Mathematica常用函数.zip

  • 漩涡波
    了解作者
  • Mathematica
    开发工具
  • 136KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 4
    下载次数
  • 2018-01-21 09:13
    上传日期
mathematica常用函数大全,适合初学者入门使用
Mathematica常用函数.zip
  • Mathematica常用函数.pdf
    154.8KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6255913cb744eb386fdf42c6/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6255913cb744eb386fdf42c6/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0"> &#31526;&#21495;&#35745;&#31639;&#31995;&#32479;<span class="_ _0"> </span>Mathematica<span class="_ _0"> </span>&#30340; </div><div class="t m0 x2 h2 y2 ff1 fs0 fc0 sc0 ls1 ws0">&#24120;&#29992;&#31995;&#32479;&#20989;&#25968; </div><div class="t m0 x3 h3 y3 ff2 fs1 fc0 sc1 ls2 ws0">Mathematica<span class="_"> </span><span class="ff3 ls3">&#26159;&#19968;&#20010;&#24456;&#22823;&#30340;&#29992;&#35745;&#31639;&#26426;&#20316;&#25968;&#23398;&#30340;&#36719;&#20214;&#31995;&#32479;&#65292;&#20165;&#22312;<span class="_ _1"> </span></span><span class="ls4">2.0<span class="_ _1"> </span><span class="ff3 ls3">&#29256;&#30340;&#31995;<span class="_ _2"></span>&#32479;&#20013;&#23601;&#23450;&#20041;</span></span></div><div class="t m0 x4 h3 y4 ff3 fs1 fc0 sc1 ls3 ws0">&#20102;<span class="_ _3"> </span><span class="ff2 ls4">800<span class="_ _3"> </span></span><span class="ls5">&#22810;&#20010;&#20989;&#25968;&#12290;&#36825;&#37324;&#25688;&#36873;&#20102;<span class="_ _0"> </span><span class="ff2 ls6">Math<span class="_ _2"></span>ematica2.0<span class="_ _3"> </span><span class="ff3 ls5">&#29256;&#30340;&#37096;&#20998;&#20989;&#25968;&#21644;&#21629;&#20196;&#65292;&#20854;&#20013;&#19981;&#21253;&#25324;</span></span></span></div><div class="t m0 x4 h3 y5 ff2 fs1 fc0 sc1 ls2 ws0">Mathematica<span class="_ _4"> </span><span class="ff3 ls3">&#36719;&#20214;&#21253;&#20013;&#30340;&#20989;&#25968;&#23450;&#20041;&#65292;<span class="_ _2"></span>&#22240;&#31687;&#24133;&#25152;&#38480;&#65292;<span class="_ _5"></span>&#23545;&#20110;&#19968;&#20123;&#20989;&#25968;&#21482;&#20316;&#20102;&#31616;&#35201;&#35828;&#26126;&#65292;<span class="_ _5"></span>&#21487;&#22312;&#20219;</span></div><div class="t m0 x4 h4 y6 ff3 fs1 fc0 sc1 ls7 ws0">&#24847;&#29256;&#26412;&#20013;&#29992;&#8220;&#65311;&#65311;&#20989;&#25968;<span class="_ _2"></span>&#21517;&#8221;&#25110;&#8220;&#65311;&#65311;&#21629;&#20196;&#21517;&#8221;&#30340;&#24418;&#24335;<span class="_ _2"></span>&#24471;&#21040;&#35813;&#29256;&#26412;&#20013;&#20989;&#25968;&#21644;&#21629;<span class="_ _2"></span>&#20196;&#30340;&#26356;&#35814;&#32454;</div><div class="t m0 x4 h3 y7 ff3 fs1 fc0 sc1 ls3 ws0">&#30340;&#20351;&#29992;&#35828;&#26126;<span class="ff2">.