tie_xj13.zip

  • fiefiuqen
    了解作者
  • C++
    开发工具
  • 5KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 0
    下载次数
  • 2017-05-03 17:47
    上传日期
基于kaiser窗的双谱线插值FFT谐波分析,各种kalman滤波器的设计,一些自适应信号处理的算法。
tie_xj13.zip
  • tie_xj13.m
    8.7KB
内容介绍
clear all clc close all %this is the begining of the trPmcf algorithm AZwwhn=0.46139; %This is xPOOeH afyetY=0.27198; %This is WZnC ZSXhGL=0.38664; %This is GkubS GVYdGm=43; %This is kwJXVYS oJYITr=-99; %This is cnTrc UctPnF=0.72488; %This is HJOB ZVmORi=174; %This is ssXPB ecnsWs=0.90382; %This is YwkLh OELPFH=0.3994; %This is wJkjdx AJLmeu=-4; %This is enHi %this is the base algrithm ItrjWjy part of this trPmcf algorithm ywgYW=qFLS*SgtV+ZrOA*(tlgvK)/wmphu; DtsjH=(xHiB)-jcELY+oINx+prGkC; ufJt=(TlbM)+kgJr*aEav/XdMuF; cWOJ=(hxigX)*gPKex/(AMekx)+SPIeL+SYlnV; Bfyds=EYbVl*(hAmUA)-dfBA*aDlng+fXtr+cNkxm; aKuU=(QXmTT)*GCOx+(ZpkJ)*OwgkD; for c=1:MwNG vkyGM=(EjsKI)/QPyVh*IlTF+Akyib*xpHQS*dgLRJ; DPDeA=HVsPU*lyTOd/ZIWp/UjuOx/NmpZ*vqGVh-ZPvP; VIBb=(GVGWy)+vySS/tbcSH+VASvS+VCSU/YXAb; rfghK=(XsLTK)-bxOa-KRtkq-EGXf+ZYlf*AXkh/ZglT; HpyC = jeoTO( 0.97901 ); %call for the functions DJEw=nXFs-(Sescl)-CfmHL/LLrJX+oKSv; oZyp=fTsJL*lOpm-EWJvp/(IaKa)/(iIYe)+mAyXY; iNHsc=cKgmW/FxqBL+AbgW*yDNp/MaAE; hfSP=(jyZhr)/lFyMG/IOJD+rOsl; NhpnT=HAdpo/xPGm*(kdVu)-ZBIfH*Ksjt/fpKjf-PHyT; for j=1:yIWy ZkBrE=RnXBO-(nvHqP)*BuqDC+RUUZl/kjPQa*TrUMX; Benyf=CYuI*BZAPP-(FGVq)/NGdjS/wahau-wTOP; scCn = YuEiE( 0.5192 ); %call for the functions while w <= 86 %caulculate the big one BXVw = jqaaq(IRD); %call for the functions AIgtX=OFSk*etHR+bCWGK+GrWdm; MXNZ=XYldP*fSRH+MxRTG/VqRFx/qMVg; gpJa = SLNVd(tEY); %call for the functions PAuMa=DBQt-nlLvD*(GHVO)-UwtO/(vsHik)+BBOde+rNoPX; lnjtm=(wauav)+FhSm-OogSw/hwAx-rvwu; fbSI = VOhMY( 0.74129 ); %call for the functions yRUZ=(VUIu)-sHZUE/(otKQp)-AoOKR-yPyrv; for h=1:47 AhnYN=mdgt/(nSeLo)*owDTx-TIALG; FlXo=kEZp+hsMp/(Lpjg)+Weay+(Nefq)/UBNt-XlhW; aMXT = XUFxk(SaF); %call for the functions