<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/62676cae4f8811599ee8f495/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/62676cae4f8811599ee8f495/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">抽象的,理论上的 </div><div class="t m0 x1 h4 y3 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y4 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="ff1">使用传统元素的拓扑优化算法往往不能得到定义良好的光滑边界<span class="_ _0"></span></span>.<span class="ff1">计算出的最优材料分布存</span></div><div class="t m0 x1 h3 y5 ff1 fs0 fc0 sc0 ls0 ws0">在“棋盘”模<span class="_ _0"></span>式等问题。 除非特殊的<span class="_ _0"></span>技术,如过滤,被用来压制<span class="_ _0"></span>他们<span class="_ _1"></span><span class="ff2">.</span>即使将连续<span class="_ _0"></span>密度函数的</div><div class="t m0 x1 h3 y6 ff1 fs0 fc0 sc0 ls0 ws0">等高<span class="_ _0"></span>线定义为<span class="_ _0"></span>边界,<span class="_ _2"></span>解决<span class="_ _2"></span>方案<span class="_ _2"></span>仍然<span class="_ _2"></span>有形<span class="_ _2"></span>状不<span class="_ _2"></span>规则<span class="_ _2"></span>。本<span class="_ _2"></span>文利<span class="_ _2"></span>用<span class="_"> </span><span class="ff2">B<span class="_"> </span></span>样条单元<span class="_ _2"></span>表示<span class="_ _2"></span>密度<span class="_ _2"></span>函数<span class="_ _2"></span>和进</div><div class="t m0 x1 h3 y7 ff1 fs0 fc0 sc0 ls0 ws0">行结构<span class="_ _2"></span>分析,<span class="_ _2"></span>研究了<span class="_ _3"> </span><span class="ff2">B<span class="_"> </span></span>样条单元解<span class="_ _2"></span>决这些<span class="_ _2"></span>问题的<span class="_ _2"></span>能力。<span class="_ _2"></span> 是<span class="_ _3"> </span><span class="ff2">B<span class="_"> </span></span>样条单元<span class="_ _2"></span>可以将<span class="_ _2"></span>密度函<span class="_ _2"></span>数和位</div><div class="t m0 x1 h3 y8 ff1 fs0 fc0 sc0 ls0 ws0">移场表示为连续函数和曲率连续函数<span class="ff2">.</span>因此,使用这些单元计算的应力和应变是共同的。 元</div><div class="t m0 x1 h3 y9 ff1 fs0 fc0 sc0 ls0 ws0">素之<span class="_ _2"></span>间<span class="_ _2"></span>的不<span class="_ _2"></span>连<span class="_ _2"></span>续。<span class="_ _2"></span>此<span class="_ _2"></span>外<span class="_ _2"></span>,为<span class="_ _2"></span>了<span class="_ _2"></span>获得<span class="_ _2"></span>可<span class="_ _2"></span>接<span class="_ _2"></span>受的<span class="_ _2"></span>解<span class="_ _2"></span>,需<span class="_ _2"></span>要<span class="_ _2"></span>较少<span class="_ _2"></span>的<span class="_ _2"></span>二<span class="_ _2"></span>次和<span class="_ _2"></span>三<span class="_ _2"></span>次<span class="_ _4"> </span><span class="ff2">B<span class="_"> </span></span>样条<span class="_ _2"></span>单元<span class="_ _2"></span>。<span class="_ _2"></span>将<span class="_ _3"> </span><span class="ff2">B</span></div><div class="t m0 x1 h3 ya ff1 fs0 fc0 sc0 ls0 ws0">样条单<span class="_ _2"></span>元的计<span class="_ _2"></span>算结果<span class="_ _2"></span>与传统<span class="_ _2"></span>的元素<span class="_ _2"></span>法进<span class="_ _2"></span>行了比<span class="_ _2"></span>较。 <span class="_ _1"></span><span class="ff2">NTS<span class="_"> </span></span>以柔度为目<span class="_ _2"></span>标函数<span class="_ _2"></span>,采用<span class="_ _2"></span>密度平<span class="_ _2"></span>滑</div><div class="t m0 x1 h3 yb ff1 fs0 fc0 sc0 ls0 ws0">方法,消除了解对网格的依赖,同时提高了形状的平滑性。 </div><div class="t m0 x1 h3 yc ff1 fs0 fc0 sc0 ls0 ws0">关键字 拓扑优化<span class="ff2">·B<span class="_ _5"> </span></span>样条有限元<span class="ff3">·</span>柔度最小化<span class="ff3">·</span>密度平滑 </div><div class="t m0 x1 h4 yd ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 ye ff2 fs0 fc0 sc0 ls0 ws0"> 1 <span class="ff1">介绍 </span></div><div class="t m0 x1 h4 yf ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y10 ff1 fs0 fc0 sc0 ls0 ws0">传统<span class="_ _2"></span>上,<span class="_ _2"></span>拓扑<span class="_ _2"></span>优化<span class="_ _2"></span>被看<span class="_ _2"></span>作<span class="_ _2"></span>是在<span class="_ _2"></span>已知<span class="_ _2"></span>载荷<span class="_ _2"></span>和边<span class="_ _2"></span>界条<span class="_ _2"></span>件下<span class="_ _2"></span>优化<span class="_ _2"></span>给定<span class="_ _2"></span>设计<span class="_ _2"></span>空间<span class="_ _2"></span>内的<span class="_ _2"></span>材料<span class="_ _2"></span>布<span class="_ _2"></span>局或<span class="_ _2"></span>分</div><div class="t m0 x1 h3 y11 ff1 fs0 fc0 sc0 ls0 ws0">布的<span class="_ _2"></span>一种<span class="_ _2"></span>方法<span class="_ _2"></span>。通<span class="_ _2"></span>过治<span class="_ _2"></span>疗<span class="_ _2"></span>节点<span class="_ _0"></span> 或<span class="_ _2"></span>单元<span class="_ _2"></span>密度<span class="_ _0"></span><span class="ff2">(</span>或<span class="_ _2"></span>孔隙<span class="_ _2"></span>度<span class="_ _2"></span><span class="ff2">)</span>作<span class="_ _2"></span>为设<span class="_ _2"></span>计变<span class="_ _2"></span>量,<span class="_ _2"></span>最终<span class="_ _2"></span>计<span class="_ _2"></span>算的<span class="_ _2"></span>最优<span class="_ _2"></span>材料</div><div class="t m0 x1 h3 y12 ff1 fs0 fc0 sc0 ls0 ws0">分布为结构<span class="_ _2"></span>的最佳概念设<span class="_ _2"></span>计,即使最终<span class="_ _2"></span>形状得到了。<span class="_ _2"></span> 不光滑,<span class="_ _2"></span>形状不规则。<span class="_ _2"></span>拓扑优化已经</div><div class="t m0 x1 h3 y13 ff1 fs0 fc0 sc0 ls0 ws0">应用于各种<span class="_ _2"></span>应用中,并发<span class="_ _2"></span>展成为结构设<span class="_ _2"></span>计的强有力的<span class="_ _2"></span>概念设计工具<span class="_ _2"></span>。即便如<span class="_ _2"></span>此,它 理想的</div><div class="t m0 x1 h3 y14 ff1 fs0 fc0 sc0 ls0 ws0">是,<span class="_ _2"></span>对于<span class="_ _2"></span>最优<span class="_ _2"></span>几何<span class="_ _2"></span>,不<span class="_ _2"></span>需<span class="_ _2"></span>要使<span class="_ _2"></span>用非<span class="_ _2"></span>常密<span class="_ _2"></span>集的<span class="_ _2"></span>网格<span class="_ _2"></span>进行<span class="_ _2"></span>分析<span class="_ _2"></span>和优<span class="_ _2"></span>化,<span class="_ _2"></span>就可<span class="_ _2"></span>以得<span class="_ _2"></span>到定<span class="_ _2"></span>义<span class="_ _2"></span>良好<span class="_ _2"></span>的</div><div class="t m0 x1 h3 y15 ff1 fs0 fc0 sc0 ls0 ws0">光滑边界。<span class="_ _2"></span>已经开发了几<span class="_ _2"></span>种方法 过<span class="_ _2"></span>去二十年的拓<span class="_ _2"></span>扑优化。拓扑<span class="_ _2"></span>优化的最早方<span class="_ _2"></span>法是去除低应</div><div class="t m0 x1 h3 y16 ff1 fs0 fc0 sc0 ls0 ws0">力单<span class="_ _2"></span>元<span class="_ _2"></span>。