<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/626e51c515314c70c394ed25/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/626e51c515314c70c394ed25/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">BP<span class="_ _0"> </span><span class="ff2 sc1">神经网络的工程应用及其基于遗传算法寻优过程</span></div><div class="t m0 x2 h4 y3 ff2 fs1 fc0 sc1 ls0 ws0">摘要:<span class="ff3 sc0">BP<span class="_ _1"> </span><span class="ff2">神经网络对<span class="_ _2"></span>数据复杂的映<span class="_ _2"></span>射关系(比如<span class="_ _2"></span>非线性)具有<span class="_ _2"></span>良好的拟合性<span class="_ _2"></span>能<span class="_ _3"></span>,</span></span></div><div class="t m0 x2 h4 y4 ff2 fs1 fc0 sc0 ls0 ws0">合适<span class="_ _2"></span>的<span class="_ _2"></span>网<span class="_ _2"></span>络结<span class="_ _2"></span>构<span class="_ _2"></span>可<span class="_ _2"></span>以无<span class="_ _2"></span>限<span class="_ _2"></span>逼<span class="_ _2"></span>近拟<span class="_ _2"></span>合<span class="_ _2"></span>函<span class="_ _2"></span>数。<span class="_ _2"></span>遗<span class="_ _2"></span>传<span class="_ _2"></span>算<span class="_ _2"></span>法是<span class="_ _2"></span>基<span class="_ _2"></span>于<span class="_ _2"></span>生物<span class="_ _2"></span>进<span class="_ _2"></span>化<span class="_ _2"></span>的思<span class="_ _2"></span>想<span class="_ _2"></span>,<span class="_ _2"></span>对</div><div class="t m0 x2 h4 y5 ff2 fs1 fc0 sc0 ls0 ws0">解域<span class="_ _2"></span>进<span class="_ _2"></span>行<span class="_ _2"></span>遗传<span class="_ _2"></span>运<span class="_ _2"></span>算<span class="_ _2"></span>找到<span class="_ _2"></span>最<span class="_ _2"></span>优<span class="_ _2"></span>个体<span class="_ _2"></span>(<span class="_ _2"></span>最<span class="_ _2"></span>优解<span class="_ _2"></span>)<span class="_ _2"></span>,<span class="_ _2"></span>及<span class="_ _2"></span>其对<span class="_ _2"></span>应<span class="_ _2"></span>的<span class="_ _2"></span>最优<span class="_ _2"></span>适<span class="_ _2"></span>应<span class="_ _2"></span>度值<span class="_ _2"></span>(<span class="_ _2"></span>最<span class="_ _2"></span>优</div><div class="t m0 x2 h4 y6 ff2 fs1 fc0 sc0 ls0 ws0">值)。</div><div class="t m0 x2 h4 y7 ff2 fs1 fc0 sc1 ls0 ws0">关键字:<span class="ff3 sc0">BP<span class="_ _1"> </span><span class="ff2">神经网络,遗传算法,极值寻优</span></span></div><div class="t m0 x2 h4 y8 ff4 fs1 fc0 sc0 ls0 ws0">1. <span class="ff2 sc1">引论</span></div><div class="t m0 x2 h4 y9 ff3 fs1 fc0 sc0 ls0 ws0">BP<span class="_ _1"> </span><span class="ff2">神经网络是工程应用最<span class="_ _2"></span>广的网络之一<span class="_ _2"></span>。工程应用领<span class="_ _2"></span>域有非线性函<span class="_ _2"></span>数拟合、模</span></div><div class="t m0 x2 h4 ya ff2 fs1 fc0 sc0 ls0 ws0">式识<span class="_ _2"></span>别等<span class="_ _2"></span>。<span class="_ _2"></span><span class="ff3">BP<span class="_"> </span></span>网络可以<span class="_ _2"></span>看作<span class="_ _2"></span>“黑<span class="_ _2"></span>匣子<span class="_ _2"></span>”<span class="_ _2"></span>用于<span class="_ _2"></span>拟合<span class="_ _2"></span>输入<span class="_ _2"></span>输出<span class="_ _2"></span>间非<span class="_ _2"></span>线性<span class="_ _2"></span>关系<span class="_ _2"></span>,<span class="_ _2"></span>合理<span class="_ _2"></span>结</div><div class="t m0 x2 h4 yb ff2 fs1 fc0 sc0 ls0 ws0">构的<span class="_ _1"> </span><span class="ff3">BP<span class="_ _1"> </span></span>网络能够<span class="_ _2"></span>无限逼<span class="_ _2"></span>近期望<span class="_ _2"></span>输出。<span class="_ _2"></span>拟合性<span class="_ _2"></span>能较好<span class="_ _2"></span>的<span class="_ _4"> </span><span class="ff3">BP<span class="_ _1"> </span></span>网络可以应<span class="_ _2"></span>用遗传<span class="_ _2"></span>算</div><div class="t m0 x2 h4 yc ff2 fs1 fc0 sc0 ls0 ws0">法找到最优的网络输出及其对应输入值。