<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6272952040256a40ce08c543/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6272952040256a40ce08c543/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">结构动力学</div><div class="t m0 x2 h3 y3 ff1 fs0 fc0 sc0 ls0 ws0">第一次上机实验报告</div><div class="t m0 x3 h4 y4 ff1 fs1 fc0 sc0 ls0 ws0">姓名:王德雅</div><div class="t m0 x3 h4 y5 ff1 fs1 fc0 sc0 ls0 ws0">班级:<span class="ff2 sc1">1518101</span></div><div class="t m0 x3 h4 y6 ff1 fs1 fc0 sc0 ls0 ws0">学号:<span class="ff2 sc1">1151810101</span></div><div class="t m0 x3 h4 y7 ff1 fs1 fc0 sc0 ls0 ws0">联系方式:<span class="ff2 sc1">18800427218</span></div><div class="t m0 x4 h5 y8 ff1 fs2 fc0 sc1 ls0 ws0">一、实验任务</div><div class="t m0 x5 h5 y9 ff1 fs2 fc0 sc1 ls0 ws0">有阻尼简谐激振问题。</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6272952040256a40ce08c543/bg2.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x5 h5 ya ff1 fs2 fc0 sc1 ls0 ws0">要求自行设计一个粘性阻尼单自由度系统,即自行给定系统质</div><div class="t m0 x4 h5 yb ff1 fs2 fc0 sc1 ls0 ws0">量、刚度、阻尼系数以及初始位移和速度,设定正弦激振力的幅值</div><div class="t m0 x4 h5 yc ff1 fs2 fc0 sc1 ls0 ws0">和频率,计算简谐激振的瞬态位移响应和稳态位移响应,分别画出</div><div class="t m0 x4 h5 yd ff1 fs2 fc0 sc1 ls0 ws0">瞬态响应和稳态响应时间历程曲线。时间步长大约取激励力周期的</div><div class="t m0 x4 h5 ye ff3 fs2 fc0 sc1 ls0 ws0">1/100<span class="ff1">。比较分析二者的差异,分如下两种情况:</span></div><div class="t m0 x5 h5 yf ff3 fs2 fc0 sc1 ls0 ws0">A<span class="_ _0"></span>:<span class="ff1">在共振点,频率比为<span class="_ _1"> </span></span>1<span class="ff1">,比较不同阻尼比(分别取</span></div><div class="t m0 x4 h5 y10 ff3 fs2 fc0 sc1 ls0 ws0">0.02,0.01,0.001<span class="_ _1"> </span><span class="ff1">三种情况,注意小阻尼比情况,计算时间区间要</span></div><div class="t m0 x4 h5 y11 ff1 fs2 fc0 sc1 ls0 ws0">大一些,以能看到衰减部分的响应接近于零为准)情况下,瞬态响</div><div class="t m0 x4 h5 y12 ff1 fs2 fc0 sc1 ls0 ws0">应和稳态响应。</div><div class="t m0 x5 h5 y13 ff3 fs2 fc0 sc1 ls0 ws0">B:<span class="ff1">在频率比约为<span class="_ _1"> </span></span>0.9<span class="_ _1"> </span><span class="ff1">情况下,比较不同阻尼比(分别取</span></div><div class="t m0 x4 h5 y14 ff3 fs2 fc0 sc1 ls0 ws0">0.02,0.01,0.001<span class="_ _1"> </span><span class="ff1">三种情况,注意小阻尼比情况,计算时间区间要</span></div><div class="t m0 x4 h5 y15 ff1 fs2 fc0 sc1 ls0 ws0">大一些,以能看到衰减部分的响应接近于零为准)情况下,瞬态响</div><div class="t m0 x4 h5 y16 ff1 fs2 fc0 sc1 ls0 ws0">应和稳态响应。</div><div class="t m0 x4 h5 y17 ff1 fs2 fc0 sc1 ls0 ws0">二、理论分析</div><div class="t m0 x5 h5 y18 ff1 fs2 fc0 sc1 ls0 ws0">对于单自由度系统在简谐激振力的作用下,其受迫振动的微分</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6272952040256a40ce08c543/bg3.