然<span class="_ _2"></span>而<span class="_ _2"></span>,这<span class="_ _2"></span>种<span class="_ _2"></span>做<span class="_ _2"></span>法已<span class="_ _2"></span>被<span class="_ _2"></span>证明<span class="_ _2"></span>是<span class="_ _2"></span>有<span class="_ _2"></span>害的<span class="_ _2"></span>。<span class="_ _2"></span> <span class="_ _6"> </span><span class="ff2">SED(Kohn<span class="_"> </span></span>和<span class="_ _5"> </span><span class="ff2">Str<span class="_ _7"></span>ang 19<span class="_ _2"></span>86)<span class="_ _2"></span><span class="ff1">和<span class="_ _2"></span>均一<span class="_ _2"></span>化<span class="_ _2"></span>被认<span class="_ _2"></span>为<span class="_ _2"></span>是</span></span></div><div class="t m0 x1 h3 y17 ff1 fs0 fc0 sc0 ls0 ws0">一种缓和“<span class="ff2">0-1<span class="_"> </span></span>二分法”的方法。因此,基于均匀化的方法处理。 提出了元素的随机性作为设</div><div class="t m0 x1 h3 y18 ff1 fs0 fc0 sc0 ls0 ws0">计变量,并<span class="_ _2"></span>将其用于拓扑<span class="_ _2"></span>优化<span class="_ _0"></span><span class="ff2">(bends e<span class="_"> </span></span>和<span class="_ _5"> </span><span class="ff2">Kikuchi 1988</span>;<span class="ff2">ben<span class="_ _2"></span>ds e<span class="_"> </span></span>等人<span class="ff2">)</span>。<span class="ff2">1992<span class="_"> </span></span>年<span class="ff2">)</span>。采用均<span class="_ _2"></span>匀</div><div class="t m0 x1 h3 y19 ff1 fs0 fc0 sc0 ls0 ws0">化的方法计<span class="_ _2"></span>算出各参数之<span class="_ _2"></span>间的关系。 <span class="_ _2"></span>材料性能和<span class="_ _2"></span>孔隙率。计算<span class="_ _2"></span>结果取决于多<span class="_ _2"></span>孔材料的微观</div><div class="t m0 x1 h3 y1a ff1 fs0 fc0 sc0 ls0 ws0">结<span class="_ _2"></span>构<span class="_ _2"></span>。<span class="_ _0"></span>或<span class="_ _2"></span>者<span class="_ _0"></span>,<span class="_ _2"></span>有<span class="_ _0"></span>几<span class="_ _2"></span>位<span class="_ _0"></span>作<span class="_ _2"></span>者<span class="_ _0"></span>使<span class="_ _2"></span>用<span class="_ _0"></span>了<span class="_ _2"></span>人<span class="_ _2"></span>工<span class="_ _0"></span>设<span class="_ _2"></span>计<span class="_ _0"></span>的<span class="_ _2"></span>材<span class="_ _0"></span>料<span class="_ _8"> </span><span class="ff2">Prope<span class="_ _2"></span></span>。<span class="_ _2"></span> <span class="_ _0"></span><span class="ff2">RTY<span class="_ _9"></span>-<span class="_ _2"></span><span class="ff1">密<span class="_ _0"></span>度<span class="_ _2"></span>关<span class="_ _0"></span>系<span class="_ _0"></span></span>(bends<span class="_ _2"></span> <span class="_ _2"></span>e<span class="_ _2"></span><span class="ff1">,<span class="_ _0"></span></span>1989<span class="_ _2"></span><span class="ff1">;</span></span></div><div class="t m0 x1 h3 y1b ff2 fs0 fc0 sc0 ls0 ws0">Ro<span class="_ _7"></span>zv<span class="_ _7"></span>any<span class="_ _4"> </span><span class="ff1">等<span class="_ _3"> </span>人<span class="_ _5"> </span></span>)1992<span class="_ _a"> </span><span class="ff1">年<span class="_ _5"> </span>,<span class="_ _3"> </span></span>1994<span class="_ _a"> </span><span class="ff1">年<span class="_ _5"> </span>;<span class="_ _5"> </span></span>Kumar<span class="_ _a"> </span><span class="ff1">和<span class="_ _4"> </span></span>Gos<span class="_ _2"></span>sard<span class="_ _5"> </span><span class="ff1">,<span class="_ _5"> </span></span>1992<span