RLS和LMS自适应算法分析.zip

  • 丁丁*
    了解作者
  • matlab
    开发工具
  • 837KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 10 积分
    下载积分
  • 14
    下载次数
  • 2018-05-10 16:37
    上传日期
分析了RLS算法和LMS算法的自适应滤波原理,并基于MATLAB设计出RLS算法模块
RLS和LMS自适应算法分析.zip
  • RLS和LMS自适应算法分析.doc
    1MB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/626b83011e41a87e8aa58de7/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/626b83011e41a87e8aa58de7/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">1</div><div class="c x0 y2 w2 h3"><div class="t m0 x2 h4 y3 ff2 fs1 fc0 sc0 ls0 ws0">R<span class="_ _0"></span>L<span class="_ _0"></span>S<span class="_ _1"> </span><span class="ff3 sc1">&#21644;<span class="_ _1"> </span></span>L<span class="_ _0"></span>M<span class="_ _0"></span>S<span class="_ _1"> </span><span class="ff3 sc1">&#33258;<span class="_ _0"></span>&#36866;<span class="_ _0"></span>&#24212;<span class="_ _0"></span>&#31639;<span class="_ _0"></span>&#27861;<span class="_ _0"></span>&#20998;<span class="_ _0"></span>&#26512;</span></div><div class="t m0 x3 h5 y4 ff3 fs2 fc0 sc1 ls0 ws0">&#25688;<span class="_ _2"></span>&#35201;<span class="_ _2"></span><span class="sc0">&#65306;<span class="_ _2"></span><span class="fs3">&#26412;<span class="_ _2"></span>&#25991;<span class="_ _2"></span>&#20027;<span class="_ _2"></span>&#35201;<span class="_ _2"></span>&#20171;<span class="_ _2"></span>&#32461;<span class="_ _2"></span>&#20102;<span class="_ _2"></span>&#33258;<span class="_ _2"> </span>&#36866;<span class="_ _2"> </span>&#24212;<span class="_ _2"> </span>&#28388;<span class="_ _2"> </span>&#27874;<span class="_ _2"> </span>&#30340;<span class="_ _2"> </span>&#20004;<span class="_ _2"> </span>&#31181;<span class="_ _2"> </span>&#31639;<span class="_ _3"> </span>&#27861;<span class="_ _2"></span>&#65306;<span class="_ _2"></span>&#26368;<span class="_ _2"></span>&#23567;<span class="_ _2"></span>&#22343;<span class="_ _2"></span>&#26041;<span class="_ _4"> </span><span class="ff1">(<span class="_ _0"></span>L<span class="_ _0"></span>M<span class="_ _0"></span>S<span class="_ _0"></span>,<span class="_ _2"> </span> <span class="_ _2"></span>L<span class="_ _0"></span>e<span class="_ _0"></span>a<span class="_ _0"></span>s<span class="_ _0"></span>t</span></span></span></div><div class="t m0 x3 h6 y5 ff1 fs3 fc0 sc0 ls0 ws0">M<span class="_ _0"></span>e<span class="_ _0"></span>a<span class="_ _0"></span>n<span class="_ _2"></span> <span class="_ _0"></span>S<span class="_ _0"></span>q<span class="_ _0"></span>u<span class="_ _0"></span>a<span class="_ _2"></span>r<span class="_ _0"></span>e<span class="_ _0"></span>s<span class="_ _0"></span>)<span class="_ _2"></span><span class="ff3">&#21644;<span class="_ _2"></span>&#36882;<span class="_ _0"></span>&#25512;<span class="_ _2"></span>&#26368;<span class="_ _0"></span>&#23567;<span class="_ _2"></span>&#20108;<span class="_ _2"></span>&#20056;<span class="_ _2"></span></span>(<span class="_ _0"></span>R<span class="_ _0"></span>L<span class="_ _0"></span>S<span class="_ _0"></span>,<span class="_ _2"></span> <span class="_ _0"></span>R<span class="_ _0"></span>e<span class="_ _0"></span>c<span class="_ _0"></span>u<span class="_ _0"></span>r<span class="_ _0"></span>s<span class="_ _2"></span>i<span class="_ _0"></span>v<span class="_ _0"></span>e<span class="_ _0"></span> <span class="_ _2"></span>L<span class="_ _0"></span>e<span class="_ _0"></span>a<span class="_ _0"></span>s<span class="_ _0"></span>t<span class="_ _0"></span> <span class="_ _2"> </span>S<span class="_ _0"></span>q<span