"> </span>signed<span class="_ _4"> </span>measure<span class="_ _b"> </span>on<span class="_ _4"> </span>the<span class="_ _4"> </span>ring<span class="_ _b"> </span>of<span class="_ _4"> </span>all<span class="_ _b"> </span>measurabl<span class="_ _f"></span>e<span class="_ _b"> </span>sets.<span class="_ _b"> </span>It<span class="_ _4"> </span>can<span class="_ _4"> </span>be</span></div><div class="t m0 x1 ha y66 ff3 fs1 fc0 sc0 ls37 ws0">easily<span class="_ _4"> </span>shown<span class="_ _4"> </span>that<span class="_ _4"> </span>if<span class="_ _3"> </span><span class="ff9 ls0">I<span class="_ _4"> </span></span><span class="ls38">is<span class="_ _3"> </span>non-negative<span class="_ _4"> </span>and<span class="_ _3"> </span>finite<span class="_ _3"> </span>valued<span class="_ _4"> </span>on<span class="_ _3"> </span>the<span class="_ _4"> </span><span class="ffb ls0">σ<span class="_ _3"> </span></span><span class="ls39">ring<span class="_ _4"> </span><span class="ffc ls0">ℜ<span class="_ _4"> </span></span><span class="ls3a">of<span class="_ _3"> </span>measur<span class="_ _f"></span>able<span class="_ _4"> </span>se<span class="_ _f"></span>ts<span class="_ _4"> </span>then<span class="_ _3"> </span><span class="ff9 ls0">f</span></span></span></span></div><div class="t m0 x1 h6 y67 ff3 fs1 fc0 sc0 ls3b ws0">can<span class="_ _2"> </span>be<span class="_ _2"> </span>defined<span class="_ _2"> </span>as<span class="_ _2"> </span>a<span class="_ _2"> </span>kind<span class="_ _2"> </span>of<span class="_ _2"> </span>deriva<span class="_ _f"></span>tive<span class="_ _2"> </span>of<span class="_ _2"> </span><span class="ff9 ls0">I<span class="_ _3"> </span></span><span class="ls3c">relative<span class="_ _2"> </span>to<span class="_ _2"> </span>a<span class="_ _2"> </span>signed<span class="_ _3"> </span>measur<span class="_ _f"></span>e<span class="_ _3"> </span>supported<span class="_ _2"> </span>by<span class="_ _2"> </span>a<span class="_ _2"> </span>null<span class="_ _3"> </span>set.</span></div><div class="t m0 x1 h6 y68 ff3 fs1 fc0 sc0 ls3c ws0">The<span class="_ _3"> </span>three<span class="_ _3"> </span>dimensional<span class="_ _2"> </span>point-spread<span class="_ _3"> </span>function<span class="_ _3"> </span><span class="ff9 ls0">M<span class="_ _3"> </span><span class="ff3">(</span>x<span class="ff3">,<span class="_ _4"> </span></span>y<span class="_ _7"></span><span class="ff3">,<span class="_ _3"> </span><span class="ff9">z</span><span class="ls3d">)<span class="_ _3"> </span>is<span class="_ _2"> </span>considered<span class="_ _3"> </span>to<span class="_ _2"> </span>be<span class="_ _3"> </span>real<span class="_ _2"> </span>valued<span class="_ _3"> </span>function</span></span></span></div><div class="t m0 x1 h7 y69 ff3 fs1 fc0 sc0 ls38 ws0">defined<span class="_ _b"> </span>for<span class="_ _b"> </span>(<span class="ff9 ls0">x<span class="ff3">,<span class="_ _5"> </span></span>y<span class="_ _7"></span><span class="ff3">,<span class="_ _5"> </span><span class="ff9">z</span>)<span class="_ _5"> </span><span class="ff6">∈<span class="_ _5"> </span><span class="ff9">X<span class="_ _b"> </span></span></span>×<span class="_ _5"> </span><span class="ff9">Y<span class="_ _b"> </span></span>×<span class="_ _5"> </span><span class="ff9">Z<span class="_ _b"> </span></span>wh</span></span></div><div class="t m0 xd h6 y6a ff3 fs1 fc0 sc0 ls0 ws0">er<span class="_ _0"></span>e<span class="_ _5"> </span><span class="ff9">X</span>,<span class="_ _5"> </span><span class="ff9">Y<span class="_ _6"></span></span><span class="ls3e">and<span class="_ _5"> </span></span><span class="ff9">Z<span class="_ _b"> </span></span><span class="ls35">are<span class="_ _b"> </span>ordere<span class="_ _f"></span>d<span class="_ _b"> </span>subsets<span class="_ _b"> </span>of<span class="_ _b"> </span>real<span class="_ _b"> </span>va<span class="_ _f"></span>lues.<span class="_ _b"> </span>In<span class="_ _b"> </span>the<span class="_ _b"> </span>case<span class="_ _4"> </span>of<span class="_ _b"> </span>a</span></div><div class="t m0 x1 h6 y6b ff3 fs1 fc0 sc0 ls2b ws0">colour<span class="_ _5"> </span>image<span class="_ _b"> </span>of<span class="_ _b"> </span>size<span class="_ _5"> </span>(<span class="ff9 ls0">n<span class="_ _b"> </span><span class="ff3">×<span class="_ _5"> </span></span>n<span class="_ _b"> </span><span class="ff3">×<span class="_ _b"> </span></span>n</span><span class="ls3f">)w<span class="_ _10"></span>h<span class="_ _10"></span>e<span class="_ _21"></span>r<span class="_ _10"></span>e<span class="ff9 ls0">X<span class="_ _b"> </span></span><span class="ls40">(rows)<span class="_ _b"> </span>consists<span class="_ _b"> </span>of<span class="_ _b"> </span>a<span class="_ _b"> </span>finite<span class="_ _b"> </span>set,<span class="_ _b"> </span>which<span class="_ _b"> </span>for<span class="_ _b"> </span>convenience<span class="_ _b"> </span>can</span></span></div><div class="t m0 x1 h6 y6c ff3 fs1 fc0 sc0 ls40 ws0">be<span class="_ _3"> </span>labeled<span class="_ _2"> </span>as<span class="_ _3"> </span>{<span class="_ _f"></span>0,<span class="_ _3"> </span>1,<span class="_ _2"> </span><span class="ff5 ls0">…<span class="ff3">,<span class="_ _4"> </span><span class="ff9">n</span>-<span class="ff9">1</span><span class="ls29">},<span class="_ _4"> </span>the<span class="_ _2"> </span>function<span class="_ _2"> </span></span><span class="ff9">M</span>(<span class="_ _0"></span><span class="ff9">x<span class="ff3">,<span class="_ _f"></span></span>y<span class="_ _7"></span><span class="ff3">,<span class="_ _6"></span><span class="ff9">z</span><span class="ls1a">)<span class="_ _4"> </span>reduces<span class="_ _2"> </span>to<span class="_ _3"> </span>a<span class="_ _2"> </span>sequence<span class="_ _3"> </span>of<span class="_ _2"> </span>functions</span></span></span></span></span></div><div class="t m0 xe hb y6d ff9 fs1 fc0 sc0 ls41 ws0">Mi<span class="_ _16"></span><span class="ff8 ls0">;<span class="_ _5"> </span><span class="ff9">x<span class="_ _22"></span><span class="ffa ls42">ðÞ<span class="_ _23"></span>¼<span class="_ _23"></span><span class="ff9 ls0">u</span></span></span></span></div><div class="t m0 xf hc y6e ff9 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x10 h7 y6f ff9 fs1 fc0 sc0 ls0 ws0">x<span class="_ _24"></span><span class="ffa ls43">ðÞ<span class="_ _1c"></span><span class="ff8 ls0">;<span class="_ _25"> </span><span class="ff9">i<span class="_ _2"> </span><span class="ffa">¼<span class="_ _2"> </span><span class="ff3">0</span></span></span>;<span class="_ _5"> </span><span class="ff3">1</span><span class="ls44">;:<span class="_ _21"></span>:<span class="_ _21"></span><span class="ff9 ls0">n<span class="ff6">−<span class="ff3">1<span class="_ _26"> </span><span class="ffa">ð</span>2<span class="ffa">Þ</span></span></span></span></span></span></span></div><div class="t m0 x1 h6 y70 ff3 fs1 fc0 sc0 ls45 ws0">where<span class="_ _a"> </span><span class="ff9 ls0">u</span></div><div class="t m2 x11 hd y71 ff9 fs5 fc0 sc0 ls0 ws0">i</div><div class="t m0 x12 h7 y72 ff3 fs1 fc0 sc0 ls0 ws0">(<span class="ff9">x<span class="_ _0"></span><span class="ff3 ls46">)<span class="_ _9"> </span>is<span class="_ _a"> </span>a<span class="_ _a"> </span>set<span class="_ _a"> </span>of<span class="_ _a"> </span>orthogonal<span class="_ _9"> </span>polynomials<span class="_ _a"> </span>function<span class="_ _9"> </span>of<span class="_ _a"> </span>degree<span class="_ _a"> </span>0,1,2..<span class="_ _9"> </span>(<span class="ff9 ls0">n<span class="_ _6"></span><span class="ff6">−<span class="_ _15"></span></span></span><span class="ls3e">1)<span class="_ _a"> </span>As<span class="_ _9"> </span>shown<span class="_ _a"> </span>in</span></span></span></div><div class="t m0 x1 h6 y73 ff3 fs1 fc0 sc0 ls38 ws0">equation<span class="_ _9"> </span>(<span class="fc1 ls0">2</span><span class="ls3c">),<span class="_ _9"> </span>the<span class="_ _9"> </span>process<span class="_ _9"> </span>of<span class="_ _9"> </span>colour<span class="_ _9"> </span>image<span class="_ _9"> </span>analysis<span class="_ _9"> </span>can<span class="_ _9"> </span>be<span class="_ _9"> </span>viewed<span class="_ _9"> </span>as<span class="_ _9"> </span>the<span class="_ _9"> </span>linear<span class="_ _9"> </span>transformation</span></div><div class="t m0 x1 h6 y74 ff3 fs1 fc0 sc0 ls3c ws0">defined<span class="_ _3"> </span>by<span class="_ _2"> </span>the<span class="_ _3"> </span>point-spread<span class="_ _2"> </span>operator<span class="_ _3"> </span><span class="ff9 ls0">M<span class="_ _3"> </span><span class="ff3">(</span>x<span class="ff3">,<span class="_ _3"> </span></span>y</span><span class="ls47">)(<span class="_ _14"></span><span class="ff9 ls0">M<span class="_ _3"> </span><span class="ff3">(</span>i<span class="ff3">,<span class="_ _3"> </span></span>t<span class="ff3 ls48">)=</span>u</span></span></div><div class="t m2 x13 hd y75 ff9 fs5 fc0 sc0 ls0 ws0">i</div><div class="t m0 x14 h6 y76 ff3 fs1 fc0 sc0 ls0 ws0">(<span class="ff9">t<span class="_ _0"></span><span class="ff3 ls36">))</span></span></div><div class="t m0 x15 ha y77 ffb fs1 fc0 sc0 ls0 ws0">β</div><div class="t m0 x9 he y78 ffa fs6 fc0 sc0 ls0 ws0">0</div><div class="t m0 x16 hf y79 ff9 fs1 fc0 sc0 ls0 ws0">s<span class="ff8">;<span class="_ _5"> </span><span class="ffb">ς<span class="_ _15"></span></span>;<span class="_ _5"> </span><span class="ffb">η</span></span></div><div class="t m0 x17 hb y7a ffa fs1 fc0 sc0 ls49 ws0">ðÞ</div><div class="t m0 x18 hb y79 ffa fs1 fc0 sc0 ls0 ws0">¼</div><div class="t m3 x19 h10 y7b ffd fs7 fc0 sc0 ls0 ws0">Z</div><div class="t m0 xc h11 y7c ff9 fs4 fc0 sc0 ls0 ws0">x<span class="ff6">∈</span>X</div><div class="t m3 x1a h10 y7b ffd fs7 fc0 sc0 ls0 ws0">Z</div><div class="t m0 x1b h11 y7c ff9 fs4 fc0 sc0 ls0 ws0">y<span class="ff6">∈</span>Y</div><div class="t m3 x1c h10 y7b ffd fs7 fc0 sc0 ls0 ws0">Z</div><div class="t m0 x1d h11 y7c ff9 fs4 fc0 sc0 ls0 ws0">z<span class="ff6">∈</span>Z</div><div class="t m0 x1e hf y79 ff9 fs1 fc0 sc0 ls0 ws0">M<span class="_ _d"> </span><span class="ffb">ς<span class="_ _15"></span><span class="ff8">;<span class="_ _b"> </span></span></span>x</div><div class="t m0 x1f hb y7a ffa fs1 fc0 sc0 ls4a ws0">ðÞ</div><div class="t m0 x20 hf y79 ff9 fs1 fc0 sc0 ls0 ws0">M<span class="_ _d"> </span><span class="ffb">η<span class="ff8">;<span class="_ _5"> </span></span></span>y</div><div class="t m0 x21 hb y7a ffa fs1 fc0 sc0 ls4b ws0">ðÞ</div><div class="t m0 x22 hf y79 ff9 fs1 fc0 sc0 ls4c ws0">Ms<span class="_ _16"></span><span class="ff8 ls0">;<span class="_ _5"> </span><span class="ff9">z</span></span></div><div class="t m0 x23 hb y7a ffa fs1 fc0 sc0 ls4d ws0">ðÞ</div><div class="t m0 x24 hf y79 ff9 fs1 fc0 sc0 ls2e ws0">Is<span class="_ _16"></span><span class="ff8 ls0">;<span class="_ _5"> </span><span class="ff9">z</span></span></div><div class="t m0 x25 hb y7a ffa fs1 fc0 sc0 ls4d ws0">ðÞ</div><div class="t m0 x26 hf y79 ff9 fs1 fc0 sc0 ls2e ws0">Ix<span class="_ _16"></span><span class="ff8 ls0">;<span class="_ _5"> </span><span class="ff9">y</span>;<span class="_ _5"> </span><span class="ff9">z</span></span></div><div class="t m0 x27 hb y7a ffa fs1 fc0 sc0 ls4e ws0">ðÞ</div><div class="t m0 x28 hb y79 ff9 fs1 fc0 sc0 ls13 ws0">dxdydz<span class="_ _27"> </span><span class="ffa ls0">ð<span class="ff3">3</span>Þ</span></div><div class="t m0 x1 h6 y7d ff3 fs1 fc0 sc0 lsb ws0">where<span class="_ _4"> </span><span class="ff9 ls0">i<span class="ff3">,<span class="_ _d"> </span></span>j<span class="_ _b"> </span></span><span class="ls8">and<span class="_ _8"> </span><span class="ff9 ls0">k<span class="_ _4"> </span></span><span class="ls15">are<span class="_ _4"> </span>coordinates<span class="_ _4"> </span>in<span class="_ _4"> </span>the<span class="_ _3"> </span>3-D<span class="_ _4"> </span>transformed<span class="_ _4"> </span>space.