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x4 h5 ya ff1 fs2 fc0 sc1 ls0 ws0">方程为</div><div class="t m0 x5 h5 y19 ff1 fs2 fc0 sc1 ls0 ws0">取<span class="_ _2"></span>质<span class="_ _2"></span>量<span class="_ _2"></span> <span class="_ _2"></span><span class="ff3">m<span class="_ _3"></span> <span class="_ _3"></span>=<span class="_ _4"></span> <span class="_ _4"></span>1;<span class="_ _2"> </span></span>刚<span class="_ _2"></span>度<span class="_ _5"> </span><span class="ff3">k<span class="_ _4"></span> <span class="_ _3"></span>=<span class="_ _4"></span> <span class="_ _3"></span>100;<span class="_ _2"> </span></span>激<span class="_ _2"></span>励<span class="_ _2"></span>力<span class="_ _2"></span>的<span class="_ _2"></span>幅<span class="_ _2"></span>值<span class="_ _6"> </span><span class="ff3">;<span class="_ _2"></span></span>初<span class="_ _2"></span>位<span class="_ _2"></span>移</div><div class="t m0 x6 h5 y1a ff3 fs2 fc0 sc1 ls0 ws0">;<span class="ff1">初速度<span class="_ _7"> </span>。</span></div><div class="t m0 x5 h5 y1b ff1 fs2 fc0 sc1 ls0 ws0">由<span class="_ _8"></span>计<span class="_ _8"></span>算<span class="_ _8"></span>可<span class="_ _8"></span>知<span class="_ _8"></span>,<span class="_ _8"></span>该<span class="_ _8"></span>系<span class="_ _8"></span>统<span class="_ _8"></span>的<span class="_ _8"></span>阻<span class="_ _8"></span>尼<span class="_ _8"></span>系<span class="_ _8"></span>数<span class="_ _9"> </span>(<span class="_ _a"> </span>为<span class="_ _8"></span>该<span class="_ _8"></span>系<span class="_ _8"></span>统<span class="_ _8"></span>的<span class="_ _8"></span>阻<span class="_ _8"></span>尼</div><div class="t m0 x4 h5 y1c ff1 fs2 fc0 sc1 ls0 ws0">比<span class="_ _b"> </span>)<span class="_ _b"> </span>。<span class="_ _b"> </span>激<span class="_ _b"> </span>励<span class="_ _b"> </span>力<span class="_ _b"> </span>的<span class="_ _b"> </span>角<span class="_ _b"> </span>频<span class="_ _b"> </span>率<span class="_ _c"> </span>(<span class="_ _d"> </span>为<span class="_ _b"> </span>频<span class="_ _b"> </span>率<span class="_ _b"> </span>比<span class="_ _b"> </span>)<span class="_ _e"> </span><span class="ff3">;<span class="_ _b"> </span></span>激<span class="_ _b"> </span>励<span class="_ _b"> </span>力<span class="_ _b"> </span>的<span class="_ _b"> </span>周<span class="_ _b"> </span>期</div><div class="t m0 x4 h5 y1d ff3 fs2 fc0 sc1 ls0 ws0">T=0.52333<span class="ff1">;</span></div><div class="t m0 x5 h5 y1e ff1 fs2 fc0 sc1 ls0 ws0">由实验要求<span class="_ _f"></span>可知,阻尼比<span class="_ _10"> </span>取<span class="_ _1"> </span><span class="ff3">0.02</span>,<span class="ff3">,001,0.001</span>,<span class="_ _f"></span>故此问题为</div><div class="t m0 x4 h5 y1f ff1 fs2 fc0 sc1 ls0 ws0">欠阻尼问题。</div><div class="t m0 x5 h5 y20 ff1 fs2 fc0 sc1 ls0 ws0">参考课本知,</div><div class="t m0 x5 h5 y21 ff1 fs2 fc0 sc1 ls0 ws0">稳态响应振幅<span class="_ _11"> </span>;</div><div class="t m0 x5 h5 y22 ff1 fs2 fc0 sc1 ls0 ws0">初相位角<span class="_ _12"> </span>;</div><div class="t m0 x5 h5 y23 ff1 fs2 fc0 sc1 ls0 ws0">瞬态响应<span class="_ _13"> </span>;</div><div class="t m0 x5 h5 y24 ff1 fs2 fc0 sc1 ls0 ws0">稳态响应</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>