class="_ _0"></span>u<span class="_ _0"></span>a<span class="_ _0"></span>r<span class="_ _0"></span>e<span class="_ _2"></span>s<span class="_ _0"></span>)<span class="_ _2"> </span><span class="ff3">&#20004;<span class="_ _2"></span>&#31181;<span class="_ _0"></span>&#22522;<span class="_ _2"></span>&#26412;</span></div><div class="t m0 x3 h6 y6 ff3 fs3 fc0 sc0 ls0 ws0">&#33258;<span class="_ _5"> </span>&#36866;<span class="_ _5"> </span>&#24212;<span class="_ _5"> </span>&#31639;<span class="_ _5"> </span>&#27861;<span class="_ _5"> </span>&#12290;<span class="_ _5"> </span>&#25105;<span class="_ _5"> </span>&#20204;<span class="_ _5"> </span>&#23545;<span class="_ _5"> </span>&#36825;<span class="_ _5"> </span>&#20004;<span class="_ _5"> </span>&#31181;<span class="_ _5"> </span>&#22522;<span class="_ _5"> </span>&#26412;<span class="_ _5"> </span>&#30340;<span class="_ _5"> </span>&#31639;<span class="_ _5"> </span>&#27861;<span class="_ _5"> </span>&#36827;<span class="_ _5"> </span>&#34892;<span class="_ _5"> </span>&#20102;<span class="_ _5"> </span>&#21407;<span class="_ _5"> </span>&#29702;<span class="_ _5"> </span>&#20171;<span class="_ _5"> </span>&#32461;<span class="_ _5"> </span>&#65292;<span class="_ _5"> </span>&#24182;<span class="_ _5"> </span>&#36827;<span class="_ _5"> </span>&#34892;<span class="_ _5"> </span>&#20102;</div><div class="t m0 x3 h6 y7 ff1 fs3 fc0 sc0 ls0 ws0">M<span class="_ _0"></span>a<span class="_ _0"></span>t<span class="_ _0"></span>l<span class="_ _0"></span>a<span class="_ _2"></span>b<span class="_ _6"> </span><span class="ff3">&#20223;<span class="_ _2"></span>&#30495;<span class="_ _2"></span>&#12290;<span class="_ _2"></span>&#36890;<span class="_ _2"></span>&#36807;<span class="_ _0"></span>&#20223;<span class="_ _2"> </span>&#30495;<span class="_ _2"></span>&#32467;<span class="_ _2"></span>&#26524;<span class="_ _2"></span>&#65292;<span class="_ _2"></span>&#25105;<span class="_ _2"></span>&#20204;<span class="_ _2"></span>&#23545;<span class="_ _2"></span>&#20004;<span class="_ _2"></span>&#31181;<span class="_ _0"></span>&#33258;<span class="_ _2"> </span>&#36866;<span class="_ _2"></span>&#24212;<span class="_ _2"></span>&#31639;<span class="_ _2"></span>&#27861;<span class="_ _2"></span>&#36827;<span class="_ _2"></span>&#34892;<span class="_ _2"></span>&#20102;<span class="_ _2"></span>&#24615;<span class="_ _2"></span>&#33021;<span class="_ _0"></span>&#20998;<span class="_ _2"> </span>&#26512;<span class="_ _2"></span>&#65292;</span></div><div class="t m0 x3 h6 y8 ff3 fs3 fc0 sc0 ls0 ws0">&#24182;<span class="_ _0"></span>&#23545;<span class="_ _0"></span>&#20854;<span class="_ _0"></span>&#36827;<span class="_ _0"></span>&#34892;<span class="_ _0"></span>&#20102;<span class="_ _0"></span>&#27604;<span class="_ _2"></span>&#36739;<span class="_ _0"></span>&#12290;<span class="_ _0"></span>&#29992;<span class="_ _6"> </span><span class="ff1">M<span class="_ _0"></span>a<span class="_ _2"></span>t<span class="_ _0"></span>l<span class="_ _0"></span>a<span class="_ _0"></span>b<span class="_ _6"> </span></span>&#27714;<span class="_ _0"></span>&#20986;<span class="_ _0"></span>&#20102;<span class="_ _7"> </span><span class="ff1">L<span class="_ _0"></span>M<span class="_ _0"></span>S<span class="_ _7"> </span></span>&#33258;<span class="_ _0"></span>&#36866;<span class="_ _2"></span>&#24212;<span class="_ _0"></span>&#31639;<span class="_ _0"></span>&#27861;<span class="_ _0"></span>&#30340;<span class="_ _0"></span>&#26435;<span class="_ _0"></span>&#31995;<span class="_ _0"></span>&#25968;<span class="_ _0"></span>&#65292;<span class="_ _0"></span>&#21450;<span class="_ _0"></span>&#20854;<span class="_ _0"></span>&#23398;</div><div class="t m0 x3 h6 y9 ff3 fs3 fc0 sc0 ls0 ws0">&#20064;<span class="_ _0"></span>&#36807;<span class="_ _0"></span>&#31243;<span class="_ _0"></span>&#26354;<span class="_ _0"></span>&#32447;<span class="_ _0"></span>&#65292;<span class="_ _0"></span>&#21644;<span class="_ _6"> </span><span class="ff1">R<span class="_ _0"></span>L<span class="_ _0"></span>S<span class="_ _7"> </span></span>&#33258;<span class="_ _0"></span>&#36866;<span class="_ _2"></span>&#24212;<span class="_ _0"></span>&#26435;<span class="_ _0"></span>&#31995;<span class="_ _0"></span>&#25968;<span class="_ _0"></span>&#31639;<span class="_ _0"></span>&#27861;<span class="_ _0"></span>&#30340;<span class="_ _0"></span>&#23398;<span class="_ _0"></span>&#20064;<span class="_ _0"></span>&#36807;<span class="_ _0"></span>&#31243;<span class="_ _0"></span>&#12290;</div><div class="t m0 x3 h5 ya ff3 fs2 fc0 sc1 ls0 ws0">&#20851;<span class="_ _0"></span>&#38190;<span class="_ _0"></span>&#35789;<span class="_ _0"></span>&#65306;<span class="_ _0"></span><span class="fs3 sc0">&#33258;<span class="_ _2"></span>&#36866;<span class="_ _0"></span>&#24212;<span class="_ _0"></span>&#28388;<span class="_ _0"></span>&#27874;<span class="_ _0"></span>&#12289;<span class="_ _0"></span><span class="ff1">L<span class="_ _0"></span>M<span class="_ _0"></span>S<span class="_ _2"></span></span>&#12289;<span class="_ _0"></span><span class="ff1">R<span class="_ _0"></span>L<span class="_ _0"></span>S<span class="_ _0"></span></span>&#12289;<span class="_ _0"></span><span class="ff1">M<span class="_ _0"></span>a<span class="_ _2"></span>t<span class="_ _0"></span>l<span class="_ _0"></span>a<span class="_ _0"></span>b<span class="_ _7"> </span></span>&#20223;<span class="_ _0"></span>&#30495;</span></div><div class="t m0 x3 h7 yb ff4 fs4 fc0 sc0 ls0 ws0">Abstract: this article mainly introduces two<span class="_ _8"></span> kinds of adaptive &#58905;ltering </div><div class="t m0 x3 h7 yc ff4 fs4 fc0 sc0 ls0 ws0">algorithms: Least Mean square (LMS), further Mean Squares) and </div><div class="t m0 x3 h7 yd ff4 fs4 fc0 sc0 ls0 ws0">Recursive Least Squares (RLS, Recursive further Squares) two basic </div><div class="t m0 x3 h7 ye ff4 fs4 fc0 sc0 ls0 ws0">adaptive algorithm. Our algorithms of these two basic principle is </div><div class="t m0 x3 h7 yf ff4 fs4 fc0 sc0 ls0 ws0">introduced, and Matlab simulation. Through the simulation results, we </div><div class="t m0 x3 h7 y10 ff4 fs4 fc0 sc0 ls0 ws0">have two kinds of adaptive algorithm performance analysis, and carries on</div><div class="t m0 x3 h7 y11 ff4 fs4 fc0 sc0 ls0 ws0">the comparison. Matlab calculate the weight coe&amp;cient of the LMS </div><div class="t m0 x3 h7 y12 ff4 fs4 fc0 sc0 ls0 ws0">adaptive algorithm, and its learning curve, and the RLS adaptive weight </div><div class="t m0 x3 h7 y13 ff4 fs4 fc0 sc0 ls0 ws0">coe&amp;cient algorithm of the learning process.