<span class="_ _4"> </span>Considering<span class="_ _4"> </span>each<span class="_ _3"> </span>of<span class="_ _4"> </span><span class="ff9 ls0">X<span class="ff3">,<span class="_ _b"> </span></span>Y<span class="_ _6"> </span></span><span class="ls4f">an<span class="_ _f"></span>d<span class="_ _4"> </span><span class="ff9 ls0">Z<span class="_ _4"> </span></span><span class="ls9">to</span></span></span></span></div><div class="t m0 x1 h6 y7e ff3 fs1 fc0 sc0 ls22 ws0">be<span class="_ _3"> </span>finite<span class="_ _2"> </span>set<span class="_ _2"> </span>of<span class="_ _3"> </span>v<span class="_ _f"></span>alues<span class="_ _3"> </span>{<span class="_ _f"></span>0,<span class="_ _3"> </span>1,<span class="_ _2"> </span><span class="ff5 ls0">…<span class="ff3">,<span class="_ _4"> </span><span class="ff9">n</span><span class="ls8">-1}<span class="_ _3"> </span>equation<span class="_ _2"> </span>(</span><span class="fc1">2</span><span class="ls23">)<span class="_ _3"> </span>can<span class="_ _2"> </span>be<span class="_ _3"> </span>written<span class="_ _2"> </span>in<span class="_ _2"> </span>matrix<span class="_ _3"> </span>notation<span class="_ _3"> </span>as<span class="_ _2"> </span>follows:</span></span></span></div><div class="t m0 x29 ha y7f ffb fs1 fc0 sc0 ls0 ws0">β</div><div class="t m0 x2a he y80 ffa fs6 fc0 sc0 ls0 ws0">0</div><div class="t m0 x2a hc y81 ff9 fs4 fc0 sc0 ls50 ws0">ijk</div><div class="t m0 x2b h12 y82 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x2b h12 y83 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x2b h12 y84 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x2c h12 y82 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x2c h12 y83 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x2c h12 y84 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x2d h11 y85 ff9 fs4 fc0 sc0 ls0 ws0">n<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x2d h13 y86 ff9 fs4 fc0 sc0 ls0 ws0">i<span class="ff8">;<span class="_ _6"> </span></span>j<span class="ff8">;</span>k<span class="_ _f"></span><span class="ffa">¼<span class="ff3">0</span></span></div><div class="t m0 x2e hb y87 ffa fs1 fc0 sc0 ls0 ws0">¼<span class="_ _28"> </span><span class="ff3">M</span></div><div class="t m0 x20 hb y88 ffa fs1 fc0 sc0 ls51 ws0">jj</div><div class="t m0 x2f h7 y87 ff6 fs1 fc0 sc0 ls0 ws0">⊗<span class="_ _3"> </span><span class="ff3">M</span></div><div class="t m0 x30 hb y88 ffa fs1 fc0 sc0 ls51 ws0">jj</div><div class="t m0 x31 h7 y87 ff6 fs1 fc0 sc0 ls0 ws0">⊗<span class="_ _3"> </span><span class="ff3">M</span></div><div class="t m0 x32 hb y88 ffa fs1 fc0 sc0 ls51 ws0">jj</div><div class="t m0 x10 hb y87 ffa fs1 fc0 sc0 ls52 ws0">ðÞ</div><div class="t m0 x33 hc y89 ff9 fs4 fc0 sc0 ls0 ws0">t</div><div class="t m0 x34 h14 y87 ff9 fs1 fc0 sc0 ls0 ws0">I</div><div class="t m0 x35 hb y88 ffa fs1 fc0 sc0 ls53 ws0">jj</div><div class="t m0 x36 hb y87 ffa fs1 fc0 sc0 ls0 ws0">ð<span class="ff3">4</span>Þ</div><div class="t m0 x1 h6 y8a ff3 fs1 fc0 sc0 ls22 ws0">where<span class="_ _3"> </span>the<span class="_ _2"> </span>point<span class="_ _2"> </span>spread<span class="_ _2"> </span>operator<span class="_ _3"> </span>|<span class="_ _f"></span><span class="ff9 ls0">M</span><span class="ls54">|i<span class="_ _14"></span>s</span></div><div class="t m0 x37 h6 y8b ff3 fs1 fc0 sc0 ls0 ws0">M</div><div class="t m0 x38 hb y8c ffa fs1 fc0 sc0 ls51 ws0">jj</div><div class="t m0 x39 hb y8b ffa fs1 fc0 sc0 ls0 ws0">¼</div><div class="t m0 x3a h14 y8d ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x3b h15 y8e ff3 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x3c h14 y8f ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x3d h15 y8e ff3 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x3e hb y90 ffa fs1 fc0 sc0 ls55 ws0">ðÞ</div><div class="t m0 x3f h14 y91 ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x40 h15 y8e ff3 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x41 h14 y8f ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x42 h15 y8e ff3 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x43 hb y90 ffa fs1 fc0 sc0 ls56 ws0">ðÞ</div><div class="t m0 x44 h7 y91 ff6 fs1 fc0 sc0 ls0 ws0">⋯<span class="_ _8"> </span><span class="ff9">u</span></div><div class="t m0 x45 h11 y8e ff9 fs4 fc0 sc0 ls0 ws0">n<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x46 h14 y8f ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x47 h15 y8e ff3 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x48 hb y90 ffa fs1 fc0 sc0 ls57 ws0">ðÞ</div><div class="t m0 x3a h14 y92 ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x3b h15 y93 ff3 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x3c h14 y94 ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x3d h15 y93 ff3 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x3e hb y94 ffa fs1 fc0 sc0 ls55 ws0">ðÞ<span class="_ _29"></span><span class="ff9 ls0">u</span></div><div class="t m0 x40 h15 y93 ff3 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x41 h14 y94 ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x42 h15 y93 ff3 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x43 h7 y94 ffa fs1 fc0 sc0 ls56 ws0">ðÞ<span class="_ _5"> </span><span class="ff6 ls0">⋯<span class="_ _d"> </span><span class="ff9">u</span></span></div><div class="t m0 x45 h11 y93 ff9 fs4 fc0 sc0 ls0 ws0">n<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x46 