function h = S_filter(varargin)
% H = S_FILTER(TYPE) creates a two-dimensional filter H of the
% specified type.
%
% H = S_FILTER('average',HSIZE) returns an averaging filter H of size
% HSIZE. HSIZE can be a vector specifying the number of rows and columns in
% H or a scalar, in which case H is a square matrix.
% The default HSIZE is [3 3].
%
% H = S_FILTER('disk',RADIUS) returns a circular averaging filter
% (pillbox) within the square matrix of side 2*RADIUS+1.
% The default RADIUS is 5.
%
% H =S_FILTER FSPECIAL('gaussian',HSIZE,SIGMA) returns a rotationally
% symmetric Gaussian lowpass filter of size HSIZE with standard
% deviation SIGMA (positive). HSIZE can be a vector specifying the
% number of rows and columns in H or a scalar, in which case H is a
% square matrix.
% The default HSIZE is [3 3], the default SIGMA is 0.5.
%
% H =S_FILTER FSPECIAL('laplacian',ALPHA) returns a 3-by-3 filter
% approximating the shape of the two-dimensional Laplacian
% operator. The parameter ALPHA controls the shape of the
% Laplacian and must be in the range 0.0 to 1.0.
% The default ALPHA is 0.2.
%
% H = S_FILTER('log',HSIZE,SIGMA) returns a rotationally symmetric
% Laplacian of Gaussian filter of size HSIZE with standard deviation
% SIGMA (positive). HSIZE can be a vector specifying the number of rows
% and columns in H or a scalar, in which case H is a square matrix.
% The default HSIZE is [5 5], the default SIGMA is 0.5.
%
% H = S_FILTER('motion',LEN,THETA) returns a filter to approximate, once
% convolved with an image, the linear motion of a camera by LEN pixels,
% with an angle of THETA degrees in a counter-clockwise direction. The
% filter becomes a vector for horizontal and vertical motions. The
% default LEN is 9, the default THETA is 0, which corresponds to a
% horizontal motion of 9 pixels.
%
% H = S_FILTER('prewitt') returns 3-by-3 filter that emphasizes
% horizontal edges by approximating a vertical gradient. If you need to
% emphasize vertical edges, transpose the filter H: H'.
%
% [1 1 1;0 0 0;-1 -1 -1].
%
% H = S_FILTER('sobel') returns 3-by-3 filter that emphasizes
% horizontal edges utilizing the smoothing effect by approximating a
% vertical gradient. If you need to emphasize vertical edges, transpose
% the filter H: H'.
%
% [1 2 1;0 0 0;-1 -2 -1].
%
% Class Support
% -------------
% H is of class double.
[type, p2, p3] = ParseInputs(varargin{:});
switch type
case 'average' % Smoothing filter
siz = p2;
h = ones(siz)/prod(siz);
case 'disk' % Disk filter
rad = p2;
crad = ceil(rad-0.5);
[x,y] = meshgrid(-crad:crad,-crad:crad);
maxxy = max(abs(x),abs(y));
minxy = min(abs(x),abs(y));
m1 = (rad^2 < (maxxy+0.5).^2 + (minxy-0.5).^2).*(minxy-0.5) + ...
(rad^2 >= (maxxy+0.5).^2 + (minxy-0.5).^2).* ...
sqrt(rad^2 - (maxxy + 0.5).^2);
m2 = (rad^2 > (maxxy-0.5).^2 + (minxy+0.5).^2).*(minxy+0.5) + ...
(rad^2 <= (maxxy-0.5).^2 + (minxy+0.5).^2).* ...
sqrt(rad^2 - (maxxy - 0.5).^2);
sgrid = (rad^2*(0.5*(asin(m2/rad) - asin(m1/rad)) + ...
0.25*(sin(2*asin(m2/rad)) - sin(2*asin(m1/rad)))) - ...
(maxxy-0.5).*(m2-m1) + (m1-minxy+0.5)) ...
.*((((rad^2 < (maxxy+0.5).^2 + (minxy+0.5).^2) & ...
(rad^2 > (maxxy-0.5).^2 + (minxy-0.5).^2)) | ...
