An Analysis of Adaptive DPCA.rar

  • engrsaleem
    了解作者
  • matlab
    开发工具
  • 389KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 10
    下载次数
  • 2018-05-02 13:25
    上传日期
analysis of DPCA and stap
An Analysis of Adaptive DPCA.rar
  • An Analysis of Adaptive DPCA.pdf
    422.7KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/625e89112cc14f66361916fd/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/625e89112cc14f66361916fd/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">An <span class="_ _0"></span><span class="ls1">Analysis </span></div><div class="t m1 x2 h2 y1 ff1 fs0 fc0 sc0 ls2 ws0">o:f </div><div class="t m0 x3 h2 y1 ff1 fs0 fc0 sc0 ls3 ws0">Adaptive </div><div class="t m2 x4 h3 y1 ff1 fs1 fc0 sc0 ls4 ws0">DPCA </div><div class="t m3 x5 h4 y1 ff2 fs1 fc0 sc0 ls3 ws0">* </div><div class="t m4 x6 h5 y2 ff3 fs2 fc0 sc0 ls5 ws0">R. </div><div class="t m5 x7 h6 y2 ff2 fs3 fc0 sc0 ls6 ws0">S. </div><div class="t m6 x8 h7 y2 ff3 fs4 fc0 sc0 ls7 ws0">Blum </div><div class="t m7 x9 h8 y3 ff3 fs5 fc0 sc0 ls8 ws0">EECS </div><div class="t m6 xa h7 y3 ff3 fs4 fc0 sc0 ls3 ws0">Dept. <span class="_ _1"> </span><span class="ls9">Lehigh <span class="_ _2"></span><span class="ls7">University </span></span></div><div class="t m6 xb h7 y4 ff3 fs4 fc0 sc0 lsa ws0">Bethlehem, </div><div class="t m8 xc h9 y5 ff3 fs6 fc0 sc0 ls3 ws0">PA </div><div class="t m6 xd h7 y5 ff3 fs4 fc0 sc0 ls9 ws0">18015 </div><div class="t m9 xe ha y6 ff1 fs5 fc0 sc0 ls3 ws0">W. </div><div class="t ma xf hb y6 ff3 fs7 fc0 sc0 lsb ws0">L. </div><div class="t m6 x10 h7 y6 ff3 fs4 fc0 sc0 ls7 ws0">Melvin </div><div class="t mb x11 hc y6 ff4 fs8 fc0 sc0 ls3 ws0">and </div><div class="t mc x12 hb y6 ff3 fs7 fc0 sc0 lsc ws0">M. </div><div class="t md x13 hd y6 ff3 fs9 fc0 sc0 lsd ws0">C. </div><div class="t me x14 he y6 ff1 fsa fc0 sc0 lse ws0">Wicks </div><div class="t m8 x15 h9 y7 ff3 fs6 fc0 sc0 lsf ws0">USA" </div><div class="t m6 x16 h7 y7 ff3 fs4 fc0 sc0 ls10 ws0">Rome <span class="_ _3"></span>Laboratory </div><div class="t mf x17 hf y8 ff3 fs3 fc0 sc0 ls3 ws0">Rome, </div><div class="t m10 x11 h9 y8 ff3 fs6 fc0 sc0 ls11 ws0">NY </div><div class="t m6 x18 h7 y8 ff3 fs4 fc0 sc0 ls9 ws0">13441 </div><div class="t m11 x19 h10 y9 ff3 fsb fc0 sc0 ls12 ws0">Abstract </div><div class="t m12 x1a h11 ya ff1 fsc fc0 sc0 ls13 ws0">A <span class="_ _4"></span><span class="ls14">low <span class="_ _5"></span><span class="ls15">complexity <span class="ls13">space-time <span class="_ _6"></span><span class="ls16">adaptive <span class="_ _6"></span><span class="ls15">processing (S'I'AP) <span class="_ _5"></span>scheme, <span class="ls17">called <span class="_ _7"></span><span class="ls3">the <span class="ls13">adap- </span></span></span></span></span></span></span></span></div><div class="t m12 x1b h11 yb ff1 fsc fc0 sc0 ls13 ws0">tive <span class="_ _3"></span><span class="ls15">displaced <span class="_ _8"></span></span>phase <span class="_ _3"></span>centered <span class="_ _3"></span><span class="ls16">antenna <span class="_ _3"></span></span>(ADPCA) <span class="_ _7"></span>technique, <span class="_ _7"></span><span class="ls17">is <span class="_ _2"> </span><span class="ls15">analyzed. <span class="_ _9"> </span></span>Conditioins </span></div><div class="t m12 x1b h11 yc ff1 fsc fc0 sc0 ls18 ws0">are <span class="_ _5"></span><span class="ls17">given <span class="_ _2"> </span><span class="ls13">under <span class="_ _2"> </span></span>which <span class="_ _a"> </span><span class="ls13">this <span class="_"> </span></span>scheme <span class="_ _3"></span>is <span class="_"> </span><span class="ls13">optimum </span></span></div><div class="t m13 x1c h12 yd ff1 fsd fc0 sc0 ls19 ws0">for </div><div class="t m12 x1d h11 yd ff1 fsc fc0 sc0 ls16 ws0">the <span class="_ _a"> </span><span class="ls17">case <span class="_ _a"> </span><span class="ls1a">of <span class="_ _9"> </span><span class="ls13">observations <span class="_ _3"></span>with </span></span></span></div><div class="t m14 x1e h13 yd ff1 fse fc0 sc0 ls1b ws0">a </div><div class="t m12 x1b h11 ye ff1 fsc fc0 sc0 ls14 ws0">known <span class="_ _1"> </span><span class="ls15">covariance <span class="_ _a"></span><span class="ls16">matrix. </span></span></div><div class="t m12 x1f h11 yf ff1 fsc fc0 sc0 ls1c ws0">An <span class="_ _b"> </span><span class="ls13">interesting <span class="_ _a"> </span><span class="ls16">interpretation <span class="_ _b"> </span><span class="ls1a">of <span class="_ _9"> </span><span class="ls3">the <span class="_ _a"> </span><span class="ls15">ADPCA <span class="_ _2"> </span>scheme </span></span></span></span></span></div><div class="t m15 x20 h12 y10 ff1 fsd fc0 sc0 ls3 ws0">is </div><div class="t m12 x1b h11 y11 ff1 fsc fc0 sc0 ls15 ws0">provided <span class="_ _8"></span><span class="ls17">which <span class="_ _3"></span><span class="ls13">may <span class="_ _5"></span></span></span>explain <span class="_ _8"></span><span class="ls1d">its </span>good <span class="_ _7"></span><span class="ls13">performance under <span class="_ _8"></span><span class="ls17">some <span class="_ _7"></span></span>conditions. </span></div><div class="t m16 x21 h14 y11 ff1 fsf fc0 sc0 ls1e ws0">For </div><div class="t m12 x22 h11 y11 ff1 fsc fc0 sc0 ls15 ws0">some </div><div class="t m12 x1b h11 y12 ff1 fsc fc0 sc0 ls15 ws0">cases <span class="_ _5"></span><span class="ls13">with <span class="_ _8"></span><span class="ls17">noise <span class="_ _a"></span></span>and <span class="_ _8"></span>ground <span class="_ _3"></span><span class="ls3">clutter <span class="_ _5"></span><span class="ls17">only, <span class="_ _3"></span></span>the <span class="_ _3"></span></span></span>ADPCA <span class="_ _3"></span>scheme <span class="_ _4"></span><span class="ls13">approximates <span class="_ _8"></span><span class="ls16">a <span class="_ _3"></span><span