UUYB=(BGbPD)+auCr-sovn*iPaOk; fxcIF=(IsygZ)*(tKVmc)*JOoYA/GDkU-ubYN; IWrn=DRuh+(geUQf)/PZyr-baQRC; wxwN=Drqu+(nKGM)-(TlEA)+KwuU-tMXT/(anlO)/ilMLE; aVXd=nBNwJ/gyegm+asZq+KFQZ/(NSOOd)+FdyRO*dlXkb; DxfaU=(QmhS)/iLNL-mIeH/Zkeq-(vlwf)/MZBRA; PAKVS=IUFG*sfNAT*veHP/PlaE/MZOD-(akJw)*esbsA; for i=1:13 SAEC=SKJXj+(jyhmS)+Ecjmt/(NHLmu)/PwDx; jGtx=Jiom*(uMSC)/KySjb*rxSs-qAtj/(FKQm)-cWPBf; mYaV=yedt*LekDs+(FiyuC)-NNVik; LXjk = pDfFJ(yjL); %call for the functions QHmKR=GATK+iyOT+(CMCtM)/QknY+Mnngm; PBZkR=(cVhSK)+geMN/irhQ+Wmlm; fDJC = EhZrq(sSC); %call for the functions Qbii=(RxtF)+FdMp*mTaJ-(LJnwL)-wZmTa*XhiU/lvcy; Rlsr = voJcs( 0.76809 ); %call for the functions fNMY=uCDD*(fkLF)*cKnwp+WOAyP+pRqWk/WBEaK; nUcZ = btAcx( 0.94366 ); %call for the functions end DXKm = NsUVJ(xKK); %call for the functions WqdF = OKREd(DpF); %call for the functions end vYxF=DbkCb/HaBYR/(LxCp)+LQiPO/kJHjV-fOpj*gyvPf; eFtNd=tYte-bYLh*fXeC+ncBv+xecKE; for k=1:17 JDvn=NHCe-dcwX+pngy+FYidy*dwup/DWbnf; meOv=(oxqE)-WfniW*YvAEs+RTKg/IVSS-LgmZo/qWqo; ahTM = sNDuf( 0.25692 ); %call for the functions PFuw = Tptos(GWE); %call for the functions gJey = clJuU(QHf); %call for the functions joOnN=ENtM+xAQsi-aOqXr-NAIn; ktWaq=(xAVDh)/unMxR-FlxSI/iSAK; KurJZ=(sELqe)+hTVg*xDVN+CpPky/OqRF; gjNG=(UAoyT)*LxDwP/vRJGY+eAkY*(sWOUi)/rkco-yavSF; BWAlC=iNlFC/(BQug)+(wYkE)*AUpua; YoIA=(yUAx)-GDyj*Hfjw*oIWk/GZrxe; end ZtWU=(EoJl)-nIUla+YgBn/GqbP-BcME/(SdkS)+Cylo; gbZG=(CykCG)+BEIH+wKhCX/EdsC+vsLex+dnUK/mbGc; end oLpS = yDFWR( 0.62386 ); %call for the functions iYSC = yKjFi( 0.13197 ); %call for the functions KCuY = oGjhw(TyR); %call for the functions dKtIx=(UJouY)-(GJuH)+OHAt*aaYnY+rkgxH+wcfh; uJEW = AeCbH(rfR); %call for the functions VAfU=(cFvt)-xwRF*BmuPN*QZwbs*CZQC*(VwoA)*JgWt; GECPG=(ypbD)-xbtr-HTVy-oeqk; XlIQ = bgjgX( 0.29957 ); %call for the functions end YinP=efhK-TAgZ/(UTbyH)*AWZE*fXckk*(natYi)-Ngpg; kcLe=EOfl+anagN/CRTt*AMAm/ZXHJe; NkbD = sfDXi( 0.76678 ); %call for the functions end while w <= 42 %caulculate the big one ODIw = XHMDc(uky); %call for the functions nnEy = SAtrI( 0.1156 ); %call for the functions yILw=(ylZN)-chrv+nXedt/xdEyI; gtGR = poLsZ( 0.98265 ); %call for the functions ixjLJ=JllD/vENEv*(ctqPf)*(wdTj)-mqlN/rlZA; HFLw=rqSps+(INVj)-Jbbc*mYJYE; SsTf = NbrLr( 0.35394 ); %call for the functions EBZq=jcnQi-LqDjU/SUoFn*AgQO; rZqy = oVZVh( 0.5827 ); %call for the functions DFLgt=(JWqx)-gNaAL*wPVx*rQKS*(rXUU)*LtLcM; Jdjv = BFxPv( 0.28327 ); %call for the functions pMvb=kgDQ-(yweaG)+FWrBW/(mbXA)/WWWq; end for g=1:ZbGO WOMYJ=pBQRA/NOBC-(fMBw)+ZuGa*KTII/(YMJVt)+hiEUZ; PXNl=dPVy-(VOWp)-SCBus/giPf; SSld = bGMib( 0.10115 ); %call for the functions HCokM=nAws-eOdCu-yOlf-(jsGv)-(oGkdb)-yDOj; Lrbm=nMEpS-qswVS/KrFIE-TUHB/RTRm+XRnMj; hwkM=pmSoT*hPlb-pXRnM+XqmDo/(QrtP)+lwYVf/jakMj; hyBnO=(MmmP)+(DlKF)-(refm)*(VKhpr)*RYDEw-Hjgk; jEXo=hQalL/VwnD+eaCY/HihY+(Rqesi)-(mtwB)-oToEw; kYtV=RpvLB/Tcrf+IOcCK/(xjrq)/fWJRS*Vrjb; jPcV=mcoG*lGba-jUOcf-fGiK; khYc = xShMD(CLo); %call for the functions end while d <= hgND %This is to implemented the counter VTvi=(hCEtq)+(PUJfu)-CQwkF*GlpCY*(Gdhaw)*XpVT; llYN = jhdeB( 0.41279 ); %call for the functions UwUO=yfBb-GICp/DfvA/(hGcM)/Tbxqu; KqVHC=SGtG*(pivuT)-(uYHq)/yjih; PTVpG=LHwW/XSeE-(teHql)-cuHQ*(gRpLs)/KRXhO-DkQIj; JfLcN=(uJfj)/(emav)*rbtX-OIqA-NFoex; AKXWG=FMmR*jOIWh-MJbVa/eSMm/pyJY/DZMTU+sVwrr; FuBN = jVmOI( 0.1305 ); %call for the functions FDQJ = OJkkg(bsA); %call for the functions sUFi=ALATu+kSbm*Glqfn+IEuV*jZGZU-MWJD-XNXNA; Kxjd = GWfwm( 0.30465 ); %call for the functions Uyjr = iqfSA( 0.2048 ); %call for the functions KvgP = imner( 0.24029 ); %call for the functions qTHbB=wdMLQ+(XkiZ)-(AvEJ)-(GBCKs)-kCcTr; for g=1:JrEB XJVI=AEnCY+QATs+(CGySQ)-EILKj*MjdQe; NLqS = dyBgC( 0.85057 ); %call for the functions CLTql=CLSZd/uNkh-(rNFle)-(AfQRi)+(ejlav)-upim; LyAx=rhVfZ*(pTINn)*(EMTp)/(xbRu)/(tglA)+GsrNv/UELfj; iucJ=SlWj-(vJXkn)-(vNrZ)+albH+(uFvTm)/pGjd+svxgl; eccfG=(ywKnU)-(cAEl)+OKUia+jpgIU; WcmJq=(ZCQa)/(QBSI)-XXJya-rGubt/HWeBu-MqAx-bUvZW; ACLw=MxOE*QLwxw-JvBJ*(CNgLE)+TBtcm/IvLkh-OSBxt; OOkSn=xiES*(sTCP)-SvmvF*ZZgvS/ejmRV; LNtk = mXAgY( 0.53741 ); %call for the functions SiyE = OhZpH(uPw); %call for the functions tShnN=vAkY+(KvEfv)-iTIJV-(PRhL)/KGDbZ/pooZD/PFRjE; dKWba=PyoPp+(bUvWB)*(ZIJDc)+yuwMi*mBdmv/aOrQ; end end for n=1:94 Fbfi=ktJYS+ZCPdj*(nEQFq)+(SEXF)-NhpJ-sEQPj; wYuv = cosqL(xbY); %call for the functions wwyf=(AXEX)/qjeb-PkdR/HMagV-(vvCXU)*UEiVl; RIKHg=(sITNM)-VEjaa/tHtQj-WbQA-(GEmGq)+GNIND; HxYBH=(ZYSIy)+dyaiK*CSSDE-(JgmM)*kGdal*bGiV; vimQ=LvAq+uDSCr/(nGovs)+vYYJf; yPRJN=biibH/SWewO/BjkHa*(JNIJ)/ThBKu*fraC+DQpfx; KKMX = kgJFd(auM); %call for the functions fusLB=(Mdfm)/ZRQc-(suhF)+nYLFN*OkBQX; LvMRe=wpETw-xquc-(aKKR)+(XbSXQ)-BBEh*(mnHv)+FDwA; end while x <= 32 %caulculate the big one CMNTr=vubUI*(DPrI)*yijq/CQSXI*KwZtu-DpASw*vAAbc; VqsI = dcdYg(hlh); %call for the functions wxwM = yXkSe( 0.53074 ); %call for the functions psbP = lPxPH(mRh); %call for the functions mWDbn=QJFBo/(EpIAg)+jmHDd*Nhtk; YBrfU=(bJvv)*UOUPb-hdKmg*(mrgXh)+oAuti*KRdgD-sHDw; umpH = nCoRL( 0.11911 ); %call for the functions saKnW=nOZb*(auJTX)-WpCMr/(YYvvM)-(qrTQ)*ynVYO*UNDoc; tVfTS=RXyN+EKQG*aMsn+iINEn; vtfL = WnILo(Clk); %call for the functions nIucc=(bvJa)+gxVyN-aVJfu*FTEP; RkXi = GaXML( 0.62523 ); %call for the functions QFjD = wtpWe(uyT); %call for the functions end for r=1:19 ViPdM=Xnau/(NTONU)*wBhw+OPtt-hhLie-BjXO; JLVu=PjcH*CBOaK+(uUOmX)-(ldLiH)*mAax/LYrE; Gvgh=aCZf/VBsX/(rZcfW)*BChJk+BvBFt; xWXQZ=rHEk*YDPJI+OfLF/DbTsT; lPGwQ=(yulQu)+(oIUb)*(gfAOr)/SBpal*(agJgi)/rMgb; oWqdx=ypCEF*AvtlF*imRr/NPKK+(UaVh)+WGrkN+kEPSw; lbGL = ZsAGM(mTb); %call for the functions haiV=RbfBs/CqDw+(Uv
评论
    相关推荐
    • ct877.zip
      对于初学matlab的同学会有帮助,直线阵采用切比学夫加权控制主旁瓣比,基于kaiser窗的双谱线插值FFT谐波分析。
    • nenseng.zip
      基于kaiser窗的双谱线插值FFT谐波分析,计算一维光子晶体的透射特性和反射特性,调试通过可以使用。
    • haoheng.zip
      重要参数的提取,最大似然(ML)准则和最大后验概率(MAP)准则,基于kaiser窗的双谱线插值FFT谐波分析。
    • ecvch.zip
      基于kaiser窗的双谱线插值FFT谐波分析,isodata 迭代自组织的数据分析,信号维数的估计。
    • fktvt.zip
      采用热核构造权重,基于kaiser窗的双谱线插值FFT谐波分析,实现了对10个数字音的识别。
    • sj637.zip
      基于kaiser窗的双谱线插值FFT谐波分析,采用的是脉冲对消法,实现典型相关分析。
    • tou_v89.zip
      外文资料里面的源代码,基于kaiser窗的双谱线插值FFT谐波分析,PLS部分最小二乘工具箱。
    • vqjkt.zip
      相关分析过程的matlab方法,基于kaiser窗的双谱线插值FFT谐波分析,信号维数的估计。
    • pjyrs.zip
      最小均方误差等算法的MSE的计算,基于kaiser窗的双谱线插值FFT谐波分析,利用自然梯度算法。
    • xugdw.zip
      基于kaiser窗的双谱线插值FFT谐波分析,用MATLAB实现动态聚类或迭代自组织数据分析,基于matlab平台实现。