fuzzy_pid.rar

  • 怒海
    了解作者
  • matlab
    开发工具
  • 1KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 10 积分
    下载积分
  • 2
    下载次数
  • 2018-01-23 14:52
    上传日期
求稳态误差,设定模糊规则,对中间的变量进行赋值,最后通过稳态误差的变化来判断系统的稳定
fuzzy_pid.rar
  • fuzzy_pid.M
    5.1KB
内容介绍
%Fuzzy Tunning PID Control clear all; close all; a=newfis('fuzzpid'); a=addvar(a,'input','e',[-3,3]); %Parameter e a=addmf(a,'input',1,'NB','zmf',[-3,-1]); a=addmf(a,'input',1,'NM','trimf',[-3,-2,0]); a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]); a=addmf(a,'input',1,'Z','trimf',[-2,0,2]); a=addmf(a,'input',1,'PS','trimf',[-1,1,3]); a=addmf(a,'input',1,'PM','trimf',[0,2,3]); a=addmf(a,'input',1,'PB','smf',[1,3]); a=addvar(a,'input','ec',[-3,3]); %Parameter ec a=addmf(a,'input',2,'NB','zmf',[-3,-1]); a=addmf(a,'input',2,'NM','trimf',[-3,-2,0]); a=addmf(a,'input',2,'NS','trimf',[-3,-1,1]); a=addmf(a,'input',2,'Z','trimf',[-2,0,2]); a=addmf(a,'input',2,'PS','trimf',[-1,1,3]); a=addmf(a,'input',2,'PM','trimf',[0,2,3]); a=addmf(a,'input',2,'PB','smf',[1,3]); a=addvar(a,'output','kp',[-0.3,0.3]); %Parameter kp a=addmf(a,'output',1,'NB','zmf',[-0.3,-0.1]); a=addmf(a,'output',1,'NM','trimf',[-0.3,-0.2,0]); a=addmf(a,'output',1,'NS','trimf',[-0.3,-0.1,0.1]); a=addmf(a,'output',1,'Z','trimf',[-0.2,0,0.2]); a=addmf(a,'output',1,'PS','trimf',[-0.1,0.1,0.3]); a=addmf(a,'output',1,'PM','trimf',[0,0.2,0.3]); a=addmf(a,'output',1,'PB','smf',[0.1,0.3]); a=addvar(a,'output','ki',[-0.06,0.06]); %Parameter ki a=addmf(a,'output',2,'NB','zmf',[-0.06,-0.02]); a=addmf(a,'output',2,'NM','trimf',[-0.06,-0.04,0]); a=addmf(a,'output',2,'NS','trimf',[-0.06,-0.02,0.02]); a=addmf(a,'output',2,'Z','trimf',[-0.04,0,0.04]); a=addmf(a,'output',2,'PS','trimf',[-0.02,0.02,0.06]); a=addmf(a,'output',2,'PM','trimf',[0,0.04,0.06]); a=addmf(a,'output',2,'PB','smf',[0.02,0.06]); a=addvar(a,'output','kd',[-3,3]); %Parameter kp a=addmf(a,'output',3,'NB','zmf',[-3,-1]); a=addmf(a,'output',3,'NM','trimf',[-3,-2,0]); a=addmf(a,'output',3,'NS','trimf',[-3,-1,1]); a=addmf(a,'output',3,'Z','trimf',[-2,0,2]); a=addmf(a,'output',3,'PS','trimf',[-1,1,3]); a=addmf(a,'output',3,'PM','trimf',[0,2,3]); a=addmf(a,'output',3,'PB','smf',[1,3]); rulelist=[1 1 7 1 5 1 1; 1 2 7 1 3 1 1; 1 3 6 2 1 1 1; 1 4 6 2 1 1 1; 1 5 5 3 1 1 1; 1 6 4 4 2 1 1; 1 7 4 4 5 1 1; 2 1 7 1 5 1 1; 2 2 7 1 3 1 1; 2 3 6 2 1 1 1; 2 4 5 3 2 1 1; 2 5 5 3 2 1 1; 2 6 4 4 3 1 1; 2 7 3 4 4 1 1; 3 1 6 1 4 1 1; 3 2 6 2 3 1 1; 3 3 6 3 2 1 1; 3 4 5 3 2 1 1; 3 5 4 4 3 1 1; 3 6 3 5 3 1 1; 3 7 3 5 4 1 1; 4 1 6 2 4 1 1; 4 2 6 2 3 1 1; 4 3 5 3 3 1 1; 4 4 4 4 3 1 1; 4 5 3 5 3 1 1; 4 6 2 6 3 1 1; 4 7 2 6 4 1 1; 5 1 5 2 4 1 1; 5 2 5 3 4 1 1; 5 3 4 4 4 1 1; 5 4 3 5 4 1 1; 5 5 3 5 4 1 1; 5 6 2 6 4 1 1; 5 7 2 7 4 1 1; 6 1 5 4 7 1 1; 6 2 4 4 5 1 1; 6 3 3 5 5 1 1; 6 4 2 5 5 1 1; 6 5 2 6 5 1 1; 6 6 2 7 5 1 1; 6 7 1 7 7 1 1; 7 1 4 4 7 1 1; 7 2 4 4 6 1 1; 7 3 2 