((minxy==0)&(maxxy-0.5 < rad)&(maxxy+0.5>=rad))));
sgrid = sgrid + ((maxxy+0.5).^2 + (minxy+0.5).^2 < rad^2);
sgrid(crad+1,crad+1) = min(pi*rad^2,pi/2);
if ((crad>0) && (rad > crad-0.5) && (rad^2 < (crad-0.5)^2+0.25))
m1 = sqrt(rad^2 - (crad - 0.5).^2);
m1n = m1/rad;
sg0 = 2*(rad^2*(0.5*asin(m1n) + 0.25*sin(2*asin(m1n)))-m1*(crad-0.5));
sgrid(2*crad+1,crad+1) = sg0;
sgrid(crad+1,2*crad+1) = sg0;
sgrid(crad+1,1) = sg0;
sgrid(1,crad+1) = sg0;
sgrid(2*crad,crad+1) = sgrid(2*crad,crad+1) - sg0;
sgrid(crad+1,2*crad) = sgrid(crad+1,2*crad) - sg0;
sgrid(crad+1,2) = sgrid(crad+1,2) - sg0;
sgrid(2,crad+1) = sgrid(2,crad+1) - sg0;
end
sgrid(crad+1,crad+1) = min(sgrid(crad+1,crad+1),1);
h = sgrid/sum(sgrid(:));
case 'gaussian' % Gaussian filter
siz = (p2-1)/2;
std = p3;
[x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1));
arg = -(x.*x + y.*y)/(2*std*std);
h = exp(arg);
h(h<eps*max(h(:))) = 0;
sumh = sum(h(:));
if sumh ~= 0,
h = h/sumh;
end;
case 'laplacian' % Laplacian filter
alpha = p2;
alpha = max(0,min(alpha,1));
h1 = alpha/(alpha+1); h2 = (1-alpha)/(alpha+1);
h = [h1 h2 h1;h2 -4/(alpha+1) h2;h1 h2 h1];
case 'log' % Laplacian of Gaussian
% first calculate Gaussian
siz = (p2-1)/2;
std2 = p3^2;
[x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1));
arg = -(x.*x + y.*y)/(2*std2);
h = exp(arg);
h(h<eps*max(h(:))) = 0;
sumh = sum(h(:));
if sumh ~= 0,
h = h/sumh;
end;
% now calculate Laplacian
h1 = h.*(x.*x + y.*y - 2*std2)/(std2^2);
h = h1 - sum(h1(:))/prod(p2); % make the filter sum to zero
case 'motion' % Motion filter uses bilinear interpolation
len = max(1,p2);
half = (len-1)/2;% rotate half length around center
phi = mod(p3,180)/180*pi;
cosphi = cos(phi);
sinphi = sin(phi);
xsign = sign(cosphi);
linewdt = 1;
% define mesh for the half matrix, eps takes care of the right size
% for 0 & 90 rotation
sx = fix(half*cosphi + linewdt*xsign - len*eps);
sy = fix(half*sinphi + linewdt - len*eps);
[x y] = meshgrid(0:xsign:sx, 0:sy);
% define shortest distance from a pixel to the rotated line
dist2line = (y*cosphi-x*sinphi);% distance perpendicular to the line
rad = sqrt(x.^2 + y.^2);
% find points beyond the line's end-point but within the line width
lastpix = find((rad >= half)&(abs(dist2line)<=linewdt));
%distance to the line's end-point parallel to the line
x2lastpix = half - abs((x(lastpix) + dist2line(lastpix)*sinphi)/cosphi);
dist2line(lastpix) = sqrt(dist2line(lastpix).^2 + x2lastpix.^2);
dist2line = linewdt + eps - abs(dist2line);
dist2line(dist2line<0) = 0;% zero out anything beyond line width
% unfold half-matrix to the full size
h = rot90(dist2line,2);
h(end+(1:end)-1,end+(1:end)-1) = dist2line;
h = h./(sum(h(:)) + eps*len*len);
if cosphi>0,
h = flipud(h);
end
case 'prewitt' % Prewitt filter
h = [1 1 1;0 0 0;-1 -1 -1];
case 'sobel' % Sobel filter
h = [1 2 1;0 0 0;-1 -2 -1];
case 'unsharp' % Unsharp filter
alpha = p2;
h = [0 0 0;0 1 0;0 0 0] - fspecial('laplacian',alpha);
end
%%%
%%% ParseInputs
%%%
function [type, p2, p3] = ParseInputs(varargin)
% default values
p2 = [];
p3 = [];
% Check the number of input arguments.
narginchk(1,3);
% Determine filter type from the user supplied string.
type = varargin{1};
type = validatestring(type,{'gaussian','sobel','prewitt','laplacian','log',...
'average','unsharp','disk','motion'},mfilename,'TYPE',1);
% default values
switch type
case 'average'
p2 = [3 3]; % siz
case 'disk'
p2 = 5; % rad
case 'gaussian'
p2 = [3 3]; % siz
p3 = 0.5; % std
case {'laplacian', 'unsharp'}
p2 = 1/5; % alpha
case 'log'
p2 = [5 5]; % siz
p3 = 0.5; % std
case 'motion'
p2 = 9; % len
p3 = 0; % theta
end