• 日照抚远
    了解作者
  • matlab
    开发工具
  • 1.8MB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 10 积分
    下载积分
  • 48
    下载次数
  • 2017-07-10 19:23
    上传日期
连续投影算法是一种简单,快速选取特征变量选择方法,可用于光谱分析等。
连续投影算法.rar
  • 连续投影算法
  • gui_spa.p
    51.7KB
  • spa.m
    4.4KB
  • statistical_prediction_error.m
    988B
  • projections_qr.m
    803B
  • instructions.doc
    26KB
  • spa2.fig
    9.3KB
  • gui_spa.zip
    95.8KB
  • validation.m
    1.1KB
  • validation_metrics.m
    1.2KB
  • 读书报告04 (刘飞-09.11.04).ppt
    2.3MB
  • guiLibrary1c.p
    55.9KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/627143d5c0b40515e3b4320d/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/627143d5c0b40515e3b4320d/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">Successive Projections Algorithm &#8211; Graphical User Interface</div><div class="t m0 x1 h3 y3 ff2 fs0 fc0 sc0 ls0 ws0">For use with Matlab 6.5 (R13) with the Statistics Toobox (function finv.m)</div><div class="t m0 x1 h4 y4 ff2 fs0 fc0 sc0 ls0 ws0">Type <span class="ff3">gui_spa </span>at the Matlab prompt to start the graphical user interface.</div><div class="t m0 x2 h3 y5 ff4 fs0 fc0 sc1 ls0 ws0">&#61623;<span class="_ _0"> </span><span class="ff1 sc0">&#8220;Main&#8221; screen</span></div><div class="t m0 x1 h3 y6 ff5 fs0 fc0 sc0 ls0 ws0">Select data file (.mat)</div><div class="t m0 x1 h3 y7 ff2 fs0 fc0 sc0 ls0 ws0">Press<span class="_ _1"></span> <span class="_ _1"></span>the<span class="_ _1"></span> <span class="_ _1"></span>&#8220;&#8230;&#8221;<span class="_ _1"></span> <span class="_ _1"></span>button,<span class="_ _1"></span> <span class="_ _1"></span>choose<span class="_ _1"></span> <span class="_ _1"></span>the<span class="_ _1"></span> <span class="_ _1"></span>.mat<span class="_ _1"></span> <span class="_ _1"></span>file<span class="_ _1"></span> <span class="_ _1"></span>containing<span class="_ _1"></span> <span class="_ _1"></span>all<span class="_ _1"></span> <span class="_ _1"></span>X<span class="_ _1"></span> <span class="_ _1"></span>and<span class="_ _1"></span> <span class="_ _1"></span>y<span class="_ _1"></span> <span class="_ _1"></span>matrices<span class="_ _1"></span> <span class="_ _1"></span>(calibration,<span class="_ _1"></span> <span class="_ _1"></span>validation,</div><div class="t m0 x1 h3 y8 ff2 fs0 fc0 sc0 ls0 ws0">and prediction) and press the &#8220;Load file&#8221; button</div><div class="t m0 x1 h3 y9 ff5 fs0 fc0 sc0 ls0 ws0">Line plot: select a matrix</div><div class="t m0 x1 h3 ya ff2 fs0 fc0 sc0 ls0 ws0">Select<span class="_ _2"></span> <span class="_ _2"></span>one<span class="_ _2"></span> <span class="_ _2"></span>of<span class="_ _2"></span> <span class="_ _2"></span>the<span class="_ _2"></span> <span class="_ _2"></span>matrices<span class="_ _2"></span> <span class="_ _2"></span>that<span class="_ _2"></span> <span class="_ _2"></span>were<span class="_ _2"></span> <span class="_ _2"></span>loaded<span class="_ _2"></span> <span class="_ _2"></span>in<span class="_ _2"></span> <span class="_ _2"></span>the<span class="_ _2"></span> <span class="_ _2"></span>previous<span class="_ _2"></span> <span class="_ _2"></span>step,<span class="_ _2"></span> <span class="_ _2"></span>choose<span class="_ _2"></span> <span class="_ _2"></span>one<span class="_ _2"></span> <span class="_ _2"></span>or<span class="_ _2"></span> <span class="_ _2"></span>more<span class="_ _2"></span> <span class="_ _2"></span>rows<span class="_ _2"></span> <span class="_ _2"></span>(or</div><div class="t m0 x1 h3 yb ff2 fs0 fc0 sc0 ls0 ws0">columns)<span class="_ _2"></span> <span class="_ _2"></span>and<span class="_ _3"></span> <span class="_ _3"></span>press<span class="_ _2"></span> <span class="_ _2"></span>the<span class="_ _3"></span> <span class="_ _2"></span>&#8220;Plot&#8221;<span class="_ _2"></span> <span class="_ _3"></span>button.<span class="_ _2"></span> <span class="_ _2"></span>To<span class="_ _3"></span> <span class="_ _2"></span>choose<span class="_ _3"></span> <span class="_ _2"></span>multiple<span class="_ _2"></span> <span class="_ _3"></span>rows<span class="_ _2"></span> <span class="_ _2"></span>(or<span class="_ _3"></span> <span class="_ _2"></span>columns),<span class="_ _3"></span> <span class="_ _2"></span>keep<span class="_ _2"></span> <span class="_ _3"></span>the<span class="_ _2"></span> <span class="_ _3"></span>Ctrl<span class="_ _2"></span> <span class="_ _2"></span>key</div><div class="t m0 x1 h3 yc ff2 fs0 fc0 sc0 ls0 ws0">pressed.</div><div class="t m0 x2 h3 yd ff4 fs0 fc0 sc0 ls0 ws0">&#61623;<span class="_ _0"> </span><span class="ff1">&#8220;Successive Projections Algorithm&#8221; screen</span></div><div class="t m0 x1 h3 ye ff2 fs0 fc0 sc0 ls0 ws0">If the mouse pointer is placed on top of a data input field, a brief help<span class="_ _1"></span> textbox will be displayed.</div><div class="t m0 x1 h3 yf ff2 fs0 fc0 sc0 ls0 ws0">Press<span class="_ _4"></span> <span class="_ _4"></span>the<span class="_ _2"></span> <span class="_ _4"> </span>&#8220;&#8230;&#8221;<span class="_ _4"> </span> <span class="_ _4"> </span>buttons<span class="_ _4"></span> <span class="_ _4"></span>and<span class="_ _2"></span> <span class="_ _4"> </span>choose<span class="_ _4"> </span> <span class="_ _4"></span>the<span class="_ _4"></span> <span class="_ _4"></span>X<span class="_ _2"></span> <span class="_ _4"> </span>and<span class="_ _4"> </span> <span class="_ _4"> </span>y<span class="_ _4"></span> <span class="_ _4"></span>matrices<span class="_ _2"></span> <span class="_ _4"> </span>for<span class="_ _4"> </span> <span class="_ _4"> </span>calibration<span class="_ _4"> </span> <span class="_ _4"></span>and<span class="_ _4"></span> <span class="_ _4"></span>validation.<span class="_ _4"></span> <span class="_ _4"></span>If<span class="_ _2"></span> <span class="_ _4"> </span>the</div><div class="t m0 x1 h3 y10 ff2 fs0 fc0 sc0 ls0 ws0">validation fields are left empty, leave-one-out cross-validation will be carried<span class="_ _1"></span> out.</div><div class="t m0 x1 h3 y11 ff2 fs0 fc0 sc0 ls0 ws0">The fields<span class="_ _1"></span> of <span class="_ _1"></span>minimum <span class="_ _1"></span>and maximum<span class="_ _1"></span> number<span class="_ _1"></span> of <span class="_ _1"></span>variables are<span class="_ _1"></span> optional. <span class="_ _1"></span>If left<span class="_ _1"></span> blank,<span class="_ _1"></span> default <span class="_ _1"></span>values</div><div class="t m0 x1 h3 y12 ff2 fs0 fc0 sc0 ls0 ws0">will be assumed.