5 6 1 1; 7 4 2 6 6 1 1; 7 5 2 6 5 1 1; 7 6 1 7 5 1 1; 7 7 1 7 7 1 1]; a=addrule(a,rulelist); a=setfis(a,'DefuzzMethod','mom'); writefis(a,'fuzzpid'); a=readfis('fuzzpid'); %PID Controller ts=0.001; sys=tf(5.235e005,[1,87.35,1.047e004,0]); dsys=c2d(sys,ts,'tustin'); [num,den]=tfdata(dsys,'v'); u_1=0.0;u_2=0.0;u_3=0.0; y_1=0;y_2=0;y_3=0; x=[0,0,0]'; error_1=0; e_1=0.0; ec_1=0.0; kp0=0.40; kd0=1.0; ki0=0.0; for k=1:1:500 time(k)=k*ts; rin(k)=1; %Using fuzzy inference to tunning PID k_pid=evalfis([e_1,ec_1],a); kp(k)=kp0+k_pid(1); ki(k)=ki0+k_pid(2); kd(k)=kd0+k_pid(3); u(k)=kp(k)*x(1)+kd(k)*x(2)+ki(k)*x(3); if k==300 % Adding disturbance(1.0v at time 0.3s) u(k)=u(k)+1.0; end if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end yout(k)=-den(2)*y_1-den(3)*y_2-den(4)*y_3+num(1)*u(k)+num(2)*u_1+num(3)*u_2+num(4)*u_3; error(k)=rin(k)-yout(k); %%%%%%%%%%%%%%Return of PID parameters%%%%%%%%%%%%%%% u_3=u_2; u_2=u_1; u_1=u(k); y_3=y_2; y_2=y_1; y_1=yout(k); x(1)=error(k); % Calculating P x(2)=error(k)-error_1; % Calculating D x(3)=x(3)+error(k); % Calculating I e_1=x(1); ec_1=x(2); error_2=error_1; error_1=error(k); end showrule(a) figure(1);plot(time,rin,'b',time,yout,'r'); xlabel('time(s)');ylabel('rin,yout'); figure(2);plot(time,error,'r'); xlabel('time(s)');ylabel('error'); figure(3);plot(time,u,'r'); xlabel('time(s)');ylabel('u'); figure(4);plot(time,kp,'r'); xlabel('time(s)');ylabel('kp'); figure(5);plot(time,ki,'r'); xlabel('time(s)');ylabel('ki'); figure(6);plot(time,kd,'r'); xlabel('time(s)');ylabel('kd'); figure(7);plotmf(a,'input',1); figure(8);plotmf(a,'input',2); figure(9);plotmf(a,'output',1); figure(10);plotmf(a,'output',2); figure(11);plotmf(a,'output',3); plotfis(a); fuzzy fuzzpid.fis
评论
    相关推荐
    • fuzzy.zip
      fuzzy模糊控制例程 MATLAB simulation
    • fuzzy clustering.zip
      Clustering algorithm with diffrent data sets
    • Fuzzy Cluster Analysis.zip
      Fuzzy Cluster Analysis
    • Fuzzy_Systems_Regression-master.zip
      fuzzy system for data streams and functional data regression
    • Fuzzy.rar
      Good document about Fuzzy logic
    • fuzzy.rar
      this code is fuzzy optimization
    • Adaptive fuzzy neural network
      An adaptive neuro-fuzzy inference system or adaptive network-based fuzzy inference system (ANFIS) is a kind of artificial neural network that is based on Takagi–Sugeno fuzzy inference system....
    • Fuzzy
      Fuzzy 刀具分类
    • Fuzzy Sets Engineering
      Chapter 1—Fuzzy set-based modelling and simulation environment 1.1 Introduction: a rationale 1.2 System modelling with fuzzy sets 1.2.1 The paradigm 1.2.2 The general architecture of fuzzy ...
    • Fuzzy Control Systems
      Chapter 9—A Self Generating and Tuning Method for Fuzzy Modeling using Interior Penalty Method and its Application to Knowledge Acquisition of Fuzzy Controller 1 Introduction 2 Self Tuning ...