function top(nelx,nely,volfrac,penal,rmin);
nelx=80; % x轴方向上单元个数
nely=20; % y轴方向上单元个数
volfrac=0.4; %体积比
penal=3; %材料插值的惩罚因子
rmin=2; %敏度过滤半径
% INITIALIZE
x(1:nely,1:nelx) = volfrac; % x是设计变量(单元伪密度)
loop = 0; %存放迭代次数的变量
change = 1.; %每次迭代,目标函数(柔度)的改变值,用来判断何时收敛
% START ITERATION
while change > 0.01 %当两次连续目标函数迭代的差<=0.01时,迭代结束
loop = loop + 1;
xold = x; %把前一次的设计变量付给xold
% FE-ANALYSIS
[U]=FE(nelx,nely,x,penal); %有限元分析,得到位移矢量U
% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
[KE] = lk; %单位刚度矩阵
c = 0.; %用来存放目标函数的变量,这里刚度最大,柔度最小
for ely = 1:nely
for elx = 1:nelx
n1 = (nely+1)*(elx-1)+ely; %左上角的单元节点
n2 = (nely+1)* elx +ely; %右上角的单元节点
%所示单元的自由度,左上,右上,右下,左下
Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
c = c + x(ely,elx)^penal*Ue'*KE*Ue; %计算目标函数的值(柔度)
dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue; %目标函数的灵敏度
end
end
% FILTERING OF SENSITIVITIES
[dc] = check(nelx,nely,rmin,x,dc); %灵敏度过滤,为了边界光顺一点
% DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD
[x] = OC(nelx,nely,x,volfrac,dc);
% PRINT RESULTS 屏幕上显示迭代信息
change = max(max(abs(x-xold))); %计算目标函数的改变量
disp([' It.: ' sprintf('%4i',loop) ' Obj.: ' sprintf('%10.4f',c) ...
' Vol.: ' sprintf('%6.3f',sum(sum(x))/(nelx*nely)) ...
' ch.: ' sprintf('%6.3f',change )])
% PLOT DENSITIES 优化结果的图形显示
colormap(gray); imagesc(-x); axis equal; axis tight; axis off;pause(1e-6);
end
%%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xnew]=OC(nelx,nely,x,volfrac,dc)
l1 = 0; l2 = 100000; %用于体积约束的拉格朗日乘子
move = 0.2;
while (l2-l1 > 1e-4)
lmid = 0.5*(l2+l1);
%即论文公式的综合
xnew = max(0.001,max(x-move,min(1.,min(x+move,x.*sqrt(-dc./lmid)))));
if sum(sum(xnew)) - volfrac*nelx*nely > 0;%二乘法减半
l1 = lmid;
else
l2 = lmid;
end
end
%%%%%%%%%% MESH-INDEPENDENCY FILTER 敏度过滤技术子程序%%%%%%%%%%%%%%%%%%%
function [dcn]=check(nelx,nely,rmin,x,dc)
dcn=zeros(nely,nelx);
for i = 1:nelx
for j = 1:nely
sum=0.0;
for k = max(i-floor(rmin),1):min(i+floor(rmin),nelx)
for l = max(j-floor(rmin),1):min(j+floor(rmin),nely)
fac = rmin-sqrt((i-k)^2+(j-l)^2);
sum = sum + max(0,fac);
dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)*dc(l,k);
end
end
dcn(j,i) = dcn(j,i)/(x(j,i)*sum);
end
end
%%%%%%%%%% FE-ANALYSIS 有限元求解子程序%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [U]=FE(nelx,nely,x,penal) %自定义函数,最后返回[U]
[KE] = lk; %单元刚度矩阵
% sparse 把一个全矩阵转化为一个稀疏矩阵,只存储每一个非零元素的三个值:元素值,元素的行号和列号
%总体刚度矩阵的稀疏矩阵
% *2是因为x,y都有一个数
K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1));
%力矩阵的稀疏矩阵
F = sparse(2*(nely+1)*(nelx+1),1);
U = zeros(2*(nely+1)*(nelx+1),1); %零矩阵
for elx = 1:nelx
for ely = 1:nely
%一列列的排序
n1 = (nely+1)*(elx-1)+ely; %左上
n2 = (nely+1)* elx +ely; %右上
% 左上,右上,右下,左下 自由度
% 一个点有两个,所以要*2。第一个从1开始,所以*2之后要-1。
edof = [2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2];
%将单元刚度矩阵组装成总的刚度矩阵
K(edof,edof) = K(edof,edof) + x(ely,elx)^penal*KE;
end
end
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F(2,1) = -1; % 应用了一个在左上角的垂直单元力。
%按着图上来的,最左边和右下角已经固定
fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]); %固定结点
alldofs = [1:2*(nely+1)*(nelx+1)]; %所有结点
% setdiff 因无约束自由度与固定自由度的不同来找到无约束自由度
freedofs = setdiff(alldofs,fixeddofs); %不受约束的自由度
% SOLVING
U(freedofs,:) = K(freedofs,freedofs) \ F(freedofs,:);
U(fixeddofs,:)= 0; % 矩阵A的第r行:A(r,:)
%%%%%%%%%% ELEMENT STIFFNESS MATRIX 单元刚度矩阵的子程序%%%%%%%%%%%%%%%%%%%%
function [KE]=lk
E = 1.;
nu = 0.3;
k=[ 1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...
-1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];
%u1,v1, u2,v2, u3,v3, u4,v4
KE = E/(1-nu^2)*[ k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)
k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)
k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)
k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)
k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)
k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)
k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)
k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];