</div><div class="t m0 x1 h3 y13 ff2 fs0 fc0 sc0 ls0 ws0">The<span class="_ _3"></span> <span class="_ _2"></span>data<span class="_ _3"></span> <span class="_ _2"></span>are<span class="_ _3"></span> <span class="_ _2"></span>mean-centered<span class="_ _2"></span> <span class="_ _3"></span>prior<span class="_ _3"></span> <span class="_ _2"></span>to<span class="_ _2"></span> <span class="_ _3"></span>the<span class="_ _3"></span> <span class="_ _2"></span>projection<span class="_ _2"></span> <span class="_ _3"></span>procedures.<span class="_ _2"></span> <span class="_ _3"></span>If<span class="_ _3"></span> <span class="_ _2"></span>the<span class="_ _2"></span> <span class="_ _3"></span>&#8220;Autoscaling&#8221;<span class="_ _2"></span> <span class="_ _3"></span>checkbox<span class="_ _2"></span> <span class="_ _3"></span>is</div><div class="t m0 x1 h3 y14 ff2 fs0 fc0 sc0 ls0 ws0">selected, autoscaling will also be carried out.</div><div class="t m0 x1 h3 y15 ff2 fs0 fc0 sc0 ls0 ws0">Press<span class="_ _1"></span> <span class="_ _1"></span>&#8220;Run<span class="_ _3"></span> <span class="_ _1"></span>SPA&#8221;<span class="_ _1"></span> <span class="_ _1"></span>to<span class="_ _3"></span> <span class="_ _1"></span>run<span class="_ _1"></span> <span class="_ _3"></span>the<span class="_ _1"></span> <span class="_ _1"></span>algorithm.<span class="_ _1"></span> <span class="_ _3"></span>The<span class="_ _1"></span> <span class="_ _1"></span>indexes<span class="_ _3"></span> <span class="_ _1"></span>of<span class="_ _1"></span> <span class="_ _3"></span>the<span class="_ _1"></span> <span class="_ _1"></span>selected<span class="_ _3"></span> <span class="_ _1"></span>variables<span class="_ _1"></span> <span class="_ _3"></span>will<span class="_ _1"></span> <span class="_ _1"></span>be<span class="_ _1"></span> <span class="_ _3"></span>placed<span class="_ _1"></span> <span class="_ _3"></span>in<span class="_ _1"></span> <span class="_ _1"></span>the</div><div class="t m0 x1 h3 y16 ff2 fs0 fc0 sc0 ls0 ws0">workspace (array &#8220;var_sel&#8221;).</div><div class="t m0 x2 h3 y17 ff4 fs0 fc0 sc0 ls0 ws0">&#61623;<span class="_ _0"> </span><span class="ff1">&#8220;Prediction Metrics&#8221; screen</span></div><div class="t m0 x1 h3 y18 ff2 fs0 fc0 sc0 ls0 ws0">Press the &#8220;&#8230;&#8221; <span class="_ _1"></span>buttons and choose the<span class="_ _1"></span> X and y <span class="_ _1"></span>matrices for calibration<span class="_ _1"></span> and prediction, as<span class="_ _1"></span> well as the</div><div class="t m0 x1 h3 y19 ff2 fs0 fc0 sc0 ls0 ws0">array with the indexes of the selected variables (which was given the name &#8220;var_sel&#8221;<span class="_ _1"></span> in the previous</div><div class="t m0 x1 h3 y1a ff2 fs0 fc0 sc0 ls0 ws0">screen).</div><div class="t m0 x1 h3 y1b ff2 fs0 fc0 sc0 ls0 ws0">Press<span class="_ _1"></span> <span class="_ _1"></span>the<span class="_ _1"></span> <span class="_ _1"></span>&#8220;Run<span class="_ _1"></span> <span class="_ _1"></span>V<span class="_ _1"></span>alidation<span class="_ _1"></span> <span class="_ _1"></span>Metrics&#8221;<span class="_ _1"></span> <span class="_ _1"></span>button<span class="_ _1"></span> <span class="_ _1"></span>to<span class="_ _3"></span> <span class="_ _1"></span>obtain<span class="_ _1"></span> <span class="_ _1"></span>a<span class="_ _1"></span> <span class="_ _1"></span>Predicted<span class="_ _3"></span> <span class="_ _1"></span>vs<span class="_ _1"></span> <span class="_ _1"></span>Reference<span class="_ _1"></span> <span class="_ _1"></span>plot<span class="_ _3"></span> <span class="_ _1"></span>with<span class="_ _1"></span> <span class="_ _1"></span>a<span class="_ _1"></span> <span class="_ _1"></span>bisectrix</div><div class="t m0 x1 h3 y1c ff2 fs0 fc0 sc0 ls0 ws0">line<span class="_ _1"></span> <span class="_ _1"></span>and<span class="_ _1"></span> <span class="_ _1"></span>one-sigma<span class="_ _1"></span> <span class="_ _1"></span>confidence<span class="_ _3"></span> <span class="_ _1"></span>intervals,<span class="_ _1"></span> <span class="_ _1"></span>as<span class="_ _1"></span> <span class="_ _1"></span>well<span class="_ _1"></span> <span class="_ _1"></span>as<span class="_ _1"></span> <span class="_ _1"></span>the<span class="_ _1"></span> <span class="_ _1"></span>following<span class="_ _1"></span> <span class="_ _1"></span>statistics<span class="_ _1"></span> <span class="_ _3"></span>associated<span class="_ _1"></span> <span class="_ _1"></span>to<span class="_ _1"></span> <span class="_ _1"></span>prediction</div><div class="t m0 x1 h3 y1d ff2 fs0 fc0 sc0 ls0 ws0">performance:</div><div class="t m0 x3 h3 y1e ff2 fs0 fc0 sc0 ls0 ws0">PRESS (Prediction Errors Sum of Squares)</div><div class="t m0 x3 h3 y1f ff2 fs0 fc0 sc0 ls0 ws0">RMSEP (Root Mean Square Error of Prediction)</div><div class="t m0 x3 h3 y20 ff2 fs0 fc0 sc0 ls0 ws0">SDV (Standard Deviation of the Prediction Errors)</div><div class="t m0 x3 h3 y21 ff2 fs0 fc0 sc0 ls0 ws0">BIAS (Average of the Prediction Errors)</div><div class="t m0 x3 h3 y22 ff2 fs0 fc0 sc0 ls0 ws0">r (Correlation Coefficient between Predicted and Reference<span class="_ _1"></span> values)</div><div class="t m0 x1 h3 y23 ff2 fs0 fc0 sc0 ls0 ws0">If Xpred and ypred are left blank, leave-one-out cross-validation w<span class="_ _1"></span>ill be carried out.</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • 降维与特征选择.zip
      在machine learning中,特征降维和特征选择是两个常见的概念,在应用machine learning来解决问题的论文中经常会出现。 对于这两个概念,很多初学者可能不是很清楚他们的区别。很多人都以为特征降维和特征选择的...
    • 变量选择.zip
      lasso alsso scad 实例 R文件,基于数据EnergyData.csv,分别采用逐步回归法,Lasso,自适应Lasso等方法对影响响应变量的因变量进行选择
    • 互信息法特征选择matlab程序
      互信息法特征选择matlab程序
    • VCPA 1.1.zip:在多元校准中使用变量组合种群分析进行变量选择-matlab开发
      变量(波长或特征选择技术已成为分析具有大量变量和相对较少样本的数据集的关键步骤。 在这项研究中,提出了一种新的变量选择策略,即变量组合种群分析(VCPA)。 该策略由两个关键程序组成。 首先,采用指数递减...
    • Linear-Regression:具有特征选择的线性回归
      具有特征选择的线性回归 通过拟合独立变量和因变量之间的最佳线性关系来预测目标值。 最小二乘法:y = mx + c 简单LR:仅使用单个独立变量 多个LR:使用多个独立变量时,如果它们具有多个参数,则可以使用梯度下降...
    • matlab弹出对话框代码-GVSToolbox:注视变量选择工具箱
      成人和婴儿的视觉分类中自动选择眼睛跟踪变量。 在N. Miyake,D。Peebles和RP Cooper(编),《认知科学学会第34届年会论文集》(第2240-2245页)中。 安装 非编码器 单击此GitHub页面顶部的“下载zip”。 解压缩...
    • 顺序特征选择:更新的 SEQUENTIALFS 函数,以便:a) 可以包含/排除变量组 b) 加速选择过程-matlab开发
      与最佳特征相比具有更高加权误差的每个特征,要么被排除在最终选择(前向选择)之外,要么被包含在最终选择(后向选择)中,而无需进行任何评估 * https://mathworks.com/help/stats/sequentialfs.html
    • VISSA:一种变量选择方法-matlab开发
      一种称为变量迭代空间收缩方法 (VISSA) 的变量选择方法。 参考资料:邓登峰,尹玉华,梁玉中,易建中,一种使用加权二进制矩阵抽样迭代优化变量空间的新颖变量选择方法,《分析》,第139期,2014年,第4836-4845页。
    • locus:轨迹R包-稀疏多响应回归中用于变量选择的大规模变分推理
      轨迹–稀疏回归模型中联合协变量和响应选择的大规模变分推论 概述 ...轨迹中提供的联合协变量和响应选择算法实现了具有以下特征的回归模型的推论 身份链接; 物流链接; 概率链接; 身份-Probit链接
    • 机器学习模型的变量评估和选择.rar
      本文介绍机器学习模型中输入变量(预测因子)的选择,预处理以及评估的相关细节。多种规范化的方法以及特点都将讨论。在处理过程中极大影响模型训练最终结果的环节也在文中探讨。我们将看到并评估新的及鲜为人知的...