h14 y94 ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x47 h15 y93 ff3 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x48 hb y94 ffa fs1 fc0 sc0 ls57 ws0">ðÞ</div><div class="t m0 x49 h7 y95 ff6 fs1 fc0 sc0 ls0 ws0">⋮</div><div class="t m0 x4a h14 y96 ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x4b h15 y97 ff3 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x4c h14 y98 ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x1f h11 y97 ff9 fs4 fc0 sc0 ls0 ws0">n<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x4d hb y99 ffa fs1 fc0 sc0 ls58 ws0">ðÞ</div><div class="t m0 x40 h14 y9a ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x4e h15 y97 ff3 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x4f h14 y98 ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x30 h11 y97 ff9 fs4 fc0 sc0 ls0 ws0">n<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x50 hb y99 ffa fs1 fc0 sc0 ls58 ws0">ðÞ</div><div class="t m0 x51 h7 y9a ff6 fs1 fc0 sc0 ls0 ws0">⋯<span class="_ _8"> </span><span class="ff9">u</span></div><div class="t m0 x52 h11 y97 ff9 fs4 fc0 sc0 ls0 ws0">n<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x53 h14 y98 ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x54 h11 y97 ff9 fs4 fc0 sc0 ls0 ws0">n<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x55 hb y99 ffa fs1 fc0 sc0 ls59 ws0">ðÞ</div><div class="t m0 x56 h12 y9b ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x56 h12 y9c ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x56 h12 y9d ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x56 h12 y9e ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x56 h12 y9f ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x56 h12 ya0 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x56 h12 ya1 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x56 h12 ya2 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h12 y9b ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h12 y9c ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h12 y9d ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h12 y9e ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h12 y9f ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h12 ya0 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h12 ya1 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x57 h12 ya2 ffd fs1 fc0 sc0 ls0 ws0"></div><div class="t m0 x36 hb ya3 ffa fs1 fc0 sc0 ls0 ws0">ð<span class="ff3">5</span>Þ</div><div class="t m0 xb h7 ya4 ff6 fs1 fc0 sc0 ls0 ws0">⊗<span class="_ _c"> </span><span class="ff3 ls5a">is<span class="_ _1"> </span>the<span class="_ _2a"> </span>outer<span class="_ _e"> </span>product<span class="_ _2a"> </span>and<span class="_ _e"> </span>|</span><span class="ffb">β</span></div><div class="t m2 x4d hd ya5 ff9 fs5 fc0 sc0 ls5b ws0">ijk</div><div class="t m2 x4d h16 ya6 ff5 fs5 fc0 sc0 ls0 ws0">′</div><div class="t m0 x58 h6 ya7 ff3 fs1 fc0 sc0 ls5c ws0">|b<span class="_ _2b"></span>et<span class="_ _2b"></span>h<span class="_ _2b"></span>e<span class="ff9 ls0">n</span></div><div class="t m2 x59 h17 ya8 ff3 fs5 fc0 sc0 ls0 ws0">3</div><div class="t m0 x5a h6 ya7 ff3 fs1 fc0 sc0 ls5d ws0">matrices<span class="_ _e"> </span>arranged<span class="_ _e"> </span>in<span class="_ _e"> </span>the<span class="_ _2a"> </span>dictionary</div><div class="t m0 x1 h6 ya9 ff3 fs1 fc0 sc0 ls5e ws0">sequence<span class="_ _1"> </span>that<span class="_ _c"> </span>takes<span class="_ _1"> </span>the<span class="_ _c"> </span>ef<span class="_ _0"></span>fect<span class="_ _1"> </span>of<span class="_ _c"> </span>individual<span class="_ _1"> </span>R,<span class="_ _c"> </span>G<span class="_ _1"> </span>and<span class="_ _c"> </span>B<span class="_ _1"> </span>planes<span class="_ _1"> </span>as<span class="_ _c"> </span>well<span class="_ _1"> </span>as<span class="_ _c"> </span>inte<span class="_ _0"></span>ractions</div><div class="t m0 x1 h4 y23 ff3 fs2 fc0 sc0 ls21 ws0">52<span class="_ _11"> </span>Multimed<span class="_ _3"> </span>T<span class="_"> </span>ools<span class="_ _4"> </span>App<span class="_ _f"></span>l<span class="_ _3"> </span>(2016)<span class="_ _3"> </span>75:<span class="_ _f"></span>49<span class="ff5 ls0">–</span><span class="ls10">69</span></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[2.037103,0.000000,0.000000,2.037103,0.000000,0.000000]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6254db6047503a0a93cceb35/bg5.jpg"><div class="t m0 x1 ha y29 ff3 fs1 fc0 sc0 ls5f ws0">among<span class="_ _c"> </span>the<span class="_ _d"> </span>colour<span class="_ _c"> </span>planes.<span class="_ _d"> </span>|<span class="ff9 ls0">I</span><span class="ls60">|<span class="_ _c"> </span>is<span class="_ _d"> </span>the<span class="_ _c"> </span>image<span class="_ _d"> </span>and<span class="_ _c"> </span>|<span class="ffb ls0">β</span></span></div><div class="t m2 x5b hd yaa ff9 fs5 fc0 sc0 ls61 ws0">ijk</div><div class="t m2 x5b h16 yab ff5 fs5 fc0 sc0 ls0 ws0">′</div><div class="t m0 x51 h6 y29 ff3 fs1 fc0 sc0 ls62 ws0">|<span class="_ _c"> </span>be<span class="_ _c"> </span>the<span class="_ _d"> </span>coefficients<span class="_ _c"> </span>of<span class="_ _c"> </span>transforma-</div><div class="t m0 x1 h6 y2a ff3 fs1 fc0 sc0 ls63 ws0">tion.