</span>&#25152;&#25552;&#20379;&#30340;&#20989;&#25968;&#21644;&#21629;&#20196;&#23545;<span class="_ _6"> </span><span class="ff2 ls8">Mathematica2.0<span class="_"> </span></span>&#20197;&#21518;&#30340;&#29256;&#26412;&#20173;&#28982;&#36866;&#29992;<span class="ff2 ls9 ws1">. </span></div><div class="t m0 x3 h3 y8 ff3 fs1 fc0 sc1 ls3 ws0">&#65288;&#19968;&#65289;&#25968;&#23398;&#24120;&#25968;<span class="ff2"> </span></div><div class="t m0 x3 h3 y9 ff2 fs1 fc0 sc1 lsa ws0">C<span class="_ _7"></span>o<span class="_ _7"></span>m<span class="_ _7"></span>p<span class="_ _7"></span>l<span class="_ _7"></span>e<span class="_ _7"></span>x<span class="_ _7"></span>I<span class="_ _7"></span>n<span class="_ _7"></span>f<span class="_ _7"></span>i<span class="_ _7"></span>n<span class="_ _7"></span>i<span class="_ _7"></span>t<span class="_ _7"></span>y<span class="_ _7"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="ff3 ls3">&#22797;&#26080;&#31351;&#22823;<span class="ff2"> </span></span></div><div class="t m0 x3 h3 ya ff2 fs1 fc0 sc1 lsa ws0">D<span class="_ _7"></span>e<span class="_ _7"></span>g<span class="_ _7"></span>r<span class="_ _7"></span>e<span class="_ _7"></span>e<span class="_ _7"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> 1<span class="_ _7"></span><span class="ff3 ls3">&#176;&#23545;&#24212;&#30340;&#24359;&#24230;&#20540;&#65292;&#20026;&#960;<span class="ff2 lsb">/180 </span></span></div><div class="t m0 x3 h3 yb ff2 fs1 fc0 sc1 lsa ws0">D<span class="_ _7"></span>i<span class="_ _7"></span>r<span class="_ _7"></span>e<span class="_ _7"></span>c<span class="_ _7"></span>t<span class="_ _7"></span>e<span class="_ _7"></span>d<span class="_ _7"></span>I<span class="_ _7"></span>n<span class="_ _7"></span>f<span class="_ _7"></span>i<span class="_ _7"></span>n<span class="_ _7"></span>i<span class="_ _7"></span>t<span class="_ _7"></span>y<span class="_ _7"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="ff3 ls3">&#26377;&#26041;&#21521;&#30340;&#26080;&#31351;<span class="ff2"> </span></span></div><div class="t m0 x3 h3 yc ff2 fs1 fc0 sc1 lsa ws0">E<span class="_ _7"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="ff3 ls3">&#33258;&#28982;&#23545;&#25968;&#30340;&#24213;<span class="_ _4"> </span><span class="ff2">e</span>&#8776;</span><span class="lsc ws2">2.<span class="_ _8"></span>718 28 </span></div><div class="t m0 x3 h3 yd ff2 fs1 fc0 sc1 lsa ws0">I<span class="_ _7"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="ff3 ls3">&#34394;&#21333;&#20301;<span class="_ _9"> </span></span><span class="lsd">i=</span></div><div class="t m0 x5 h5 ye ff2 fs2 fc0 sc1 ls3 ws0">1<span class="_ _a"></span><span class="ff4">&#8722;<span class="_ _b"> </span><span class="ff2 fs1"> </span></span></div><div class="t m0 x3 h3 yf ff2 fs1 fc0 sc1 lsa ws0">I<span class="_ _7"></span>n<span class="_ _7"></span>d<span class="_ _7"></span>e<span class="_ _7"></span>t<span class="_ _7"></span>e<span class="_ _7"></span>r<span class="_ _7"></span>m<span class="_ _7"></span>i<span class="_ _7"></span>n<span