class="_ _a"> </span><span class="ff1">年<span class="_ _5"> </span>,<span class="_ _5"> </span></span>19<span class="_ _2"></span>96<span class="_ _a"> </span><span class="ff1">年<span class="_ _5"> </span>;<span class="_ _5"> </span></span>Bisds<span class="_ _1"> </span> <span class="_ _1"> </span>e<span class="_ _a"> </span><span class="ff1">和</span></div><div class="t m0 x1 h3 y1c ff2 fs0 fc0 sc0 ls0 ws0">Sigmund<span class="ff1">,</span>2003<span class="_"> </span><span class="ff1">年</span>)<span class="ff1">。材料性<span class="_ _2"></span>能与密度关系<span class="_ _2"></span>的设计使得 <span class="_ _2"></span>优化过程:<span class="_ _2"></span>在需要材料的<span class="_ _2"></span>区域,密度</span></div><div class="t m0 x1 h3 y1d ff1 fs0 fc0 sc0 ls0 ws0">被<span class="_ _2"></span>驱动<span class="_ _2"></span>到<span class="_ _2"></span>上<span class="_ _2"></span>限<span class="_ _2"></span><span class="ff2">(<span class="_ _2"></span></span>或<span class="_ _2"></span>单<span class="_ _2"></span>位<span class="_ _2"></span><span class="ff2">)<span class="_ _2"></span></span>,<span class="_ _2"></span>并<span class="_ _2"></span>通<span class="_ _2"></span>过<span class="_ _2"></span>惩罚<span class="_ _0"></span>密度<span class="_ _2"></span>的<span class="_ _2"></span>中<span class="_ _2"></span>间<span class="_ _2"></span>值<span class="_ _2"></span>而<span class="_ _2"></span>被<span class="_ _2"></span>驱动<span class="_ _0"></span>到洞<span class="_ _2"></span>内<span class="_ _2"></span>为<span class="_ _2"></span>零<span class="_ _2"></span>。<span class="_ _2"></span>这<span class="_ _2"></span>种<span class="_ _2"></span>方法<span class="_ _0"></span>,经<span class="_ _2"></span>常</div><div class="t m0 x1 h3 y1e ff1 fs0 fc0 sc0 ls0 ws0">称为<span class="_ _3"> </span><span class="ff2">SIMP(</span>具<span class="_ _2"></span>有惩<span class="_ _2"></span>罚作<span class="_ _2"></span>用的<span class="_ _2"></span>固体<span class="_ _2"></span>各向<span class="_ _2"></span>同性<span class="_ _2"></span>材料<span class="_ _b"></span><span class="ff2">)(Ro<span class="_ _7"></span>zv<span class="_ _7"></span>an<span class="_ _7"></span>y<span class="_"> </span><span class="ff1">等人</span>)<span class="_ _2"></span><span class="ff1">。<span class="_ _2"></span>,通<span class="_ _2"></span>常假<span class="_ _2"></span>定杨<span class="_ _2"></span>氏模<span class="_ _2"></span>量与<span class="_ _2"></span>密度</span></span></div><div class="t m0 x1 h3 y1f ff1 fs0 fc0 sc0 ls0 ws0">的<span class="_ _2"></span>某种<span class="_ _0"></span><span class="ff4">幂</span>成<span class="_ _2"></span><span class="ff4">正<span class="_ _2"></span></span>比<span class="_ _2"></span>。<span class="_ _2"></span>其<span class="_ _2"></span>他<span class="_ _2"></span>方<span class="_ _2"></span>法<span class="_ _2"></span>,<span class="_ _2"></span><span class="ff4">例<span class="_ _2"></span></span>如<span class="_ _2"></span> <span class="_ _2"></span><span class="ff4">遗</span>传<span class="_ _0"></span>算法<span class="_ _0"></span><span class="ff2">(Chapman<span class="_"> </span></span>等<span class="_ _2"></span>人<span class="_ _2"></span><span class="ff2">)1994<span class="_"> </span></span>年<span class="_ _2"></span>;<span class="_ _2"></span><span class="ff2">Madeira<span class="_"> </span></span>等人<span class="_ _2"></span>。