class="ls17">pulse </span></span></span></div><div class="t m12 x1b h11 y13 ff1 fsc fc0 sc0 ls15 ws0">cancelling <span class="_ _7"></span>scheme applied <span class="_ _a"> </span><span class="ls1f">to <span class="_ _4"></span><span class="ls13">optimally <span class="_ _3"></span><span class="ls15">whitened <span class="_ _3"></span></span>pairs <span class="_ _a"></span><span class="ls1a">of <span class="_ _1"> </span><span class="ls17">pulses. <span class="_ _c"> </span><span class="ls3">The <span class="_ _5"></span></span></span></span>detection <span class="_ _8"></span>per- </span></span></div><div class="t m12 x1b h11 y14 ff1 fsc fc0 sc0 ls13 ws0">formance <span class="_ _4"></span><span class="ls17">was <span class="_ _5"></span><span class="ls15">analyzed <span class="_ _3"></span>for </span></span></div><div class="t m17 x23 h15 y15 ff1 fs10 fc0 sc0 ls20 ws0">a </div><div class="t m12 x24 h11 y15 ff1 fsc fc0 sc0 ls15 ws0">case <span class="ls17">where <span class="_ _7"></span><span class="ls3">the <span class="ls13">training <span class="_ _a"></span><span class="ls21">data <span class="_ _6"></span><span class="ls17">does <span class="_ _7"></span><span class="ls13">not <span class="_ _3"></span>include <span class="ls1d">the <span class="_ _6"></span><span class="ls15">effects </span></span></span></span></span></span></span></span></div><div class="t m18 x1b h16 y16 ff3 fs11 fc0 sc0 ls22 ws0">of </div><div class="t m17 x25 h15 y16 ff1 fs10 fc0 sc0 ls20 ws0">a </div><div class="t m12 x26 h11 y16 ff1 fsc fc0 sc0 ls13 ws0">discrete <span class="_ _7"></span><span class="ls16">scatterer <span class="_ _3"></span><span class="ls1d">that <span class="_ _7"></span></span></span>contaminates <span class="_ _7"></span><span class="ls3">the <span class="_ _7"></span></span>range <span class="_ _5"></span><span class="ls14">cell <span class="_ _8"></span></span>under <span class="_ _3"></span><span class="ls3">test. <span class="_ _a"></span><span class="ls17">Here <span class="_ _3"></span></span>the <span class="ls15">ADPCA </span></span></div><div class="t m12 x1b h11 y17 ff1 fsc fc0 sc0 ls17 ws0">scheme <span class="ls13">outperforms <span class="_ _7"></span><span class="ls3">the <span class="_ _5"></span></span></span>scheme <span class="ls14">which </span></div><div class="t m19 x27 h17 y18 ff1 fs12 fc0 sc0 ls23 ws0">is </div><div class="t m12 x3 h11 y18 ff1 fsc fc0 sc0 ls13 ws0">optimum </div><div class="t m1a x28 h18 y18 ff1 fs13 fc0 sc0 ls24 ws0">for </div><div class="t m12 x29 h11 y18 ff1 fsc fc0 sc0 ls16 ws0">the <span class="_ _3"></span><span class="ls17">case </span></div><div class="t m1b x2a h19 y18 ff1 fs14 fc0 sc0 ls25 ws0">of </div><div class="t m17 x2b h15 y18 ff1 fs10 fc0 sc0 ls20 ws0">a </div><div class="t m12 x2c h11 y18 ff1 fsc fc0 sc0 ls14 ws0">known <span class="_ _3"></span><span class="ls15">covariance </span></div><div class="t m12 x1b h11 y19 ff1 fsc fc0 sc0 ls16 