<span class="_ _1"> </span>W<span class="_ _7"></span>e<span class="_ _1"> </span>consider<span class="_ _1"> </span>a<span class="_ _1"> </span>set<span class="_ _1"> </span>of<span class="_ _1"> </span>orthogo<span class="_"> </span>nal<span class="_ _1"> </span>polynomials<span class="_ _c"> </span><span class="ff9 ls0">u</span></div><div class="t m2 x5c h17 yac ff3 fs5 fc0 sc0 ls0 ws0">0</div><div class="t m0 x5d h6 yad ff3 fs1 fc0 sc0 ls0 ws0">(<span class="ff9">x</span><span class="ls64">),<span class="_ _8"> </span></span><span class="ff9">u</span></div><div class="t m2 x5e h17 yac ff3 fs5 fc0 sc0 ls0 ws0">1</div><div class="t m0 x5f h6 yad ff3 fs1 fc0 sc0 ls0 ws0">(<span class="ff9">x</span><span class="ls65">),<span class="_ _8"> </span></span><span class="ff5">…</span>,<span class="_ _2c"> </span><span class="ff9">u</span></div><div class="t m2 x60 h18 yac ff9 fs5 fc0 sc0 ls0 ws0">n<span class="_ _15"></span><span class="ff6">−<span class="_ _15"></span><span class="ff3">1</span></span></div><div class="t m0 x61 h6 yad ff3 fs1 fc0 sc0 ls0 ws0">(<span class="ff9">x</span><span class="ls66">)o<span class="_ _29"></span>fd<span class="_ _2d"></span>e<span class="_ _2d"></span>g<span class="_ _2e"></span>r<span class="_ _2d"></span>e<span class="_ _2e"></span>e<span class="_ _2d"></span>s</span></div><div class="t m0 x1 h6 yae ff3 fs1 fc0 sc0 ls67 ws0">0,<span class="_ _e"> </span>1,<span class="_ _2a"> </span>2,<span class="_ _2a"> </span><span class="ff5 ls0">…<span class="ff3">,<span class="_ _2a"> </span><span class="ff9">n</span><span class="ls68">-1,<span class="_ _2a"> </span>respectively<span class="_ _7"></span>.<span class="_ _2a"> </span>The<span class="_ _e"> </span>generating<span class="_ _e"> </span>formula<span class="_ _2a"> </span>for<span class="_ _e"> </span>the<span class="_ _2a"> </span>polynomials<span class="_ _e"> </span>is<span class="_ _2a"> </span>as</span></span></span></div><div class="t m0 x1 h6 yaf ff3 fs1 fc0 sc0 ls69 ws0">follows:</div><div class="t m0 x62 h14 yb0 ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x19 h13 yb1 ff9 fs4 fc0 sc0 ls0 ws0">i<span class="ffa">þ<span class="ff3">1</span></span></div><div class="t m0 x63 h7 yb2 ff9 fs1 fc0 sc0 ls0 ws0">x<span class="_ _24"></span><span class="ffa ls6a">ðÞ<span class="_ _2f"></span>¼<span class="_ _4"> </span><span class="ff9 ls0">x<span class="ff6">−<span class="ffb">μ<span class="_ _30"></span><span class="ffa ls6b">ðÞ<span class="_ _31"></span><span class="ff9 ls0">u</span></span></span></span></span></span></div><div class="t m0 x64 hc yb1 ff9 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x3f h7 yb2 ff9 fs1 fc0 sc0 ls0 ws0">x<span class="_ _24"></span><span class="ffa ls6a">ðÞ<span class="_ _1c"></span><span class="ff6 ls0">−<span class="ff9">b</span></span></span></div><div class="t m0 x50 hc yb1 ff9 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x3 hb yb2 ff9 fs1 fc0 sc0 ls0 ws0">n<span class="_ _23"></span><span class="ffa ls6c">ðÞ<span class="_ _32"></span><span class="ff9 ls0">u</span></span></div><div class="t m0 x5b h11 yb1 ff9 fs4 fc0 sc0 ls0 ws0">i<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x14 h7 yb2 ff9 fs1 fc0 sc0 ls0 ws0">x<span class="_ _24"></span><span class="ffa ls43">ðÞ<span class="_ _2c"> </span><span class="ff9 ls6d">for<span class="_ _2c"> </span>i<span class="_ _6"></span><span class="ff6 ls0">≥<span class="_ _6"></span><span class="ff3">1<span class="_ _33"> </span><span class="ffa">ð</span>6<span class="ffa">Þ</span></span></span></span></span></div><div class="t m0 xb h6 yb3 ff3 fs1 fc0 sc0 ls0 ws0">Here<span class="_ _3"> </span><span class="ff9">u</span></div><div class="t m2 x65 h17 yb4 ff3 fs5 fc0 sc0 ls0 ws0">1</div><div class="t m0 x66 h7 yb5 ff3 fs1 fc0 sc0 ls0 ws0">(<span class="ff9">x</span><span class="ls48">)=</span><span class="ff9">x<span class="_ _f"></span><span class="ff6">−<span class="_ _6"></span><span class="ffb">μ</span></span></span><span class="ls6e">,a<span class="_ _34"></span>n<span class="_ _34"></span>d<span class="ff9 ls0">u</span></span></div><div class="t m2 x67 h17 yb4 ff3 fs5 fc0 sc0 ls0 ws0">0</div><div class="t m0 x68 h6 yb5 ff3 fs1 fc0 sc0 ls0 ws0">(<span class="ff9">x</span><span class="ls6f">)=1</span></div><div class="t m0 xb h6 yb6 ff3 fs1 fc0 sc0 ls0 ws0">Whe<span class="_ _0"></span>re:</div><div class="t m0 x69 h14 yb7 ff9 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1b hc yb8 ff9 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x68 hb yb9 ff9 fs1 fc0 sc0 ls0 ws0">n<span class="_ _23"></span><span class="ffa ls6c">ðÞ<span class="_ _10"></span>¼</span></div><div class="t m0 x6a h14 yba ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x6b hc ybb ff9 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x64 hf yba ff8 fs1 fc0 sc0 ls0 ws0">;<span class="_ _5"> </span><span class="ff9">u</span></div><div class="t m0 x6c hc ybb ff9 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x3c hb ybc ffa fs1 fc0 sc0 ls70 ws0">hi</div><div class="t m0 x3e h14 ybd ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x58 h11 ybe ff9 fs4 fc0 sc0 ls0 ws0">i<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x64 hf ybf ff8 fs1 fc0 sc0 ls0 ws0">;<span class="_ _5"> </span><span class="ff9">u</span></div><div class="t m0 x6c h11 ybe ff9 fs4 fc0 sc0 ls0 ws0">i<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x1e hb yc0 ffa fs1 fc0 sc0 ls71 ws0">hi</div><div class="t m0 x6d hb yc1 ffa fs1 fc0 sc0 ls0 ws0">¼</div><div class="t m0 x6e h12 yc2 ffd fs1 fc0 sc0 ls0 ws0">X</div><div class="t m0 x13 hc yc3 ff9 fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x13 h13 yc4 ff9 fs4 fc0 sc0 ls0 ws0">x<span class="ffa">¼<span class="ff3">1</span></span></div><div class="t m0 x6f h14 yc5 ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x70 h15 yc6 ff3 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x70 hc yc7 ff9 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x71 hb yc5 ff9 fs1 fc0 sc0 ls0 ws0">x<span class="_ _24"></span><span class="ffa ls6a">ðÞ</span></div><div class="t m0 x59 h12 yc8 ffd fs1 fc0 sc0 ls0 ws0">X</div><div class="t m0 x23 hc yc9 ff9 fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x23 h13 yca ff9 fs4 fc0 sc0 ls0 ws0">x<span class="ffa">¼<span class="ff3">1</span></span></div><div class="t m0 x72 h14 ycb ff9 fs1 