<span class="_ _2"></span><span class="ff2">2010</span></div><div class="t m0 x1 h3 y20 ff1 fs0 fc0 sc0 ls0 ws0">年<span class="_ _2"></span>;<span class="_ _2"></span><span class="ff2">T<span class="_ _9"></span>AI<span class="_"> </span><span class="ff1">和<span class="_ _5"> </span></span>Prasad<span class="ff1">,<span class="_ _2"></span></span>2007<span class="_"> </span><span class="ff1">年<span class="_ _2"></span></span>)<span class="_ _2"></span><span class="ff1">和<span class="_ _2"></span>进<span class="_ _2"></span>化<span class="_ _2"></span>结<span class="_ _2"></span>构优<span class="_ _0"></span>化<span class="_ _2"></span></span>(ESO)(<span class="_ _2"></span><span class="ff4">谢<span class="_ _2"></span><span class="ff1">和<span class="_ _2"></span></span>史<span class="_ _2"></span>蒂<span class="_ _2"></span><span class="ff1">文<span class="_ _2"></span>,<span class="_ _2"></span></span></span>1993<span class="_"> </span><span class="ff1">年<span class="_ _2"></span>;<span class="_ _2"></span></span>Chu<span class="_"> </span><span class="ff1">等<span class="_ _2"></span>人<span class="_ _2"></span>。<span class="_ _2"></span></span>(1997</span></div><div class="t m0 x1 h3 y21 ff1 fs0 fc0 sc0 ls0 ws0">年<span class="_ _2"></span><span class="ff2">) <span class="_ _2"></span></span>优<span class="_ _2"></span>化<span class="_ _2"></span><span class="ff4">策<span class="_ _2"></span>略<span class="_ _2"></span></span>。<span class="_ _2"></span><span class="ff4">周<span class="_ _2"></span></span>和<span class="_ _2"></span><span class="ff4">罗<span class="_ _2"></span>兹<span class="_ _2"></span>瓦<span class="_ _2"></span>尼<span class="_ _2"></span><span class="ff2">(2001)<span class="_ _2"></span></span>指<span class="_ _2"></span></span>出<span class="_ _2"></span>了<span class="_ _3"> </span><span class="ff2">ESO<span class="_"> </span></span>方法<span class="_ _2"></span>的<span class="_ _2"></span>一<span class="_ _2"></span>些问<span class="_ _0"></span>题。<span class="_ _0"></span><span class="ff4">遗</span>传<span class="_ _0"></span>算法<span class="_ _2"></span>和<span class="_ _c"> </span><span class="ff2">ESO<span class="_"> </span></span>采用<span class="_ _3"> </span><span class="ff2">0-1</span></div><div class="t m0 x1 h3 y22 ff1 fs0 fc0 sc0 ls0 ws0">的几何表示方法,其中 <span class="ff4">无</span>论是<span class="ff4">打</span>开<span class="ff4">还</span>是关<span class="ff4">闭</span>,<span class="ff4">都</span>取决于一<span class="ff4">个地</span>区是<span class="ff4">否</span>需要材料。 </div><div class="t m0 x2 h3 y23 ff2 fs0 fc0 sc0 ls0 ws0"> 0-1<span class="_"> </span><span class="ff1">方法<span class="_ _2"></span><span class="ff4">产生<span class="_ _2"></span>锯<span class="_ _2"></span>齿</span>状<span class="_ _2"></span>的边<span class="_ _2"></span>界<span class="_ _2"></span></span>.<span class="ff1">即<span class="_ _2"></span>使使<span class="_ _2"></span>用元<span class="_ _2"></span>素的<span class="_ _2"></span>密度<span class="_ _2"></span>或孔<span class="_ _2"></span>隙度<span class="_ _2"></span>作<span class="_ _2"></span>为设<span class="_ _2"></span>计变<span class="_ _2"></span>量的<span class="_ _2"></span>方法<span class="_ _2"></span>,如<span class="_ _2"></span>果</span></div><div class="t m0 x1 h3 y24 ff1 fs0 fc0 sc0 ls0 ws0">假定<span class="_ _2"></span>密度<span class="_ _2"></span>为<span class="_ _3"> </span><span class="ff2">c</span>,<span class="_ _2"></span><span class="ff4">也</span>不<span class="_ _2"></span>能表<span class="_ _2"></span>示光<span class="_ _2"></span>滑的<span class="_ _2"></span>边<span class="_ _2"></span>界。