class="_ _7"></span>a<span class="_ _7"></span>t<span class="_ _7"></span>e<span class="_ _7"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="ff3 ls3">&#19981;&#23450;&#20540;<span class="ff2"> </span></span></div><div class="t m0 x3 h3 y10 ff2 fs1 fc0 sc1 lsa ws0">I<span class="_ _7"></span>n<span class="_ _7"></span>f<span class="_ _7"></span>i<span class="_ _7"></span>n<span class="_ _7"></span>i<span class="_ _7"></span>t<span class="_ _7"></span>y<span class="_ _7"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="ff3 ls3">&#27491;&#26080;&#31351;<span class="ff2"> </span></span></div><div class="t m0 x3 h3 y11 ff2 fs1 fc0 sc1 lsa ws0">P<span class="_ _7"></span>i<span class="_ _7"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="_ _8"></span> <span class="ff3 ls3">&#22278;&#21608;&#29575;&#960;&#8776;</span><span class="lse ws3">3.141 59</span><span class="ff3 ls3">&#8230;<span class="ff2"> </span></span></div><div class="t m0 x3 h3 y12 ff3 fs1 fc0 sc1 ls3 ws0">&#65288;&#20108;&#65289;&#25968;&#23398;&#20989;&#25968;<span class="ff2"> </span></div><div class="t m0 x3 h3 y13 ff2 fs1 fc0 sc1 lsf ws4">Abort[ ] <span class="ff3 ls3 ws0">&#20135;&#29983;&#20013;&#27490;&#36816;&#31639;&#36807;&#31243;&#30340;&#24613;&#20572;&#12290;<span class="ff2"> </span></span></div><div class="t m0 x3 h3 y14 ff2 fs1 fc0 sc1 lsf ws0">AbortProtect[<span class="ff5 lsd">expr</span><span class="ls10 ws5"> ] <span class="_"> </span> <span class="_"> </span></span><span class="ff5 ls11">expr<span class="_"> </span><span class="ff3 ls3">&#30340;&#36816;&#31639;&#23436;&#25104;&#21518;&#25191;&#34892;&#20013;&#27490;&#36816;&#31639;&#36807;&#31243;&#30340;<span class="_ _4"> </span></span></span><span class="ws4">Abort[ ]</span><span class="ff3 ls12">&#21629;&#20196;</span><span class="ls9">. </span></div><div class="t m0 x6 h3 y15 ff2 fs1 fc0 sc1 ls13 ws0">Abs[<span class="ff5 ls3">x<span class="_ _2"></span><span class="ff2 ls14 ws6">] <span class="ff3 ls15 ws0">&#32473;&#20986;&#23454;&#25968;<span class="_ _4"> </span><span class="ff5 ls3">x<span class="_ _9"> </span></span>&#30340;&#32477;&#23545;&#20540;&#65292;&#25110;&#32473;&#20986;&#22797;&#25968;<span class="_ _4"> </span><span class="ff5 ls3">x<span class="_ _9"> </span></span>&#30340;&#27169;&#12290;&#22914;&#26524;<span class="_ _4"> </span><span class="ff5 ls3">x<span class="_ _9"> </span></span>&#19981;&#26159;&#25968;&#65292;&#21017;<span class="_ _4"> </span><span class="ff2 ls13">Abs[<span class="ff5 ls3">x<span class="_ _2"></span><span class="ff2">]<span class="_ _2"></span><span class="ff3 ls15">&#19981;&#20316;&#36816;&#31639;<span class="ff2 ls16">.. </span></span></span></span></span></span></span></span></div><div class="t m0 x3 h3 y16 ff2 fs1 fc0 sc1 ls17 ws0">AbsoluteDashing[{<span class="ff5 ls3">d</span></div><div class="t m0 x7 h6 y17 ff2 fs3 fc0 sc1 ls3 ws0">1</div><div