fc0 sc0 ls0 ws0">u</div><div class="t m0 x73 h15 ycc ff3 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x73 h11 ycd ff9 fs4 fc0 sc0 ls0 ws0">i<span class="ff6">−<span class="ff3">1</span></span></div><div class="t m0 x48 hb ycb ff9 fs1 fc0 sc0 ls0 ws0">x<span class="_ _24"></span><span class="ffa ls6a">ðÞ</span></div><div class="t m0 x36 hb yce ffa fs1 fc0 sc0 ls0 ws0">ð<span class="ff3">7</span>Þ</div><div class="t m0 x74 hb ycf ffb fs1 fc0 sc0 ls0 ws0">μ<span class="_ _2"> </span><span class="ffa">¼</span></div><div class="t m0 x4e h6 yd0 ff3 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x4e h14 yd1 ff9 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x75 h12 yd2 ffd fs1 fc0 sc0 ls0 ws0">X</div><div class="t m0 x41 h13 yd3 ff9 fs4 fc0 sc0 ls0 ws0">t<span class="ffa">¼<span class="ff3">1</span></span></div><div class="t m0 x42 hc yd4 ff9 fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x49 hb yd5 ff9 fs1 fc0 sc0 ls0 ws0">x<span class="_ _35"> </span><span class="ffa">ð<span class="ff3">8</span>Þ</span></div><div class="t m0 xb h6 yd6 ff3 fs1 fc0 sc0 ls0 ws0">Cons<span class="_ _0"></span>ide<span class="_ _0"></span>ri<span class="_ _0"></span>ng<span class="_ _2"> </span>the<span class="_ _3"> </span>range<span class="_ _3"> </span>of<span class="_ _2"> </span>valu<span class="_ _0"></span>es<span class="_ _2"> </span>of<span class="_ _2"> </span><span class="ff9">t<span class="_ _2"> </span></span><span class="ls2c">to<span class="_ _9"> </span></span><span class="ff9">x<span class="_ _15"></span></span>=<span class="_ _15"></span><span class="ff9">i</span>,<span class="_ _25"> </span><span class="ff9">i<span class="_ _15"></span></span><span class="ls72">=1<span class="_ _7"></span>,2<span class="_ _7"></span>,3<span class="_ _12"></span>,<span class="ff5 ls0">…<span class="ff3">,<span class="_ _15"></span><span class="ff9">n</span><span class="ls73">,w<span class="_ _13"></span>eg<span class="_ _14"></span>e<span class="_ _14"></span>t</span></span></span></span></div><div class="t m0 x19 h14 yd7 ff9 fs1 fc0 sc0 ls0 ws0">b</div><div class="t m0 x76 hc yd8 ff9 fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x77 hb yd9 ff9 fs1 fc0 sc0 ls0 ws0">n<span class="_ _23"></span><span class="ffa ls6c">ðÞ<span class="_ _10"></span>¼</span></div><div class="t m0 x2c h14 yda ff9 fs1 fc0 sc0 ls0 ws0">i</div><div class="t m0 x78 h15 ydb ff3 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x79 h14 yda ff9 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x3e h15 ydb ff3 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3c h7 yda ff6 fs1 fc0 sc0 ls0 ws0">−<span class="ff9">i</span></div><div class="t m0 x2e h15 ydb ff3 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3b hb yda ffa fs1 fc0 sc0 ls4e ws0">ðÞ</div><div class="t m0 x2c h6 ydc ff3 fs1 fc0 sc0 ls74 ws0">44<span class="_ _2d"></span><span class="ff9 ls0">i</span></div><div class="t m0 x4c h15 ydd ff3 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x58 h7 yde ff6 fs1 fc0 sc0 ls0 ws0">−<span class="ff3">1<span class="_ _36"></span><span class="ffa ls75">ðÞ</span></span></div><div class="t m0 x7a hb ydf ff8 fs1 fc0 sc0 ls0 ws0">;<span class="_ _25"> </span><span class="ffb">μ<span class="_ _3"> </span><span class="ffa">¼</span></span></div><div class="t m0 x59 h6 yda ff3 fs1 fc0 sc0 ls0 ws0">1</div><div class="t m0 x59 h14 ye0 ff9 fs1 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7b h12 ye1 ffd fs1 fc0 sc0 ls0 ws0">X</div><div class="t m0 x44 h13 ye2 ff9 fs4 fc0 sc0 ls0 ws0">x<span class="ffa">¼<span class="ff3">1</span></span></div><div class="t m0 x51 hc ye3 ff9 fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7c h14 yd9 ff9 fs1 fc0 sc0 ls0 ws0">x</div><div class="t m0 x70 hb ye4 ffa fs1 fc0 sc0 ls0 ws0">¼</div><div class="t m0 x48 hb ye5 ff9 fs1 fc0 sc0 ls0 ws0">n<span class="_ _b"> </span><span class="ffa">þ<span class="_ _3"> </span><span class="ff3">1</span></span></div><div class="t m0 x7d h6 ye6 ff3 fs1 fc0 sc0 ls0 ws0">2</div><div class="t m0 x36 hb ye7 ffa fs1 fc0 sc0 ls0 ws0">ð<span class="ff3">9</span>Þ</div><div class="t m0 xb h6 ye8 ff3 fs1 fc0 sc0 ls0 ws0">Poin<span class="_ _0"></span>t-<span class="_ _0"></span>spre<span class="_ _0"></span>ad<span class="_ _3"> </span>oper<span class="_ _0"></span>at<span class="_ _0"></span>ors<span class="_ _3"> </span>|M|<span class="_ _3"> </span>of<span class="_ _3"> </span>diffe<span class="_ _0"></span>rent<span class="_ _4"> </span>sizes<span class="_ _3"> </span>can<span class="_ _3"> </span>be<span class="_ _3"> </span>cons<span class="_ _0"></span>truc<span class="_ _0"></span>ted<span class="_ _3"> </span>from<span class="_ _4"> </span>the<span class="_ _2"> </span>abo<span class="_ _0"></span>ve<span class="_ _3"> </span>ortho<span class="_ _0"></span>gon<span class="_ _0"></span>al</div><div class="t m0 x1 h7 ye9 ff3 fs1 fc0 sc0 ls0 ws0">poly<span class="_ _0"></span>no<span class="_ _0"></span>mia<span class="_ _0"></span>ls<span class="_ _b"> </span>for<span class="_ _4"> </span><span class="ff9">n<span class="_ _15"></span><span class="ff6">≥<span class="_ _6"></span></span></span><span class="ls76">2a<span class="_ _10"></span>n<span class="_ _13"></span>d<span class="ff9 ls0">x</span></span></div><div class="t m2 x76 hd yea ff9 fs5 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7e h6 yeb ff3 fs1 fc0 sc0 ls0 ws0">=<span class="_ _15"></span><span class="ff9">i<span class="_ _6"></span></span>+<span class="_ _15"></span>1<span class="_ _4"> </span>using<span class="_ _b"> </span>equa<span class="_ _0"></span>tio<span class="_ _0"></span>n<span class="_ _4"> </span>(<span class="fc1">5</span>).