<span class="_ _2"></span> 因为<span class="_ _2"></span>密<span class="_ _2"></span>度函<span class="_ _2"></span>数的<span class="_ _2"></span><span class="ff4">轮<span class="_ _2"></span>廓</span>是<span class="_ _2"></span>不连<span class="_ _2"></span>续的<span class="_ _2"></span>,<span class="_ _2"></span><span class="ff4">所</span>以<span class="_ _2"></span>在<span class="_ _2"></span><span class="ff4">每个<span class="_ _2"></span></span>元</div><div class="t m0 x1 h3 y25 ff1 fs0 fc0 sc0 ls0 ws0">素<span class="_ _1"></span>内<span class="_ _b"></span><span class="ff4">都<span class="_ _1"></span></span>是<span class="_ _1"></span>连<span class="_ _1"></span>续<span class="_ _b"></span>的<span class="_ _1"></span>。<span class="_ _1"></span>此<span class="_ _1"></span>外<span class="_ _b"></span>,<span class="_ _1"></span>早<span class="_ _1"></span><span class="ff4">期<span class="_ _1"></span></span>研<span class="_ _1"></span>究<span class="_ _1"></span>发<span class="_ _b"></span><span class="ff4">现<span class="_ _1"></span></span>棋<span class="_ _1"></span>盘<span class="_ _1"></span>模<span class="_ _b"></span>式<span class="_ _d"> </span><span class="ff2">(Diaz<span class="_ _e"> </span></span>和<span class="_"> </span><span class="ff2">Sigmund<span class="_ _2"></span> <span class="_ _b"></span>1995<span class="_ _b"></span></span>;<span class="_ _1"></span><span class="ff2">JOG<span class="_ _e"> </span></span>和<span class="_"> </span><span class="ff2">Haber</span></div><div class="t m0 x1 h3 y26 ff2 fs0 fc0 sc0 ls0 ws0">1996<span class="_ _2"></span><span class="ff1">;<span class="_ _2"></span></span>Be)<span class="_ _2"></span> <span class="_ _2"></span><span class="ff1">得<span class="_ _2"></span>到<span class="_ _2"></span>了<span class="_ _3"> </span></span>NDS e<span class="_ _3"> </span><span class="ff1">和<span class="_ _3"> </span></span>Sigmund <span class="_ _2"></span>2003<span class="_"> </span><span class="ff1">在<span class="_ _2"></span>某<span class="_ _2"></span>些<span class="_ _2"></span>区<span class="_ _2"></span>域<span class="_ _2"></span>的<span class="_ _2"></span>优<span class="_ _2"></span>化设<span class="_ _0"></span>计。<span class="_ _2"></span>为<span class="_ _2"></span>了<span class="_ _2"></span>表<span class="_ _2"></span>示<span class="_ _2"></span><span class="ff4">更<span class="_ _2"></span></span>平<span class="_ _2"></span>滑<span class="_ _2"></span>的<span class="_ _2"></span>边<span class="_ _2"></span>界<span class="_ _1"></span>,</span></div><div class="t m0 x1 h3 y27 ff1 fs0 fc0 sc0 ls0 ws0">密度的节点值被用作设计变量,因此密度可以 在元素内<span class="ff4">插</span>值以获得连续密度函数<span class="_ _b"></span><span class="ff2">(Kumar<span class="_ _5"> </span></span>和</div><div class="t m0 x1 h3 y28 ff2 fs0 fc0 sc0 ls0 ws0">Gossard<span class="ff1">,</span>1996<span class="_"> </span><span class="ff1">年</span>)<span class="ff1">。<span class="_ _2"></span><span class="ff4">该</span>方<span class="_ _2"></span>法与均<span class="_ _2"></span>匀化方<span class="_ _2"></span>法<span class="ff4">相<span class="_ _2"></span></span>结<span class="ff4">合</span>,<span class="_ _2"></span>被称为<span class="_ _2"></span>连续<span class="_ _2"></span><span class="ff4">逼近</span>法<span class="_ _2"></span>。 <span class="_ _2"></span></span>Matsui<span class="_"> </span><span class="ff1">和<span class="_ _5"> </span></span>T<span class="_ _f"></span>erada<span class="_ _5"> </span><span class="ff1">的</span></div><div class="t m0 x1 h3 y29 ff1 fs0 fc0 sc0 ls0 ws0">材料<span class="_ _2"></span>分<span class="ff4">配<span class="_ _2"></span><span class="ff2">(CAMD)(2004<span class="_"> </span></span></span>年<span class="ff2">)<span class="_ _2"></span></span>。如<span class="_ _2"></span>果<span class="_ _2"></span>连续<span class="_ _2"></span><span class="ff4">插</span>值<span class="_ _2"></span>密度<span class="_ _2"></span>函数<span class="_ _2"></span>,则<span class="_ _2"></span><span class="ff4">该<span class="_ _2"></span></span>函数<span class="_ _2"></span>的<span class="ff4">轮<span class="_ _2"></span>廓<span class="_ _2"></span></span>可以<span class="_ _2"></span>表示<span class="_ _2"></span>连续<span class="_ _2"></span>的边<span class="_ _2"></span>界<span class="_ _2"></span>。</div><div class="t m0 x1 h3 y2a ff1 fs0 fc0 sc0 ls0 ws0">即使<span class="_ _2"></span> <span class="_ _2"></span>这<span class="_ _2"></span>种方<span class="_ _2"></span>法<span class="_ _2"></span><span class="ff4">自<span class="_ _2"></span></span>然不<span class="_ _2"></span><span class="ff4">包<span class="_ _2"></span>括<span class="_ _2"></span></span>棋盘<span class="_ _2"></span><span class="ff4">图<span class="_ _2"></span></span>案<span class="_ _2"></span>,<span class="ff4">还<span class="_ _2"></span></span>观<span class="_ _2"></span><span class="ff4">察<span class="_ _2"></span></span>到“<span class="_ _2"></span><span class="ff4">正<span class="_ _2"></span></span>在<span class="_ _2"></span><span class="ff4">着陆<span class="_ _2"></span></span>”<span class="_ _2"></span>和“<span class="_ _2"></span>分<span class="_ _2"></span><span class="ff4">层<span class="_ _2"></span></span>”等<span class="_ _2"></span>其<span class="_ _2"></span>他形<span class="_ _2"></span>状<span class="_ _2"></span>不<span class="_ _2"></span>规则<span class="_ _2"></span><span class="ff4">现<span class="_ _2"></span></span>象</div><div class="t m0 x1 h3 y2b ff2 fs0 fc0 sc0 ls0 ws0">(Rahmatalla<span class="_"> </span><span class="ff1">和<span class="_ _5"> </span></span>Swan<span class="ff1">,<span class="_ _2"></span></span>2004<span class="_"> </span><span class="ff1">年<span class="_ _2"></span></span>)<span class="_ _2"></span><span class="ff1">。<span class="_ _2"></span>函<span class="_ _2"></span>数<span class="_ _2"></span>的<span class="_ _2"></span>等<span class="_ _2"></span>高线<span class="_ _0"></span>或<span class="_ _2"></span><span class="ff4">水<span class="_ _2"></span></span>平集<span class="_ _2"></span> <span class="_ _2"></span>用<span class="_ _3"> </span></span>NS<span class="_"> </span><span class="ff1">表<span class="_ _2"></span>示<span class="_ _2"></span>边<span class="_ _2"></span>界<span class="_ _2"></span>,<span class="_ _2"></span>用<span class="_ _2"></span><span class="ff4">水<span class="_ _2"></span></span>平<span class="_ _2"></span>集<span class="_ _2"></span>法<span class="_ _2"></span><span class="ff4">求</span>解</span></div><div class="t m0 x1 h3 y2c ff2 fs0 fc0 sc0 ls0 ws0">Hamilton-Jacobi<span class="_ _c"> </span><span class="ff1">微<span class="_ _0"></span>分<span class="_ _b"></span>方<span class="_ _0"></span>程<span class="_ _b"></span>,<span class="_ _0"></span>模<span class="_ _b"></span><span class="ff4">拟<span class="_ _b"></span></span>移<span class="_ _0"></span>动<span class="_ _b"></span>边<span class="_ _0"></span>界<span class="_ _b"></span>。