# 牛顿拉夫逊法潮流计算代码.rar

• Da灬饼
了解作者
• matlab
开发工具
• 16KB
文件大小
• rar
文件格式
• 0
收藏次数
• 10 积分
下载积分
• 14
下载次数
• 2017-12-09 18:12
上传日期

• 实验一代码.docx
19.7KB

<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6269fba24f8811599e45dcd2/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6269fba24f8811599e45dcd2/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">clear</div><div class="t m0 x1 h3 y3 ff1 fs0 fc0 sc0 ls0 ws0">G(1,1)=10.2;B(1,1)=-31.5; G(1,2)=-1.2;B(1,2)=4.0;G(1,3)=-1.5;</div><div class="t m0 x1 h3 y4 ff1 fs0 fc0 sc0 ls0 ws0">B(1,3)=5.0;G(1,4)=-2.5;B(1,4)=7.5;G(1,5)=-5.000;B(1,5)=15.000;</div><div class="t m0 x1 h3 y5 ff1 fs0 fc0 sc0 ls0 ws0">G(2,1)=-1.2;B(2,1)=4.0; G(2,2)=10.4;B(2,2)=-31.7;G(2,3)=-8.0;</div><div class="t m0 x1 h3 y6 ff1 fs0 fc0 sc0 ls0 ws0">B(2,3)=24.0;G(2,4)=0;B(2,4)=0;G(2,5)=-1.2;B(2,5)=3.7; </div><div class="t m0 x1 h3 y7 ff1 fs0 fc0 sc0 ls0 ws0">G(3,1)=-1.5;B(3,1)=5.0; G(3,2)=-8.0;B(3,2)=24.0;G(3,3)=10.7;B(3,3)=-</div><div class="t m0 x1 h3 y8 ff1 fs0 fc0 sc0 ls0 ws0">32.7; G(3,4)=-1.2;B(3,4)=3.7;G(3,5)=0;B(3,5)=0;</div><div class="t m0 x1 h3 y9 ff1 fs0 fc0 sc0 ls0 ws0">G(4,1)=-2.500;B(4,1)=7.500; G(4,2)=0;B(4,2)=0;G(4,3)=-</div><div class="t m0 x1 h3 ya ff1 fs0 fc0 sc0 ls0 ws0">1.2;B(4,3)=3.7;G(4,4)=3.7;B(4,4)=-11.2;G(4,5)=0;B(4,5)=0;</div><div class="t m0 x1 h3 yb ff1 fs0 fc0 sc0 ls0 ws0">G(5,1)=-5.0;B(5,1)=15.0;G(5,2)=-1.2;B(5,2)=3.7;</div><div class="t m0 x1 h3 yc ff1 fs0 fc0 sc0 ls0 ws0">G(5,3)=0;B(5,3)=0;G(5,4)=0;B(5,4)=0;G(5,5)=6.2;B(5,5)=-18.7; </div><div class="t m0 x1 h3 yd ff1 fs0 fc0 sc0 ls0 ws0">Y=G+j*B;</div><div class="t m0 x1 h3 ye ff1 fs0 fc0 sc0 ls0 ws0">delt(1)=0;delt(2)=0;delt(3)=0;delt(4)=0;</div><div class="t m0 x1 h3 yf ff1 fs0 fc0 sc0 ls0 ws0">u(1)=1.0;u(2)=1.0;u(3)=1.0;u(4)=1.0;</div><div class="t m0 x1 h3 y10 ff1 fs0 fc0 sc0 ls0 ws0">p(1)=0.20; q(1)=0.20; p(2)=-0.45; q(2)=-0.15; </div><div class="t m0 x1 h3 y11 ff1 fs0 fc0 sc0 ls0 ws0">p(3)=-0.40; q(3)=-0.05; p(4)=-0.60; q(4)=-0.10;</div><div class="t m0 x1 h3 y12 ff1 fs0 fc0 sc0 ls0 ws0">k=0;precision=1;</div><div class="t m0 x1 h3 y13 ff1 fs0 fc0 sc0 ls0 ws0">N1=4;</div><div class="t m0 x1 h3 y14 ff1 fs0 fc1 sc0 ls0 ws0">while <span class="fc0">precision&gt;0.00001</span></div><div class="t m0 x1 h3 y15 ff1 fs0 fc0 sc0 ls0 ws0"> delt(5)=0;u(5)=1.05;</div><div class="t m0 x1 h3 y16 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="fc1">for </span>m=1:N1</div><div class="t m0 x1 h3 y17 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="fc1">for </span>n=1:N1+1</div><div class="t m0 x1 h3 y18 ff1 fs0 fc0 sc0 ls0 ws0"> pt(n)=u(m)*u(n)*(G(m,n)*cos(delt(m)-delt(n))+B(m,n)*sin(delt(m)-</div><div class="t m0 x1 h3 y19 ff1 fs0 fc0 sc0 ls0 ws0">delt(n)));</div><div class="t m0 x1 h3 y1a ff1 fs0 fc0 sc0 ls0 ws0"> qt(n)=u(m)*u(n)*(G(m,n)*sin(delt(m)-delt(n))-B(m,n)*cos(delt(m)-</div><div class="t m0 x1 h3 y1b ff1 fs0 fc0 sc0 ls0 ws0">delt(n)));</div><div class="t m0 x1 h3 y1c ff1 fs0 fc0 sc0 ls0 ws0"> <span class="fc1">end</span></div><div class="t m0 x1 h3 y1d ff1 fs0 fc1 sc0 ls0 ws0"> <span class="fc0">pp(m)=p(m)-sum(pt); qq(m)=q(m)-sum(qt);</span></div><div class="t m0 x1 h3 y1e ff1 fs0 fc0 sc0 ls0 ws0"> <span class="fc1">end</span></div><div class="t m0 x1 h3 y1f ff1 fs0 fc0 sc0 ls0 ws0"> <span class="fc1">for </span>m=1:N1</div><div class="t m0 x1 h3 y20 ff1 fs0 fc0 sc0 ls0 ws0"> <span class="fc1">for </span>n=1:N1+1</div><div class="t m0 x1 h3 y21 ff1 fs0 fc0 sc0 ls0 ws0"> h0(n)= u(m)*u(n)*(G(m,n)*sin(delt(m)-delt(n))-</div><div class="t m0 x1 h3 y22 ff1 fs0 fc0 sc0 ls0 ws0">B(m,n)*cos(delt(m)-delt(n)));</div><div class="t m0 x1 h3 y23 ff1 fs0 fc0 sc0 ls0 ws0"> n0(n)=-u(m)*u(n)*(G(m,n)*cos(delt(m)-delt(n))</div><div class="t m0 x1 h3 y24 ff1 fs0 fc0 sc0 ls0 ws0">+B(m,n)*sin(delt(m)-delt(n)));</div><div class="t m0 x1 h3 y25 ff1 fs0 fc0 sc0 ls0 ws0"> j0(n)=-u(m)*u(n)*(G(m,n)*cos(delt(m)-delt(n))</div><div class="t m0 x1 h3 y26 ff1 fs0 fc0 sc0 ls0 ws0">+B(m,n)*sin(delt(m)-delt(n)));</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div> </body> </html>

