• PUDN用户
    了解作者
  • WINDOWS
    开发工具
  • 48KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 10 积分
    下载积分
  • 7
    下载次数
  • 2017-08-28 21:48
    上传日期
EMD与EEMD程序,经验模态分析程序,亲自检验,很好用
EMD与EEMD程序.zip
  • EMD与EEMD程序.pdf
    224.8KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/624f338f74bc5c010528612d/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/624f338f74bc5c010528612d/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">%%%%%%%%%%%<span class="_ _0"></span><span class="ff2">&#36733;&#20837;&#20449;&#21495;</span></div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">x=load('1.txt');%<span class="_ _1"> </span><span class="ff2">&#20135;&#29983;&#20449;&#21495;</span></div><div class="t m0 x1 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">N=length(x); <span class="_ _2"> </span>%<span class="_ _3"></span><span class="ff2">&#37319;&#26679;&#28857;&#25968;</span></div><div class="t m0 x1 h2 y4 ff1 fs0 fc0 sc0 ls0 ws0">fs=2000; <span class="_ _4"> </span>%<span class="_ _5"></span><span class="ff2">&#37319;&#26679;&#39057;&#29575;</span></div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">dt=1<span class="_ _6"></span>/fs; <span class="_ _7"> </span>%<span class="_ _3"></span><span class="ff2">&#37319;&#26679;&#26102;&#38388;&#38388;&#38548;</span></div><div class="t m0 x1 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">t=(0:N-1)*dt; <span class="_ _8"> </span>%<span class="_ _3"></span><span class="ff2">&#20135;&#29983;&#26102;&#38388;&#24207;&#21015;</span></div><div class="t m0 x1 h3 y7 ff1 fs1 fc0 sc0 ls0 ws0">%%%%%%%%EMD </div><div class="t m0 x1 h3 y8 ff1 fs1 fc0 sc0 ls0 ws0">imf=emd(x); </div><div class="t m0 x1 h4 y9 ff1 fs2 fc0 sc0 ls0 ws0">% EMD.M (EMD<span class="_ _9"> </span><span class="ff2">&#31243;&#24207;<span class="_ _a"></span></span>) </div><div class="t m0 x1 h3 ya ff1 fs1 fc0 sc0 ls0 ws0">% G. Rilling, July 2002</div><div class="t m0 x1 h3 yb ff1 fs1 fc0 sc0 ls0 ws0">%</div><div class="t m0 x1 h3 yc ff1 fs1 fc0 sc0 ls0 ws0">% computes EMD (Empirical Mode Decomposition) according to:</div><div class="t m0 x1 h3 yd ff1 fs1 fc0 sc0 ls0 ws0">%</div><div class="t m0 x1 h3 ye ff1 fs1 fc0 sc0 ls0 ws0">% N. E. Huang et al., "The empirical mode decomposition and the </div><div class="t m0 x1 h3 yf ff1 fs1 fc0 sc0 ls0 ws0">% <span class="_ _b"></span>Hilbert <span class="_ _c"> </span>spectrum <span class="_ _d"> </span>for <span class="_ _e"> </span>non-linear <span class="_ _f"> </span>and <span class="_ _10"> </span>non <span class="_ _10"> </span>stationary <span class="_ _11"> </span>time <span class="_ _12"> </span>series <span class="_ _d"> </span>analysis," </div><div class="t m0 x1 h3 y10 ff1 fs1 fc0 sc0 ls0 ws0">% Proc. Royal Soc. London A, Vol. 454, pp. 903-995, 1998</div><div class="t m0 x1 h3 y11 ff1 fs1 fc0 sc0 ls0 ws0">%</div><div class="t m0 x1 h3 y12 ff1 fs1 fc0 sc0 ls0 ws0">% with variations reported in:</div><div class="t m0 x1 h3 y13 ff1 fs1 fc0 sc0 ls0 ws0">%</div><div class="t m0 x1 h5 y14 ff1 fs1 fc0 sc0 ls0 ws0">% G. Rilling, P. Flandrin and P. Gon?alv<span class="_ _13"> </span><span class="ff2">&#232;&#65363;</span></div><div class="t m0 x1 h3 y15 ff1 fs1 fc0 sc0 ls0 ws0">% "On Empirical Mode Decomposition and its algorithms"</div><div class="t m0 x1 h3 y16 ff1 fs1 fc0 sc0 ls0 