• Dieguensky
    了解作者
  • C/C++
    开发工具
  • 337KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 0
    下载次数
  • 2019-03-02 03:10
    上传日期
Program for communicating a Microcontroller Atmega 128p and LCD
SPI_LCD.rar
内容介绍
/**************************************************************************** Title: HD44780U LCD library Author: Peter Fleury <pfleury@gmx.ch> http://tinyurl.com/peterfleury File: $Id: lcd.c,v 1.15.2.2 2015/01/17 12:16:05 peter Exp $ Software: AVR-GCC 3.3 Target: any AVR device, memory mapped mode only for AT90S4414/8515/Mega DESCRIPTION Basic routines for interfacing a HD44780U-based text lcd display Originally based on Volker Oth's lcd library, changed lcd_init(), added additional constants for lcd_command(), added 4-bit I/O mode, improved and optimized code. Library can be operated in memory mapped mode (LCD_IO_MODE=0) or in 4-bit IO port mode (LCD_IO_MODE=1). 8-bit IO port mode not supported. Memory mapped mode compatible with Kanda STK200, but supports also generation of R/W signal through A8 address line. USAGE See the C include lcd.h file for a description of each function *****************************************************************************/ #define F_CPU 8000000UL #include <inttypes.h> #include <avr/io.h rel='nofollow' onclick='return false;'> #include <avr/pgmspace.h rel='nofollow' onclick='return false;'> #include <util/delay.h> #include "lcd.h" /* ** constants/macros */ #define DDR(x) (*(&x - 1)) /* address of data direction register of port x */ #if defined(__AVR_ATmega64__) || defined(__AVR_ATmega128__) /* on ATmega64/128 PINF is on port 0x00 and not 0x60 */ #define PIN(x) ( &PORTF==&(x) ? _SFR_IO8(0x00) : (*(&x - 2)) ) #else #define PIN(x) (*(&x - 2)) /* address of input register of port x */ #endif #if LCD_IO_MODE #define lcd_e_delay() _delay_us(LCD_DELAY_ENABLE_PULSE) #define lcd_e_high() LCD_E_PORT |= _BV(LCD_E_PIN); #define lcd_e_low() LCD_E_PORT &= ~_BV(LCD_E_PIN); #define lcd_e_toggle() toggle_e() #define lcd_rw_high() LCD_RW_PORT |= _BV(LCD_RW_PIN) #define lcd_rw_low() LCD_RW_PORT &= ~_BV(LCD_RW_PIN) #define lcd_rs_high() LCD_RS_PORT |= _BV(LCD_RS_PIN) #define lcd_rs_low() LCD_RS_PORT &= ~_BV(LCD_RS_PIN) #endif #if LCD_IO_MODE #if LCD_LINES==1 #define LCD_FUNCTION_DEFAULT LCD_FUNCTION_4BIT_1LINE #else #define LCD_FUNCTION_DEFAULT LCD_FUNCTION_4BIT_2LINES #endif #else #if LCD_LINES==1 #define LCD_FUNCTION_DEFAULT LCD_FUNCTION_8BIT_1LINE #else #define LCD_FUNCTION_DEFAULT LCD_FUNCTION_8BIT_2LINES #endif #endif #if LCD_CONTROLLER_KS0073 #if LCD_LINES==4 #define KS0073_EXTENDED_FUNCTION_REGISTER_ON 0x2C /* |0|010|1100 4-bit mode, extension-bit RE = 1 */ #define KS0073_EXTENDED_FUNCTION_REGISTER_OFF 0x28 /* |0|010|1000 4-bit mode, extension-bit RE = 0 */ #define