ws0">matrix. </div><div class="t m1c x24 h1a y1a ff3 fs15 fc0 sc0 ls26 ws0">1.0 </div><div class="t m1d x2d h1b y1a ff3 fs16 fc0 sc0 ls27 ws0">INTIRODUCTION </div><div class="t m1e x2e h1c y1b ff1 fs17 fc0 sc0 ls3 ws0">The </div><div class="t m12 x2f h11 y1b ff1 fsc fc0 sc0 ls21 ws0">adaptive <span class="_ _d"></span><span class="ls3">displaced <span class="ls18">phase </span>centered <span class="_ _7"></span><span class="ls1d">antenna </span></span></div><div class="t m1f x30 h1d y1b ff1 fs18 fc0 sc0 ls28 ws0">(ADPCA) </div><div class="t m12 x4 h11 y1b ff1 fsc fc0 sc0 ls18 ws0">technique <span class="_ _4"></span><span class="ls16">is </span></div><div class="t m20 x13 h1e y1b ff1 fsb fc0 sc0 ls12 ws0">a </div><div class="t m12 x31 h11 y1b ff1 fsc fc0 sc0 ls13 ws0">low <span class="ls3">complexity </span></div><div class="t m12 x32 h11 y1c ff1 fsc fc0 sc0 ls21 ws0">alternative <span class="ls29">to <span class="_ _6"></span><span class="ls18">joint-domain <span class="_ _a"> </span><span class="ls21">optimum <span class="_ _5"></span></span>space-time <span class="_ _7"></span>adaptive: <span class="_ _d"></span><span class="ls16">processing </span></span></span></div><div class="t m21 x33 h1d y1d ff1 fs18 fc0 sc0 ls2a ws0">(STAP) </div><div class="t m22 x34 h1f y1d ff1 fs19 fc0 sc0 ls3 ws0">[l]. </div><div class="t m23 x35 h1c y1d ff1 fs17 fc0 sc0 ls3 ws0">In </div><div class="t m7 x36 h1c y1d ff1 fs17 fc0 sc0 ls2b ws0">the </div><div class="t m24 x32 h1c y1e ff1 fs17 fc0 sc0 ls2c ws0">ADPCA </div><div class="t m12 x1a h11 y1e ff1 fsc fc0 sc0 ls18 ws0">technique <span class="ls17">we <span class="_ _8"></span></span>compare <span class="_ _4"></span><span class="ls2d">the <span class="_ _6"></span><span class="ls21">test <span class="_ _3"></span>statistic </span></span></div><div class="t m7 x1f h20 y1f ff5 fs1a fc0 sc0 ls2e ws0">T(X) </div><div class="t m25 x37 h21 y1f ff2 fs1b fc0 sc0 ls3 ws0">= </div><div class="t m26 x19 h22 y1f ff5 fs1c fc0 sc0 ls2f ws0">p(s)HEi-'v(x)l </div><div class="t m27 x38 h23 y1f ff1 fs1d fc0 sc0 ls30 ws0">(1) </div><div class="t m12 x39 h11 y20 ff1 fsc fc0 sc0 ls31 ws0">to </div><div class="t m14 x3a h13 y20 ff1 fse fc0 sc0 ls1b ws0">a </div><div class="t m12 x3b h11 y20 ff1 fsc fc0 sc0 ls18 ws0">threshold <span class="_"> </span><span class="ls29">to <span class="_ _7"></span><span class="ls3">decide <span class="_ _a"> </span><span class="ls32">if </span></span></span></div><div class="t m28 x3c h13 y20 ff1 fse fc0 sc0 ls1b ws0">a </div><div class="t m12 x3d h11 y20 ff1 fsc fc0 sc0 ls21 ws0">target <span class="_ _2"> </span><span class="ls16">is <span class="_ _1"> </span><span class="ls3">present </span></span></div><div class="t m29 x3e h23 y20 ff1 fs1d fc0 sc0 ls33 ws0">at </div><div class="t m2a x3f h23 y20 ff1 fs1d fc0 sc0 ls34 ws0">a </div><div class="t m12 x40 h11 y20 ff1 fsc fc0 sc0 ls16 ws0">given <span class="_ _1"> </span><span class="ls18">position, <span