ws0">% IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing</div><div class="t m0 x1 h3 y17 ff1 fs1 fc0 sc0 ls0 ws0">% NSIP-03, Grado (I), June 2003</div><div class="t m0 x1 h3 y18 ff1 fs1 fc0 sc0 ls0 ws0">%</div><div class="t m0 x1 h3 y19 ff1 fs1 fc0 sc0 ls0 ws0">% stopping criterion for sifting : </div><div class="t m0 x1 h3 y1a ff1 fs1 fc0 sc0 ls0 ws0">% at each point : mean amplitude &lt; threshold2*envelope amplitude</div><div class="t m0 x1 h3 y1b ff1 fs1 fc0 sc0 ls0 ws0">% &amp;</div><div class="t m0 x1 h3 y1c ff1 fs1 fc0 sc0 ls0 ws0">% mean of boolean array ((mean amplitude)/(envelope amplitude) &gt; </div><div class="t m0 x1 h3 y1d ff1 fs1 fc0 sc0 ls0 ws0">threshold) &lt; tolerance</div><div class="t m0 x1 h3 y1e ff1 fs1 fc0 sc0 ls0 ws0">% &amp;</div><div class="t m0 x1 h3 y1f ff1 fs1 fc0 sc0 ls0 ws0">% |#zeros-#extrema|&lt;=1</div><div class="t m0 x1 h3 y20 ff1 fs1 fc0 sc0 ls0 ws0">%</div><div class="t m0 x1 h3 y21 ff1 fs1 fc0 sc0 ls0 ws0">% inputs: - x : analysed signal (line vector)</div><div class="t m0 x1 h3 y22 ff1 fs1 fc0 sc0 ls0 ws0">% - t (optional) : sampling times (line vector) (default : </div><div class="t m0 x1 h3 y23 ff1 fs1 fc0 sc0 ls0 ws0">1:length(x))</div><div class="t m0 x1 h3 y24 ff1 fs1 fc0 sc0 ls0 ws0">% - stop (optional) : threshold, threshold2 and tolerance </div><div class="t m0 x1 h3 y25 ff1 fs1 fc0 sc0 ls0 ws0">(optional)</div><div class="t m0 x1 h3 y26 ff1 fs1 fc0 sc0 ls0 ws0">% for sifting stopping criterion </div><div class="t m0 x1 h3 y27 ff1 fs1 fc0 sc0 ls0 ws0">% default : [0.05,0.5,0.05]</div><div class="t m0 x1 h3 y28 ff1 fs1 fc0 sc0 ls0 ws0">% - <span class="_ _14"> </span>tst <span class="_ _15"> </span>(optional) <span class="_ _16"> </span>: <span class="_ _17"> </span>if <span class="_ _15"> </span>equals <span class="_ _18"> </span>to <span class="_ _19"> </span>1 <span class="_ _1a"> </span>shows <span class="_ _12"> </span>sifting <span class="_ _1b"> </span>steps <span class="_ _1c"> </span>with <span class="_ _1d"> </span>pause</div><div class="t m0 x1 h3 y29 ff1 fs1 fc0 sc0 ls0 ws0">% if equals to 2 no pause</div><div class="t m0 x1 h3 y2a ff1 fs1 fc0 sc0 ls0 ws0">%</div><div class="t m0 x1 h3 y2b ff1 fs1 fc0 sc0 ls0 ws0">% outputs: - imf : intrinsic mode functions (last line = residual)</div></div><div class="pi" data-data='{"ctm":[1.002956,0.000000,0.000000,1.002956,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • EEMD.zip
      用于信号分解的EEMD(集合经验模态分解)及其用法。
    • EMD,EEMD和onlineEMD最强版本.zip
      该压缩包为经验模态分解包系列,包括:EMD-master、EEMD-Project-master和onlineEMD-master,希望对大家有帮助~
    • EEMDEMD.rar
      EEMD将特殊幅值下的高斯白噪声引入到分解的过程,可以消除上包络和下包络之间存在的拟合误差,从而很好地避免不同尺度下IMF的模态混叠现象,
    • emd.rar
      经验模态分解,包括常用的emdeemd
    • EEMD EMD.rar
      介绍了EEMDEMD程序,实测可用。 EEMD是Ensemble Empirical Mode Decomposition的缩写,中文是集合经验模态分解; EMD是经验模态分解,全称Empirical Mode Decomposition。
    • eemd.zip
      很好的经验模态分析程序,提供大家,希望能够共同交流和学习
    • 模态分解EEMD.zip
      模态分解MATLAB代码,可直接使用
    • EEMD集合经验模态分解matlab程序代码
      EEMD是Ensemble Empirical Mode Decomposition的缩写,中文是集合经验模态分解,是针对EMD方法的不足,提出了一种噪声辅助数据分析方法。EEMD分解原理是当附加的白噪声均匀分布在整个时频空间时,该时频空间就由...
    • 集成经验模态分解(EEMD)代码
      EEMD是Ensemble Empirical Mode Decomposition的缩写,中文是集合经验模态分解,是针对EMD方法的不足,提出了一种噪声辅助数据分析方法。EEMD分解原理是当附加的白噪声均匀分布在整个时频空间时,该时频空间就由...
    • SIM800C_MQTT.rar
      使用SIM800C模块,使用MQTT协议,连接中国移动onenet平台,能实现数据的订阅、发布、存储等