<span class="_ _b"> </span>Here<span class="_ _0"></span>,<span class="_ _4"> </span>for<span class="_ _b"> </span>the<span class="_ _4"> </span>conv<span class="_ _0"></span>eni<span class="_ _0"></span>enc<span class="_ _0"></span>e<span class="_ _b"> </span>of<span class="_ _4"> </span>point-<span class="_ _0"></span>spr<span class="_ _0"></span>ead</div><div class="t m0 x1 h6 yec ff3 fs1 fc0 sc0 ls0 ws0">operat<span class="_ _0"></span>ions,<span class="_ _c"> </span>the<span class="_ _c"> </span>el<span class="_ _0"></span>ement<span class="_ _0"></span>s<span class="_ _c"> </span>of<span class="_ _c"> </span>|M|<span class="_ _c"> </span>are<span class="_ _c"> </span>scaled<span class="_ _c"> </span>to<span class="_ _c"> </span>make<span class="_ _c"> </span>them<span class="_ _c"> </span>integers<span class="_ _0"></span>.<span class="_ _c"> </span>Havin<span class="_ _0"></span>g<span class="_ _c"> </span>presente<span class="_ _0"></span>d<span class="_ _c"> </span>the</div><div class="t m0 x1 h6 yed ff3 fs1 fc0 sc0 ls0 ws0">fra<span class="_ _0"></span>mewo<span class="_ _0"></span>rk<span class="_ _9"> </span>for<span class="_ _a"> </span>colou<span class="_ _0"></span>r<span class="_ _9"> </span>image<span class="_ _9"> </span>analys<span class="_ _0"></span>is<span class="_ _9"> </span>in<span class="_ _a"> </span>terms<span class="_ _9"> </span>of<span class="_ _a"> </span>orthog<span class="_ _0"></span>on<span class="_ _0"></span>al<span class="_ _a"> </span>poly<span class="_ _0"></span>no<span class="_ _0"></span>mia<span class="_ _0"></span>ls<span class="_ _a"> </span>mode<span class="_ _0"></span>l,<span class="_ _9"> </span>an<span class="_ _a"> </span>imple<span class="_ _0"></span>-</div><div class="t m0 x1 h6 yee ff3 fs1 fc0 sc0 ls0 ws0">ment<span class="_ _0"></span>ati<span class="_ _0"></span>on<span class="_ _2"> </span>of<span class="_ _9"> </span>the<span class="_ _2"> </span>same<span class="_ _2"> </span>that<span class="_ _2"> </span>takes<span class="_ _2"> </span>less<span class="_ _2"> </span>time<span class="_ _9"> </span>c<span class="_ _0"></span>all<span class="_ _0"></span>ed<span class="_ _9"> </span>F<span class="_ _0"></span>ast<span class="_ _2"> </span>OPT<span class="_ _2"> </span>is<span class="_ _9"> </span>pr<span class="_ _0"></span>op<span class="_ _0"></span>ose<span class="_ _0"></span>d<span class="_ _9"> </span>and<span class="_ _2"> </span>pre<span class="_ _0"></span>sen<span class="_ _0"></span>ted<span class="_ _2"> </span>in<span class="_ _9"> </span>the</div><div class="t m0 x1 h6 yef ff3 fs1 fc0 sc0 ls0 ws0">next<span class="_ _3"> </span>subs<span class="_ _0"></span>ect<span class="_ _0"></span>ion<span class="_ _0"></span>.</div><div class="t m0 x1 h6 yf0 ff3 fs1 fc0 sc0 ls0 ws0">3.2<span class="_ _3"> </span>Fast<span class="_ _3"> </span>OPT</div><div class="t m0 x1 h6 yf1 ff3 fs1 fc0 sc0 ls77 ws0">Modifications<span class="_ _2a"> </span>to<span class="_ _e"> </span>the<span class="_ _2a"> </span>existing<span class="_ _2a"> </span>transform<span class="_ _2a"> </span><span class="ls78">have<span class="_ _2a"> </span>come<span class="_ _e"> </span>into<span class="_ _2a"> </span>existence<span class="_ _2a"> </span>following<span class="_ _2a"> </span>the</span></div><div class="t m0 x1 h6 yf2 ff3 fs1 fc0 sc0 ls79 ws0">original<span class="_ _2c"> </span>proposals,<span class="_ _e"> </span>with<span class="_ _2c"> </span>a<span class="_ _e"> </span>clear<span class="_ _2c"> </span>objective,<span class="_ _e"> </span><span class="ls7a">for<span class="_ _2c"> </span>instance,<span class="_ _e"> </span>the<span class="_ _2c"> </span>Fast<span class="_ _e"> </span>Fourier<span class="_ _2c"> </span>Transform</span></div><div class="t m0 x1 h6 yf3 ff3 fs1 fc0 sc0 ls7a ws0">(FFT)<span class="_ _1"> </span>(Cool67)<span class="_ _c"> </span>produces<span class="_ _1"> </span>the<span class="_ _c"> </span>same<span class="_ _1"> </span>result<span class="_ _1"> </span>as<span class="_ _c"> </span>that<span class="_ _1"> </span>of<span class="_ _c"> </span>Discrete<span class="_ _1"> </span>Fourier<span class="_ _1"> </span>Transform<span class="_ _1"> </span>(DFT)</div><div class="t m0 x1 h6 yf4 ff3 fs1 fc0 sc0 ls7a ws0">and<span class="_ _1"> </span>the<span class="_ _1"> </span>only<span class="_ _1"> </span>difference<span class="_ _1"> </span>is<span class="_ _1"> </span>that<span class="_ _c"> </span>FFT<span class="_ _9"> </span>is<span class="_ _1"> </span>much<span class="_ _c"> </span>faster<span class="_ _7"></span>.<span class="_ _1"> </span>Motivated<span class="_ _1"> </span>by<span class="_ _1"> </span>this<span class="_ _c"> </span>prede<span class="_ _0"></span>cessor<span class="_ _1"> </span>of<span class="_ _1"> </span>a</div><div class="t m0 x1 h6 yf5 ff3 fs1 fc0 sc0 ls7a ws0">fast<span class="_ _1"> </span>implementation<span class="_ _c"> </span>of<span class="_ _1"> </span>a<span class="_ _1"> </span>transform,<span class="_ _1"> </span>in<span class="_ _c"> </span>this<span class="_ _1"> </span>s<span class="ls7b">ubsection,<span class="_ _1"> </span>an<span class="_ _c"> </span>ef<span class="_ _0"></span>ficient<span class="_ _1"> </span>and<span class="_ _1"> </span>fast<span class="_ _c"> </span>implemen-</span></div><div class="t m0 x1 h6 yf6 ff3 fs1 fc0 sc0 ls62 ws0">tation<span class="_ _c"> </span>for<span class="_ _1"> </span>calculating<span class="_ _c"> </span>the<span class="_ _c"> </span>point<span class="_ _c"> </span>spread<span class="_ _1"> </span>operator<span class="_ _c"> </span>|M|<span class="_ _c"> </span>for<span class="_ _c"> </span>an<span class="_ _1"> </span>arbitrary<span class="_ _c"> </span>block<span class="_ _c"> </span>of<span class="_ _c"> </span>size<span class="_ _1"> </span>(<span class="_"> </span><span class="ff9 ls0">B<span class="_ _6"></span><span class="ff3">×</span></span></div><div class="t m0 x1 h6 yf7 ff9 fs1 fc0 sc0 ls0 ws0">B<span class="ff3 ls6d">)<span class="_ _2c"> </span>devised<span class="_ _2c"> </span>by<span class="_ _8"> </span>taking<span class="_ _2c"> </span>advantage<span class="_ _2c"> </span>of<span class="_ _2c"> </span>symmetry<span class="_ _2c"> </span>the<span class="_ _8"> </span>orthog<span class="_"> </span>onal<span class="_ _2c"> </span>polynomials<span class="_ _2c"> </span>exhibit<span class="_ _2c"> </span>is</span></div><div class="t m0 x1 h6 yf8 ff3 fs1 fc0 sc0 ls7a ws0">presented.