</div><div class="t m0 x3 h7 y14 ff4 fs4 fc0 sc0 ls0 ws0">Keywords:, LMS and RLS adaptive &#58905;lter, the Matlab simulation</div><div class="t m0 x3 h5 y15 ff3 fs2 fc0 sc1 ls0 ws0">&#35838;<span class="_ _2"></span>&#39064;<span class="_ _2"></span>&#31616;<span class="_ _2"></span>&#20171;<span class="_ _2"></span>&#65306;<span class="_ _2"></span><span class="fs3 sc0">&#38646;<span class="_ _2"></span>&#22343;<span class="_ _2"></span>&#20540;<span class="_ _2"></span>&#12289;<span class="_ _2"></span>&#21333;<span class="_ _2"></span>&#20301;<span class="_ _2"></span>&#26041;<span class="_ _0"></span>&#24046;<span class="_ _2"> </span>&#30340;<span class="_ _2"></span>&#30333;<span class="_ _2"></span>&#22122;<span class="_ _2"></span>&#22768;<span class="_ _2"></span>&#36890;<span class="_ _2"></span>&#36807;<span class="_ _2"></span>&#19968;<span class="_ _2"></span>&#20010;<span class="_ _2"></span>&#20108;<span class="_ _0"></span>&#38454;<span class="_ _2"> </span>&#33258;<span class="_ _2"></span>&#22238;<span class="_ _2"></span>&#24402;<span class="_ _2"></span>&#27169;<span class="_ _2"></span>&#22411;<span class="_ _2"></span>&#20135;<span class="_ _2"></span>&#29983;</span></div><div class="t m0 x3 h6 y16 ff3 fs3 fc0 sc0 ls0 ws0">&#30340;<span class="_ _7"> </span><span class="ff1">A<span class="_ _0"></span>R<span class="_ _7"> </span></span>&#36807;<span class="_ _0"></span>&#31243;<span class="_ _0"></span>&#12290;<span class="_ _2"></span><span class="ff1">A<span class="_ _0"></span>R<span class="_ _7"> </span></span>&#27169;<span class="_ _0"></span>&#22411;<span class="_ _0"></span>&#30340;<span class="_ _0"></span>&#31995;<span class="_ _0"></span>&#32479;<span class="_ _0"></span>&#20989;<span class="_ _0"></span>&#25968;<span class="_ _0"></span>&#20026;<span class="_ _0"></span>&#65306;</div><div class="t m0 x3 h8 y17 ff1 fs3 fc0 sc0 ls0 ws0"> <span class="_ _0"></span> <span class="_ _0"></span> <span class="_ _0"></span> <span class="_ _0"></span> <span class="_ _0"></span> <span class="_ _0"></span> <span class="_ _2"></span> <span class="_ _0"></span> <span class="_ _0"></span> <span class="_ _0"></span>H<span class="_ _0"></span>(<span class="_ _0"></span>Z<span class="_ _2"></span>)<span class="_ _0"></span>=</div><div class="t m0 x3 h6 y18 ff3 fs3 fc0 sc0 ls0 ws0">&#20551;<span class="_ _0"></span>&#35774;<span class="_ _9"> </span><span class="ff1">=<span class="_ _0"></span>-<span class="_ _0"></span>1<span class="_ _0"></span>.<span class="_ _0"></span>6<span class="_ _0"></span>,<span class="_ _a"> </span>=<span class="_ _0"></span>0<span class="_ _0"></span>.<span class="_ _0"></span>8<span class="_ _7"> </span></span>&#23558;<span class="_ _2"></span>&#31995;<span class="_ _0"></span>&#32479;<span class="_ _0"></span>&#20989;<span class="_ _0"></span>&#25968;<span class="_ _0"></span>&#36716;<span class="_ _0"></span>&#21270;<span class="_ _0"></span>&#20026;<span class="_ _0"></span>&#24046;<span class="_ _0"></span>&#20998;<span class="_ _0"></span>&#26041;<span class="_ _0"></span>&#31243;<span class="_ _2"></span>&#20026;<span class="_ _0"></span>&#65306;</div><div class="t m0 x4 h8 y19 ff1 fs3 fc0 sc0 ls0 ws0"> </div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • LMS_RLS.rar
      lmsrls算法比较,MATLAB 程序仿真,比较两种自适应滤波算法。最小均方(LMS)、递归最小二乘(RLS)
    • RLS_LMS.rar
      通过分析介绍自适应滤波器中经典算法LMSRLS的异同,并且运用matlab进行仿真,使得初学者对于matlab在仿真过程的运用有更为直观的理解。并且对于自适应滤波有更清晰的认识。
    • LMS自适应滤波.zip
      最小均方(LMS)自适应滤波器、递推最小二乘(RLS)滤波器格型滤波器和无限冲激响应(IIR)滤波器等。这些自适应滤波技术的应用又包括:自适应噪声抵消、自适应谱线增强和陷波等。
    • rls_lms.zip
      LMSRLS算法下的参数a1的收敛曲线
    • LMS&RLS.rar
      该程序为两个简单的传统的自适应波束形成算法,希望对大家有用
    • LMSRLS滤波算法
      LMSRLS滤波算法 里面两个算法是单独文件--函数的形式,里面含有两种算法的测试程序,希望能够给大家提供帮助!
    • LMSRLS自适应滤波算法性能比较
      介绍了自适应滤波器去除噪声的原理和从强噪声背景中采用自适应滤波提取有用信号的方法,并对最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法进行了算法原理、...
    • 基于MATLAB的LMSRLS算法滤波完整程序
      基于MATLAB的LMSRLS算法滤波完整程序,一种是LMS算法,一种是RLS算法,并在MATLAB环境下对其进行了编程.对自适应滤波器性能进行分析
    • RLSLMS算法分析比较
      RLSLMS自适应滤波器的性能对比,代码在MATLAB中完美运行。
    • matlabcnhelp.rar
      matlab中文帮助很难找的,快速下载