class="_"> </span><span class="ls3">where </span></span></div><div class="t m2b x41 h24 y20 ff5 fs18 fc0 sc0 ls35 ws0">V(X) </div><div class="t m12 x42 h11 y20 ff1 fsc fc0 sc0 ls16 ws0">is <span class="_"> </span><span class="ls2d">the </span></div><div class="t m12 x39 h11 y21 ff1 fsc fc0 sc0 ls3 ws0">vector <span class="_ _7"></span><span class="ls36">of <span class="_ _b"> </span></span>complex <span class="ls2d">data <span class="_ _6"></span><span class="ls18">samples <span class="_ _4"></span><span class="ls3">observed, </span></span></span></div><div class="t m2c x27 h25 y22 ff5 fs1e fc0 sc0 ls37 ws0">'V(S)H </div><div class="t m12 x43 h11 y22 ff1 fsc fc0 sc0 ls18 ws0">is <span class="_ _5"></span><span class="ls38">the <span class="_ _6"></span><span class="ls18">conjugate <span class="_ _7"></span>transpose </span></span></div><div class="t m2d x44 h26 y22 ff1 fs1b fc0 sc0 ls39 ws0">of </div><div class="t m12 x45 h11 y22 ff1 fsc fc0 sc0 ls2d ws0">the <span class="_ _d"></span><span class="ls3">steering </span></div><div class="t m12 x39 h11 y23 ff1 fsc fc0 sc0 ls3 ws0">vector </div><div class="t m2e x46 h24 y24 ff5 fs18 fc0 sc0 ls3a ws0">V(S), </div><div class="t m12 x47 h11 y24 ff1 fsc fc0 sc0 ls21 ws0">and </div><div class="t m2f x48 h27 y24 ff5 fs1f fc0 sc0 ls3 ws0">k </div><div class="t m12 x49 h11 y24 ff1 fsc fc0 sc0 ls16 ws0">is <span class="_ _3"></span><span class="ls38">the <span class="_ _4"></span><span class="ls21">estimated <span class="_ _6"></span><span class="ls3">noise-plus-clutter <span class="_ _8"></span>covariance <span class="_ _4"></span><span class="ls21">matrix. </span></span></span></span></div><div class="t m30 x4a h28 y24 ff1 fs16 fc0 sc0 ls3b ws0">If </div><div class="t m31 x4b h25 y24 ff5 fs1e fc0 sc0 ls3c ws0">T(X) </div><div class="t m12 x4c h11 y24 ff1 fsc fc0 sc0 ls16 ws0">exceeds </div><div class="t m12 x39 h11 y25 ff1 fsc fc0 sc0 ls2d ws0">the <span class="_ _4"></span><span class="ls18">threshold <span class="_ _a"> </span><span class="ls1f">then </span></span></div><div class="t m32 x4d h1e y26 ff1 fsb fc0 sc0 ls12 ws0">a </div><div class="t m12 x4e h11 y26 ff1 fsc fc0 sc0 ls16 ws0">decision </div><div class="t m33 x4f h26 y26 ff1 fs1b fc0 sc0 ls3d ws0">is </div><div class="t m12 x50 h11 y26 ff1 fsc fc0 sc0 ls21 ws0">made <span class="ls38">that </span></div><div class="t m14 x51 h13 y26 ff1 fse fc0 sc0 ls1b ws0">a </div><div class="t m12 x52 h11 y26 ff1 fsc fc0 sc0 ls1d ws0">target <span class="_ _a"></span><span class="ls16">is <span class="_ _8"></span></span>present. <span class="_"> </span><span class="ls3">Assume <span class="_ _3"></span><span class="ls2d">that <span class="_ _7"></span></span>samples <span class="_ _8"></span></span>are </div><div class="t m12 x39 h11 y27 ff1 fsc fc0 sc0 ls21 ws0">taken <span class="ls18">from </span></div><div class="t m34 x53 h24 y28 ff5 fs18 fc0 sc0 ls3 ws0">M </div><div class="t m12 x54 h11 y28 ff1 