class="t m1 x8 h7 y18 ff3 fs4 fc0 sc1 ls3 ws0">&#65292;</div><div class="t m0 x9 h8 y18 ff5 fs1 fc0 sc1 ls3 ws0">d</div><div class="t m0 xa h6 y17 ff2 fs3 fc0 sc1 ls3 ws0">2</div><div class="t m1 xb h7 y18 ff3 fs4 fc0 sc1 ls18 ws0">&#65292;&#8230;</div><div class="t m0 xc h3 y18 ff2 fs1 fc0 sc1 ls19 ws7">}] <span class="ff3 ls3 ws0">&#22270;&#24418;&#30340;&#26679;&#24335;&#25351;&#20196;&#65292;<span class="_ _c"></span>&#34394;&#32447;&#32447;&#27573;&#37325;&#22797;&#24490;&#29615;&#20351;&#29992;<span class="_ _6"> </span><span class="ff5">d</span></span></div><div class="t m0 xd h6 y17 ff2 fs3 fc0 sc1 ls3 ws0">1</div><div class="t m1 xe h7 y18 ff3 fs4 fc0 sc1 ls3 ws0">&#65292;</div><div class="t m0 xf h8 y18 ff5 fs1 fc0 sc1 ls3 ws0">d</div><div class="t m0 x10 h6 y17 ff2 fs3 fc0 sc1 ls3 ws0">2</div><div class="t m1 x11 h7 y18 ff3 fs4 fc0 sc1 ls3 ws0">&#65292;</div><div class="t m0 x12 h4 y18 ff3 fs1 fc0 sc1 ls3 ws0">&#8230;</div><div class="t m0 x4 h3 y19 ff3 fs1 fc0 sc1 ls3 ws0">&#30340;&#38271;&#24230;<span class="ff2 ls9">. </span></div><div class="t m0 x3 h3 y1a ff2 fs1 fc0 sc1 ls9 ws0">AbsolutePointSize[<span class="_ _2"></span><span class="ff5 ls3">d<span class="ff2 ls1a ws8">] </span><span class="ff3">&#22270;&#24418;&#30340;&#26679;&#24335;&#25351;&#20196;&#65292;</span>d<span class="_"> </span><span class="ff3">&#26159;&#22270;&#24418;&#19978;&#28857;&#30340;&#21322;&#24452;<span class="ff2 ls9">. </span></span></span></div><div class="t m0 x3 h3 y1b ff2 fs1 fc0 sc1 ls8 ws0">AbsoluteThickness[<span class="ff5 ls3">d</span><span class="ls10 ws9">] </span><span class="ff3 ls3">&#22270;&#24418;&#30340;&#26679;&#24335;&#25351;&#20196;&#65292;<span class="ff5">d<span class="_"> </span></span>&#26159;&#22270;&#24418;<span class="_ _2"></span>&#19978;&#30452;&#32447;&#30340;&#32477;&#23545;&#23485;&#24230;<span class="ff2 ls9">. </span></span></div><div class="t m0 x3 h3 y1c ff2 fs1 fc0 sc1 ls1b ws0">Accuracy[<span class="ff5 ls3">x</span><span class="ls1a ws8">] </span><span class="ff3 ls3">&#32473;&#20986;<span class="_ _d"> </span><span class="ff5">x<span class="_ _d"> </span></span>&#30340;&#23567;&#25968;&#28857;&#20197;&#21518;&#30340;&#20301;&#25968;&#65292;&#22914;&#26524;<span class="_ _d"> </span><span class="ff5">x<span class="_ _d"> </span></span>&#19981;&#26159;&#19968;&#20010;&#25968;&#65292;</span><span class="ls17">Accuracy[<span class="ff5 ls3">x<span class="ff2">]<span class="ff3">&#32473;&#20986;<span class="_ _d"> </span></span></span>x</span></span></div><div class="t m0 x4 h3 y1d ff3 fs1 fc0 sc1 ls3 ws0">&#20013;&#25152;&#26377;&#25968;&#30340;&#31934;&#24230;&#30340;&#26368;&#23567;&#20540;&#65292;&#25972;&#25968;&#30340;&#31934;&#24230;&#20026;&#26080;&#31351;&#22823;<span class="ff2 ls9">. </span></div><div class="t m0 x3 h3 y1e ff2 fs1 fc0 sc1 ls1c ws0">Apart[<span class="ff5 lsd">expr</span><span class="ls10 