KS0073_4LINES_MODE 0x09 /* |0|000|1001 4 lines mode */ #endif #endif /* ** function prototypes */ #if LCD_IO_MODE static void toggle_e(void); #endif /* ** local functions */ /************************************************************************* delay for a minimum of <us> microseconds the number of loops is calculated at compile-time from MCU clock frequency *************************************************************************/ #define delay(us) _delay_us(us) #if LCD_IO_MODE /* toggle Enable Pin to initiate write */ static void toggle_e(void) { lcd_e_high(); lcd_e_delay(); lcd_e_low(); } #endif /************************************************************************* Low-level function to write byte to LCD controller Input: data byte to write to LCD rs 1: write data 0: write instruction Returns: none *************************************************************************/ #if LCD_IO_MODE static void lcd_write(uint8_t data,uint8_t rs) { unsigned char dataBits ; if (rs) { /* write data (RS=1, RW=0) */ lcd_rs_high(); } else { /* write instruction (RS=0, RW=0) */ lcd_rs_low(); } lcd_rw_low(); /* RW=0 write mode */ if ( ( &LCD_DATA0_PORT == &LCD_DATA1_PORT) && ( &LCD_DATA1_PORT == &LCD_DATA2_PORT ) && ( &LCD_DATA2_PORT == &LCD_DATA3_PORT ) && (LCD_DATA0_PIN == 0) && (LCD_DATA1_PIN == 1) && (LCD_DATA2_PIN == 2) && (LCD_DATA3_PIN == 3) ) { /* configure data pins as output */ DDR(LCD_DATA0_PORT) |= 0x0F; /* output high nibble first */ dataBits = LCD_DATA0_PORT & 0xF0; LCD_DATA0_PORT = dataBits |((data>>4)&0x0F); lcd_e_toggle(); /* output low nibble */ LCD_DATA0_PORT = dataBits | (data&0x0F); lcd_e_toggle(); /* all data pins high (inactive) */ LCD_DATA0_PORT = dataBits | 0x0F; } else { /* configure data pins as output */ DDR(LCD_DATA0_PORT) |= _BV(LCD_DATA0_PIN); DDR(LCD_DATA1_PORT) |= _BV(LCD_DATA1_PIN); DDR(LCD_DATA2_PORT) |= _BV(LCD_DATA2_PIN); DDR(LCD_DATA3_PORT) |= _BV(LCD_DATA3_PIN); /* output high nibble first */ LCD_DATA3_PORT &= ~_BV(LCD_DATA3_PIN); LCD_DATA2_PORT &= ~_BV(LCD_DATA2_PIN); LCD_DATA1_PORT &= ~_BV(LCD_DATA1_PIN); LCD_DATA0_PORT &= ~_BV(LCD_DATA0_PIN); if(data & 0x80) LCD_DATA3_PORT |= _BV(LCD_DATA3_PIN); if(data & 0x40) LCD_DATA2_PORT |= _BV(LCD_DATA2_PIN); if(data & 0x20) LCD_DATA1_PORT |= _BV(LCD_DATA1_PIN); if(data & 0x10) LCD_DATA0_PORT |= _BV(LCD_DATA0_PIN); lcd_e_toggle(); /* output low nibble */ LCD_DATA3_PORT &= ~_BV(LCD_DATA3_PIN); LCD_DATA2_PORT &= ~_BV(LCD_DATA2_PIN); LCD_DATA1_PORT &= ~_BV(LCD_DATA1_PIN); LCD_DATA0_PORT &= ~_BV(LCD_DATA0_PIN); if(data & 0x08) LCD_DATA3_PORT |= _BV(LCD_DATA3_PIN); if(data & 0x04) LCD_DATA2_PORT |= _BV(LCD_DATA2_PIN); if(data & 0x02) LCD_DATA1_PORT |= _BV(LCD_DATA1_PIN); if(data & 0x01) LCD_DATA0_PORT |= _BV(LCD_DATA0_PIN); lcd_e_toggle(); /* all