<span class="_ _2c"> </span>Among<span class="_ _e"> </span>the<span class="_ _e"> </span><span class="ff9 ls0">B</span></div><div class="t m2 x7f h17 yf9 ff3 fs5 fc0 sc0 ls0 ws0">2</div><div class="t m0 x80 h6 yfa ff3 fs1 fc0 sc0 ls0 ws0">val<span class="_"> </span>u<span class="_ _f"></span>es<span class="_ _e"> </span>of<span class="_ _e"> </span>|M<span class="_ _f"></span>|,<span class="_ _e"> </span>cal<span class="_ _f"></span>cul<span class="_ _f"></span>ati<span class="_ _f"></span>on<span class="_ _e"> </span>of<span class="_ _e"> </span>(<span class="ff9">B</span></div><div class="t m2 x81 h17 yf9 ff3 fs5 fc0 sc0 ls0 ws0">2</div><div class="t m0 x82 h7 yfa ff6 fs1 fc0 sc0 ls0 ws0">−<span class="_ _6"></span><span class="ff9">B<span class="ff3">)<span class="_ _e"> </span>val<span class="_ _f"></span>ues<span class="_ _e"> </span>is<span class="_ _e"> </span>su<span class="_ _f"></span>ffic<span class="_ _f"></span>ien<span class="_ _f"></span>t</span></span></div><div class="t m0 x1 h6 yfb ff3 fs1 fc0 sc0 ls7c ws0">since<span class="_ _d"> </span><span class="ff9 ls0">u</span></div><div class="t m2 x83 h17 yfc ff3 fs5 fc0 sc0 ls0 ws0">0</div><div class="t m0 x84 h6 yfd ff3 fs1 fc0 sc0 ls0 ws0">(<span class="ff9">x</span><span class="ls5f">)<span class="_ _6"></span>=<span class="_ _6"></span>1.<span class="_ _d"> </span>On<span class="_ _d"> </span>further<span class="_ _d"> </span>inspection<span class="_ _d"> </span>of<span class="_ _d"> </span>the<span class="_ _d"> </span>orthogonal<span class="_ _d"> </span>polynomials<span class="_ _d"> </span>operator<span class="_ _d"> </span>|<span class="_"> </span></span><span class="ff9">M<span class="_ _f"></span></span><span class="ls7d">|,<span class="_ _d"> </span>the</span></div><div class="t m0 x1 h7 yfe ff3 fs1 fc0 sc0 ls7e ws0">same<span class="_ _8"> </span>point<span class="_ _2c"> </span>spread<span class="_ _2c"> </span>operator<span class="_ _8"> </span>ignoring<span class="_ _2c"> </span>the<span class="_ _2c"> </span>sign<span class="_ _8"> </span>appears<span class="_ _2c"> </span>in<span class="_ _8"> </span>rows<span class="_ _2c"> </span><span class="ff9 ls0">j<span class="_ _2c"> </span></span><span class="ls7c">and<span class="_ _2c"> </span>(<span class="ff9 ls0">B<span class="_ _6"></span><span class="ff6">−<span class="_ _6"></span></span>j<span class="_ _6"></span></span><span class="ls7f">+1<span class="_ _12"></span>)<span class="_ _7"></span>.<span class="_ _c"> </span>T<span class="_ _7"></span>h<span class="_ _12"></span>i<span class="_ _7"></span>s</span></span></div><div class="t m0 x1 h6 yff ff3 fs1 fc0 sc0 ls7e ws0">implies<span class="_ _8"> </span>that<span class="_ _2c"> </span>there<span class="_ _8"> </span>are<span class="_ _8"> </span>o<span class="_"> </span>nly<span class="_ _2c"> </span>(<span class="ff9 ls0">B</span></div><div class="t m2 x1d h17 y100 ff3 fs5 fc0 sc0 ls0 ws0">2</div><div class="t m0 x78 h7 y101 ff6 fs1 fc0 sc0 ls0 ws0">−<span class="_ _6"></span><span class="ff9">B<span class="ff3 ls80">)/2<span class="_ _8"> </span>distinct<span class="_ _8"> </span>elements<span class="_ _2c"> </span>even<span class="_ _8"> </span>though<span class="_ _8"> </span>|M|<span class="_ _2c"> </span>has<span class="_ _8"> </span>(</span>B</span></div><div class="t m2 x85 h17 y100 ff3 fs5 fc0 sc0 ls0 ws0">2</div><div class="t m0 x86 h7 y101 ff6 fs1 fc0 sc0 ls0 ws0">−<span class="_ _6"></span><span class="ff9">B<span class="ff3">)</span></span></div><div class="t m0 x1 h6 y102 ff3 fs1 fc0 sc0 ls81 ws0">distinct<span class="_ _c"> </span>entries.<span class="_ _1"> </span>A<span class="_ _c"> </span>sample<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _1"> </span>point<span class="_ _c"> </span>spread<span class="_ _c"> </span>operator<span class="_ _c"> </span>for<span class="_ _1"> </span>a<span class="_ _c"> </span>(8<span class="_ _6"></span>×<span class="_ _15"></span>8)<span class="_ _c"> </span>block<span class="_ _c"> </span>is<span class="_ _c"> </span>shown<span class="_ _1"> </span>in</div><div class="t m0 x1 h6 y103 ff3 fs1 fc0 sc0 ls81 ws0">equation<span class="_ _c"> </span>(<span class="fc1 ls82">10</span><span class="ls83">),<span class="_ _c"> </span>where<span class="_ _c"> </span><span class="ff9 ls0">C</span></span></div><div class="t m2 x87 hd y104 ff9 fs5 fc0 sc0 ls0 ws0">b</div><div class="t m0 x76 h7 y105 ff3 fs1 fc0 sc0 ls84 ws0">,0<span class="_ _2e"></span><span class="ff6 ls0">≤<span class="_ _6"></span><span class="ff9">b<span class="_ _6"></span></span>≤<span class="_ _6"></span><span class="ff3 ls85">27<span class="_ _c"> </span>denotes<span class="_ _c"> </span>the<span class="_ _c"> </span>orthogonal<span class="_ _d"> </span>polynomials.</span></span></div><div class="t m0 x1 h4 y23 ff3 fs2 fc0 sc0 ls0 ws0">Mul<span class="_ _0"></span>ti<span class="_ _0"></span>med<span class="_ _4"> </span>T<span class="_ _7"></span>ools<span class="_ _4"> </span>App<span class="_ _0"></span>l<span class="_ _4"> </span>(2016<span class="_ _0"></span>)<span class="_ _4"> </span>75:4<span class="_ _0"></span>9<span class="ff5">–</span><span class="ls10">69<span class="_ _11"> </span>53</span></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[2.037103,0.000000,0.000000,2.037103,0.000000,0.000000]}'></div></div>