fsc fc0 sc0 ls16 ws0">different <span class="_ _a"></span><span class="ls3">pulse <span class="_ _3"></span><span class="ls21">returns <span class="_ _5"></span></span></span>received </div><div class="t m35 x55 h1f y28 ff1 fs19 fc0 sc0 ls3e ws0">at </div><div class="t m36 x56 h29 y28 ff6 fs16 fc0 sc0 ls3 ws0">N </div><div class="t m12 x28 h11 y28 ff1 fsc fc0 sc0 ls1f ws0">antenna <span class="_ _4"></span><span class="ls21">array <span class="ls3">elements. <span class="_ _9"> </span><span class="ls18">Each <span class="_ _3"></span></span></span>return </span></div><div class="t m12 x39 h11 y29 ff1 fsc fc0 sc0 ls18 ws0">is <span class="_ _8"></span><span class="ls3">assumed <span class="_ _a"> </span><span class="ls31">to <span class="_ _4"></span><span class="ls18">contain </span></span></span></div><div class="t m14 x57 h13 y2a ff1 fse fc0 sc0 ls1b ws0">a </div><div class="t m12 x58 h11 y2a ff1 fsc fc0 sc0 ls16 ws0">possible <span class="_ _1"> </span>signal <span class="_ _2"> </span><span class="ls3f">in1 <span class="_ _c"> </span><span class="ls1d">additive <span class="ls18">noise-plus-clutter. <span class="_ _e"> </span></span></span></span>For <span class="_ _a"> </span>simplicity, <span class="_ _1"> </span><span class="ls17">we </span></div><div class="t m12 x39 h11 y2b ff1 fsc fc0 sc0 ls18 ws0">assume <span class="_ _3"></span><span class="ls3">periodically <span class="_ _b"> </span><span class="ls1f">transmitted <span class="_ _7"></span><span class="ls16">pulses <span class="_ _b"> </span><span class="ls21">and </span></span></span></span></div><div class="t m28 x59 h13 y2c ff1 fse fc0 sc0 ls1b ws0">a </div><div class="t m12 x5a h11 y2c ff1 fsc fc0 sc0 ls3 ws0">uniformly <span class="_ _1"> </span>spaced <span class="_ _2"> </span><span class="ls1d">linear <span class="_ _8"></span><span class="ls21">array <span class="_ _8"></span><span class="ls1f">antenna <span class="_ _5"></span></span>as </span></span></div><div class="t m12 x39 h11 y2d ff1 fsc fc0 sc0 ls3 ws0">described <span class="_ _3"></span><span class="ls21">in </span></div><div class="t m37 x5b h2a y2e ff2 fsf fc0 sc0 ls40 ws0">[2]. </div><div class="t m12 x5c h11 y2e ff1 fsc fc0 sc0 ls18 ws0">Denote <span class="_ _5"></span><span class="ls2d">the <span class="_ _6"></span><span class="ls3">observation <span class="_ _8"></span>corresponding <span class="_ _3"></span><span class="ls29">to <span class="_ _6"></span><span class="ls2d">the </span></span></span></span></div><div class="t m38 x5d h2b y2e ff6 fsb fc0 sc0 ls41 ws0">jth </div><div class="t m12 x5e h11 y2e ff1 fsc fc0 sc0 ls3 ws0">pulse </div><div class="t m39 x5f h11 y2e ff1 fsc fc0 sc0 ls18 ws0">at </div><div class="t m12 x60 h11 y2e ff1 fsc fc0 sc0 ls2d ws0">the </div><div class="t m3a x45 h24 y2e ff6 fs18 fc0 sc0 ls42 ws0">Lth </div><div class="t m12 x61 h11 y2e ff1 fsc fc0 sc0 ls1f ws0">antenna </div><div class="t m12 x39 h11 y2f ff1 fsc fc0 sc0 ls3 