data pins high (inactive) */ LCD_DATA0_PORT |= _BV(LCD_DATA0_PIN); LCD_DATA1_PORT |= _BV(LCD_DATA1_PIN); LCD_DATA2_PORT |= _BV(LCD_DATA2_PIN); LCD_DATA3_PORT |= _BV(LCD_DATA3_PIN); } } #else #define lcd_write(d,rs) if (rs) *(volatile uint8_t*)(LCD_IO_DATA) = d; else *(volatile uint8_t*)(LCD_IO_FUNCTION) = d; /* rs==0 -> write instruction to LCD_IO_FUNCTION */ /* rs==1 -> write data to LCD_IO_DATA */ #endif /************************************************************************* Low-level function to read byte from LCD controller Input: rs 1: read data 0: read busy flag / address counter Returns: byte read from LCD controller *************************************************************************/ #if LCD_IO_MODE static uint8_t lcd_read(uint8_t rs) { uint8_t data; if (rs) lcd_rs_high(); /* RS=1: read data */ else lcd_rs_low(); /* RS=0: read busy flag */ lcd_rw_high(); /* RW=1 read mode */ if ( ( &LCD_DATA0_PORT == &LCD_DATA1_PORT) && ( &LCD_DATA1_PORT == &LCD_DATA2_PORT ) && ( &LCD_DATA2_PORT == &LCD_DATA3_PORT ) && ( LCD_DATA0_PIN == 0 )&& (LCD_DATA1_PIN == 1) && (LCD_DATA2_PIN == 2) && (LCD_DATA3_PIN == 3) ) { DDR(LCD_DATA0_PORT) &= 0xF0; /* configure data pins as input */ lcd_e_high(); lcd_e_delay(); data = PIN(LCD_DATA0_PORT) << 4; /* read high nibble first */ lcd_e_low(); lcd_e_delay(); /* Enable 500ns low */ lcd_e_high(); lcd_e_delay(); data |= PIN(LCD_DATA0_PORT)&0x0F; /* read low nibble */ lcd_e_low(); } else { /* configure data pins as in
评论
    相关推荐
    • Proteus7.12.rar
      Proteus7.12完美破解版.rar电路仿真软件很好用可以仿真单片数字模拟电路
    • VHDL 的实例程序,共44个.rar
      经典VHDL 的实例程序,共44个!要下载的尽快
    • USBtoRS232Driver.rar
      USB转串口驱动程序,可以用在笔记本电脑上,方便的通过串口给单片机下载程序!
    • 模糊控制程序.rar
      模糊PID控制程序的源码,是作业,有讲解,
    • 串口编程源代码.rar
      这是本人最近几年所编写的串行通讯的代码集,可以供大家参考学习。
    • DELTA_PLC.rar
      台达PLC Modbus协议通信dll com控件
    • hongwaigooog.rar
      单片机红外遥控最全的资料,包含很多当前电视遥控专用芯片的解码方式,C语言和汇编语言编写的解码范例程序,看完了你就会了!
    • MF500绝密.rar
      非接触式IC卡开发板源程序,包括原理图/PCB图;源程序在KEIL环境下编译,打开压缩包后直接点击PRJ文件,即可编译使用。 这是个保密文件,做Mifare one卡开发人基本上都用过到这个源代码。
    • 20078251299410.rar
      C51实用程序(45个) I/O、定时器、中断、看门狗、计数器、软件AD、VB串口、93c06驱动、24c02系列驱动、7219、20045、软件陷阱、串口中断、码值转换、AVR通讯、IIC、DS1302、DS1820、SPI、1602、12232、12864、T6963、1330、PC键、键盘输入法、智能化、飞机游戏、贪吃蛇、多级菜单实例等
    • mcudesign.rar
      单片机设计,毕业设计 16×16点阵(滚动显示)论文+程序 cdma通信系统中的接入信道部分进行仿真与分析 LED显示屏动态显示和远程监控的实现 MCS-51单片机温度控制系统 USB接口设计 毕业设计(论文)OFDM通信系统基带数据 仓库温湿度的监测系统 单片机串行通信发射机 单片机课程设计__电子密码锁报告 单片机控制交通灯 电动智能小车(完整论文 电气工程系06届毕业设计开题报告 电信运营商收入保障系统设计与实现 电子设计大赛点阵电子显示屏(A题 电子时钟 火灾自动报警系统设计 基于GSM短信模块的家庭防盗报警系统 基于GSM模块的车载防盗系统设计 TC35i 资料 基于网络的虚拟仪器测试系统 门控自动照明电路 全遥控数字音量控制的D类功率放大器 数控直流稳压电源完整论文 数字密码锁设计 数字抢答器(数字电路) 数字时钟 水箱单片机控制系统 同步电机模型的MATLAB仿真 温度监控系统的设计 用单片机控制直流电机 用单片机实现温度远程显示 智能家用电热水器控制器 智能型充电器电源和显示的设计 自动加料机控制系统