相关推荐
• 牛顿潮流计算法.rar
牛顿拉夫逊法解潮流计算MATLAB程序（附课本例题解答）
• 潮流计算.zip
30节点潮流计算，MATLAB编程，用于潮流分析，可计算节点过电压
• 潮流计算C语言牛顿法.rar
文件为C++语言编写的潮流计算，采用牛顿法实现，内含IEEE4、5、14、30、57、118、300节点系统系统原始数据及潮流计算结果，还有详细的使用说明，经与《高等电力网络分析》（张伯明著2007版）附录对比，计算结果完全...
• 潮流计算.rar
潮流计算一直以来都是大家关心的热点问题，本程序通过牛顿拉夫逊法以及PQ分解法进行了潮流计算的分析
• IEEE14潮流计算.rar
标准14节点的电力系统测试程序，用于算例验证等相关电力系统分析内容
• 潮流计算牛顿法.zip
对电力系统进行交流潮流计算，计算方法为极坐标系下的牛顿拉夫逊法。
• 潮流计算.zip
能够实现任意给定参数的交流系统的潮流计算
• 牛顿拉夫逊法潮流计算.zip
采用牛顿拉夫逊法进行潮流计算，程序还能实现N-1校核和线路网损分析
• 牛拉法潮流计算.rar
牛顿-拉夫逊法以及解耦牛顿拉夫逊法进行3节点系统的潮流计算
• 潮流计算.rar
潮流计算C++语言牛顿法 IEEE4、5、14、30、57、118、300节点系统