ws9">] </span><span class="ff3 ls3">&#23558;&#26377;&#29702;&#24335;&#20889;&#25104;&#19968;&#31995;&#21015;&#26368;&#31616;&#20998;&#24335;&#20043;&#21644;</span><span class="ls9">. </span></div><div class="t m0 x3 h3 y1f ff2 fs1 fc0 sc1 ls1c ws0">Apart[<span class="ff5 lsd">expr</span></div><div class="t m1 x13 h7 y20 ff3 fs4 fc0 sc1 ls3 ws0">&#65292;</div><div class="t m0 x14 h3 y20 ff5 fs1 fc0 sc1 ls11 ws0">var<span class="ff2 ls1a wsa">] </span><span class="ff3 ls3">&#23558;<span class="_ _6"> </span></span><span class="ls1d">var<span class="_"> </span><span class="ff3 ls3">&#20197;&#22806;&#30340;&#21464;&#37327;&#37117;&#20316;&#20026;&#24120;&#25968;<span class="ff2 ls9">. </span></span></span></div><div class="t m0 x3 h3 y21 ff2 fs1 fc0 sc1 lsb ws0">Append[<span class="ff5 ls1d">expr</span></div><div class="t m1 x15 h7 y22 ff3 fs4 fc0 sc1 ls3 ws0">&#65292;</div><div class="t m0 x16 h3 y22 ff5 fs1 fc0 sc1 ls2 ws0">elem<span class="ff2 ls1a wsa">] </span><span class="ff3 ls3">&#32473;&#20986;&#23558;&#20803;&#32032;<span class="_ _4"> </span></span><span class="ls6">elem<span class="_"> </span><span class="ff3 ls3">&#36861;&#21152;&#21040;<span class="_ _6"> </span></span><span class="ls1e">expr<span class="_"> </span><span class="ff3 ls3">&#21518;&#30340;&#32467;&#26524;&#65292;</span><span class="lsd">expr<span class="_"> </span><span class="ff3 ls3">&#30340;&#20540;&#19981;&#21464;<span class="ff2 ls9">. </span></span></span></span></span></div><div class="t m0 x3 h3 y23 ff2 fs1 fc0 sc1 lsb ws0">AppendT<span class="_ _5"></span>o<span class="_ _2"></span>[<span class="ff5 ls3">s</span></div><div class="t m1 x17 h7 y24 ff3 fs4 fc0 sc1 ls3 ws0">&#65292;</div><div class="t m0 x18 h3 y24 ff5 fs1 fc0 sc1 ls2 ws0">elem<span class="ff2 ls1a wsa">] </span><span class="ff3 ls12">&#23558;&#20803;&#32032;<span class="_ _6"> </span></span>elem<span class="_"> </span><span class="ff3 ls12">&#36861;&#21152;&#21040;<span class="_ _6"> </span></span><span class="ls3">s<span class="_"> </span><span class="ff3">&#20013;<span class="ff2 ls9">. </span></span></span></div><div class="t m0 x3 h3 y25 ff2 fs1 fc0 sc1 ls1f ws0">Apply[<span class="ff5 ls3">f</span></div><div class="t m1 x19 h7 y26 ff3 fs4 fc0 sc1 ls3 ws0">&#65292;</div><div class="t m0 x1a h3 y26 ff5 fs1 fc0 sc1 ls20 ws0">expr<span class="ff2 ls1a wsa">] </span><span class="ls3">f<span class="_"> </span><span class="ff3">&#20316;&#29992;&#20110;<span class="_ _4"> </span></span><span class="lsd">expr</span><span class="ff2">.