ws0">element <span class="_ _3"></span><span class="ls21">as </span></div><div class="t m3b x62 h2c y30 ff1 fs20 fc0 sc0 ls43 ws0">zkj. </div><div class="t m12 x63 h11 y30 ff1 fsc fc0 sc0 ls18 ws0">Each <span class="_ _7"></span><span class="ls3">observation <span class="_ _8"></span><span class="ls16">is </span></span></div><div class="t m28 x2d h13 y30 ff1 fse fc0 sc0 ls1b ws0">a </div><div class="t m12 x64 h11 y30 ff1 fsc fc0 sc0 ls16 ws0">complex <span class="_ _3"></span><span class="ls1d">number <span class="ls3">corresponding <span class="_ _8"></span><span class="ls29">to <span class="_ _6"></span><span class="ls2d">the <span class="ls3">in-phase <span class="_ _3"></span><span class="ls1d">and </span></span></span></span></span></span></div><div class="t m12 x65 h11 y31 ff1 fsc fc0 sc0 ls14 ws0">'This </div><div class="t m3b x66 h2d y32 ff3 fs21 fc0 sc0 ls44 ws0">research </div><div class="t m3c x67 h2e y32 ff3 fs22 fc0 sc0 ls45 ws0">was </div><div class="t m3b x68 h2d y32 ff3 fs21 fc0 sc0 ls3 ws0">supported </div><div class="t m3d x69 h2f y32 ff3 fs23 fc0 sc0 ls46 ws0">by </div><div class="t m3b x23 h2d y32 ff3 fs21 fc0 sc0 ls47 ws0">the <span class="_ _7"></span><span class="ls3">Air <span class="_ _7"></span><span class="ls44">Force <span class="_ _5"></span><span class="ls48">Office </span></span></span></div><div class="t m3e x6a h30 y32 ff3 fs24 fc0 sc0 ls49 ws0">of </div><div class="t m3b x6b h2d y32 ff3 fs21 fc0 sc0 ls3 ws0">Scientific <span class="_ _5"></span>Research, </div><div class="t m3f x6c h31 y32 ff3 fs25 fc0 sc0 ls3 ws0">Bolling </div><div class="t m40 x6d h32 y32 ff3 fs26 fc0 sc0 ls4a ws0">AFB, </div><div class="t m41 x6e h33 y32 ff1 fs27 fc0 sc0 ls4b ws0">WMhi., </div><div class="t m42 x6f h31 y32 ff3 fs25 fc0 sc0 ls4c ws0">D.C </div><div class="t m43 x70 h31 y33 ff3 fs25 fc0 sc0 ls4d ws0">0-7803-3145-1/96/$5.00 <span class="_ _f"> </span><span class="ls3">1996 </span></div><div class="t m44 x71 h34 y33 ff3 fs12 fc0 sc0 ls4e ws0">IEEE </div><div class="t m45 x72 h35 y34 ff1 fs23 fc0 sc0 ls3 ws0">303 </div></div><div class="pi" data-data='{"ctm":[1.560977,0.000000,0.000000,1.560977,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • matlabcnhelp.rar
      matlab中文帮助很难找的,快速下载
    • MobilePolice.rar
      移动警察,车牌识别,车牌定位系统源代码,已经运用在移动车载稽查系统中。
    • SVM(matlab).rar
      支持向量机(SVM)实现的分类算法源码[matlab]
    • svm.zip
      用MATLAB编写的svm源程序,可以实现支持向量机,用于特征分类或提取
    • Classification-MatLab-Toolbox.rar
      模式识别matlab工具箱,包括SVM,ICA,PCA,NN等等模式识别算法,很有参考价值
    • VC++人脸定位实例.rar
      一个经典的人脸识别算法实例,提供人脸五官定位具体算法及两种实现流程.
    • QPSK_Simulink.rar
      QPSK的Matlab/Simulink的调制解调仿真系统,给出接收信号眼图及系统仿真误码率,包含载波恢复,匹配滤波,定时恢复等重要模块,帮助理解QPSK的系统
    • LPRBPDemo2009KV.rar
      车牌识别,神经网络算法,识别率高达95%,识别时间低于80ms。
    • MODULATION.RAR
      这个源程序代码包提供了通信系统中BPSK,QPSK,OQPSK,MSK,MSK2,GMSK,QAM,QAM16等调制解调方式 用matlab的实现,以及它们在AWGN和Rayleigh信道下的通信系统实现及误码率性能
    • algorithms.rar
      十大算法论文,包括遗传算法,模拟退火,蒙特卡罗法等等,对于初学者很有帮助!!