</div><div class="t m0 x2 h4 yd ff4 fs1 fc0 sc0 ls0 ws0">2. BP<span class="_ _1"> </span><span class="ff2 sc1">神经网络概述</span></div><div class="t m0 x2 h4 ye ff3 fs1 fc0 sc0 ls0 ws0">BP<span class="_ _1"> </span><span class="ff2">网络是一种多层前馈神<span class="_ _2"></span>经网络,其主<span class="_ _2"></span>要特点是信号<span class="_ _2"></span>前向传递,误<span class="_ _2"></span>差反向传递<span class="_ _5"></span>。</span></div><div class="t m0 x2 h4 yf ff2 fs1 fc0 sc0 ls0 ws0">在前<span class="_ _2"></span>向<span class="_ _2"></span>传<span class="_ _2"></span>递中<span class="_ _2"></span>,<span class="_ _2"></span>输<span class="_ _2"></span>入信<span class="_ _2"></span>号<span class="_ _2"></span>从<span class="_ _2"></span>输入<span class="_ _2"></span>层<span class="_ _2"></span>经<span class="_ _2"></span>隐藏<span class="_ _2"></span>层<span class="_ _2"></span>逐<span class="_ _2"></span>层<span class="_ _2"></span>处理<span class="_ _2"></span>,<span class="_ _2"></span>直<span class="_ _2"></span>至输<span class="_ _2"></span>出<span class="_ _2"></span>层<span class="_ _2"></span>。每<span class="_ _2"></span>一<span class="_ _2"></span>层<span class="_ _2"></span>神</div><div class="t m0 x2 h4 y10 ff2 fs1 fc0 sc0 ls0 ws0">经元<span class="_ _2"></span>状<span class="_ _2"></span>态<span class="_ _2"></span>值影<span class="_ _2"></span>响<span class="_ _2"></span>下<span class="_ _2"></span>一层<span class="_ _2"></span>神<span class="_ _2"></span>经<span class="_ _2"></span>元状<span class="_ _2"></span>态<span class="_ _2"></span>。<span class="_ _2"></span>如果<span class="_ _2"></span>输<span class="_ _2"></span>出<span class="_ _2"></span>层<span class="_ _2"></span>得不<span class="_ _2"></span>到<span class="_ _2"></span>期<span class="_ _2"></span>望输<span class="_ _2"></span>出<span class="_ _2"></span>,<span class="_ _2"></span>则转<span class="_ _2"></span>入<span class="_ _2"></span>反<span class="_ _2"></span>向</div><div class="t m0 x2 h4 y11 ff2 fs1 fc0 sc0 ls0 ws0">传<span class="_ _2"></span>播<span class="_ _2"></span>,<span class="_ _3"></span>根据<span class="_ _2"></span>预<span class="_ _3"></span>测误<span class="_ _2"></span>差<span class="_ _3"></span>调整<span class="_ _3"></span>权值<span class="_ _2"></span>和<span class="_ _2"></span>阀<span class="_ _3"></span>值,<span class="_ _3"></span>从而<span class="_ _2"></span>使<span class="_ _4"> </span><span class="ff3">BP<span class="_"> </span></span>神经<span class="_ _3"></span>网络<span class="_ _2"></span>输<span class="_ _3"></span>出不<span class="_ _2"></span>断<span class="_ _3"></span>接近<span class="_ _3"></span>期望</div><div class="t m0 x2 h4 y12 ff2 fs1 fc0 sc0 ls0 ws0">输出。</div><div class="t m0 x2 h4 y13 ff3 fs1 fc0 sc0 ls0 ws0">BP<span class="_ _1"> </span><span class="ff2">网络预测首先要训练网<span class="_ _2"></span>络,通过训练<span class="_ _2"></span>使网络具有联<span class="_ _2"></span>想记忆和预测<span class="_ _2"></span>能力。训练</span></div><div class="t m0 x2 h4 y14 ff2 fs1 fc0 sc0 ls0 ws0">步骤有:</div><div class="t m0 x2 h4 y15 ff2 fs1 fc0 sc0 ls0 ws0">步骤一:网络参数初始化。</div><div class="t m0 x2 h4 y16 ff2 fs1 fc0 sc0 ls0 ws0">步骤二:隐含层输出计算。</div><div class="t m0 x2 h4 y17 ff2 fs1 fc0 sc0 ls0 ws0">步骤三:输出层输出计算。</div><div class="t m0 x2 h4 y18 ff2 fs1 fc0 sc0 ls0 ws0">步骤四:误差计算。</div><div class="t m0 x2 h4 y19 ff2 fs1 fc0 sc0 ls0 ws0">步骤五:权值更新。</div><div class="t m0 x2 h4 y1a ff2 fs1 fc0 sc0 ls0 ws0">步骤六:阀值更新。</div><div class="t m0 x2 h4 y1b ff2 fs1 fc0 sc0 ls0 ws0">步骤七:迭代终止判断,若没有结束,返回步骤二。</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
</body>
</html>