<span class="ff3">&#20363;&#22914;&#65292;</span><span class="ls2">Apply[Plus</span><span class="ff3">&#65292;</span>2<span class="ff3">&#65292;</span><span class="ls4">3]</span><span class="ff3">&#30340;&#20540;&#20026;<span class="_ _4"> </span></span><span class="ls4">5. </span></span></span></div><div class="t m0 x3 h3 y27 ff2 fs1 fc0 sc1 ls21 ws0">ArcCos[<span class="ff5 ls3">z</span><span class="ls1a ws8">] </span><span class="ff3 ls3">&#22797;&#25968;<span class="_ _6"> </span><span class="ff5">z<span class="_"> </span></span>&#30340;&#21453;&#20313;&#24358;<span class="_ _6"> </span></span><span class="ls9">arccos <span class="ff5 ls3">z</span><span class="ls22">. </span></span></div><div class="t m0 x3 h3 y28 ff2 fs1 fc0 sc1 ls23 ws0">ArcaCosh[<span class="ff5 ls3">z</span><span class="ls1a ws8">] </span><span class="ff3 ls3">&#22797;&#25968;<span class="_ _6"> </span><span class="ff5">z<span class="_"> </span></span>&#30340;&#21453;&#21452;&#26354;&#20313;&#24358;<span class="_ _6"> </span></span><span class="ls9">arccosh <span class="ff5 ls3">z</span>. </span></div><div class="t m0 x3 h3 y29 ff2 fs1 fc0 sc1 ls21 ws0">ArcCot[<span class="ff5 ls3">z</span><span class="ls1a wsa">] </span><span class="ff3 ls3">&#22797;&#25968;<span class="_ _4"> </span><span class="ff5">z<span class="_"> </span></span>&#30340;&#21453;&#20313;&#20999;<span class="_ _6"> </span></span><span class="ls24">arccot <span class="ff5 ls3">z</span><span class="ls22">. </span></span></div><div class="t m0 x3 h3 y2a ff2 fs1 fc0 sc1 ls25 ws0">ArcCoth[<span class="ff5 ls3">z</span><span class="ls1a ws8">] </span><span class="ff3 ls3">&#22797;&#25968;<span class="ff2"> <span class="_"> </span><span class="ff5">z<span class="_"> </span></span></span>&#30340;&#21453;&#21452;&#26354;&#20313;&#20999;<span class="_ _6"> </span></span><span class="ls2">arccoth <span class="ff5 ls3">z</span><span class="ls9">. </span></span></div><div class="t m0 x4 h9 y2b ff2 fs5 fc0 sc1 ls3 ws0"> </div><div class="t m0 x1b h9 y2c ff2 fs5 fc0 sc1 ls3 ws0">1</div></div><div class="pi" data-data='{"ctm":[1.864011,0.000000,0.000000,1.864011,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • mathematica讲稿.rar
      mathematica,讲稿,学习mathematica使用,希望对大家有帮助。
    • Mathematica.zip
      mathematica编程教程介绍。。。。
    • Mathematica课件.rar
      Mathematica学习资料 车灯问题 常微分方程与追击问题
    • Mathematica.zip
      Mathematica使用指南,作为数学运算及其他的必备神器很值得推荐
    • mathematica合集
      this file contains:A Mathematica Primer for Physicists-CRC Press (2018).pdf An Elementary Introduction to the Wolfram Language 2ed.pdf An Engineer's guide to Mathematica.pdf An Introduction to ...
    • mathematica-keygen.zip
      Widely admired for both its technical prowess and elegant ease of use, Mathematica provides a single integrated, continually expanding system
    • Mathematica程序 中国剩余定理.zip
      中国剩余定理的mathematica实现
    • Matering Mathematica
      高清pdf格式。 I Mastering Mathematica as a Symbolic Pocket Calculator II Mastering Mathematica as a Programming Language III Mastering Knowledge Representation in Mathematica
    • Mathematica 11.3
      Mathematica 11.3(简体中文版) | 2018年4月 版本 11.3 对 Mathematica 和 Wolfram 语言在数学计算、音频和图像处理、系统建模、机器学习和神经网络以及更多方面的功能进行了扩展,并添加了多种全新前端特性。 ...
    • matlabcnhelp.rar
      matlab中文帮助很难找的,快速下载