<span class="_ _0"></span><span class="ff4">该<span class="_ _b"></span></span>方<span class="_ _b"></span>法<span class="_ _0"></span>已<span class="_ _b"></span>应<span class="_ _0"></span>用<span class="_ _b"></span>于<span class="_ _0"></span>拓<span class="_ _b"></span>扑<span class="_ _0"></span>优<span class="_ _b"></span>化<span class="_ _0"></span>。<span class="_ _b"></span> <span class="_ _0"></span>作<span class="_ _b"></span>者<span class="_ _1"></span></span>(Sethian<span class="_ _c"> </span><span class="ff1">和</span></div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/62676cae4f8811599ee8f495/bg2.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2d ff2 fs0 fc0 sc0 ls0 ws0">Wiegmann<span class="_ _2"></span><span class="ff1">,</span>2000<span class="_ _2"></span><span class="ff1">;</span>Wang<span class="_ _5"> </span><span class="ff1">等人<span class="_ _2"></span></span>)<span class="ff1">。<span class="_ _2"></span></span>2003<span class="_"> </span><span class="ff1">年;<span class="_ _2"></span><span class="ff4">邢</span>等<span class="_ _2"></span>人。<span class="_ _2"></span></span>2010<span class="_"> </span><span class="ff1">年<span class="_ _2"></span></span>)<span class="ff1">。<span class="_ _2"></span>这种<span class="_ _2"></span>方法<span class="_ _2"></span>得到<span class="_ _2"></span>了平<span class="_ _2"></span>滑的<span class="_ _2"></span>边界<span class="_ _0"></span>,</span></div><div class="t m0 x1 h3 y2 ff4 fs0 fc0 sc0 ls0 ws0">但<span class="ff1">是结果</span>很大<span class="ff1">程度上取决于</span>所<span class="ff1">分</span>配<span class="ff1">的</span>初始水<span class="ff1">平集。 <span class="_ _0"></span><span class="ff2">Se<span class="_"> </span></span>内</span>部<span class="ff1">边界不是</span>自<span class="ff1">动</span>创建<span class="ff1">的。为</span>克服<span class="ff1">这</span></div><div class="t m0 x1 h3 y2e ff1 fs0 fc0 sc0 ls0 ws0">一问题<span class="_ _2"></span>,提出<span class="_ _2"></span>了<span class="ff4">引<span class="_ _2"></span>入</span>内<span class="ff4">锋<span class="_ _2"></span></span>的技术<span class="_ _b"></span><span class="ff2">(Pa<span class="_ _7"></span>rk<span class="_"> </span><span class="ff1">和<span class="_ _5"> </span></span>Y<span class="_ _f"></span>oun<span class="_ _2"></span><span class="ff1">,</span>2008)<span class="_ _2"></span><span class="ff1">。<span class="ff4">避免<span class="_ _2"></span></span>形状不<span class="_ _2"></span>规则使<span class="_ _2"></span>用的一<span class="_ _2"></span>种方<span class="_ _2"></span>法 传</span></span></div><div class="t m0 x1 h3 y4 ff1 fs0 fc0 sc0 ls0 ws0">统的<span class="_ _5"> </span><span class="ff2">SIMP<span class="_"> </span></span>方法是使用<span class="ff4">更</span>好的<span class="ff4">质</span>量元素。这是基于这样一种理解,即<span class="ff4">从根</span>本上来<span class="ff4">说</span>,棋盘<span class="ff4">图</span></div><div class="t m0 x1 h3 y5 ff1 fs0 fc0 sc0 ls0 ws0">案和<span class="_ _2"></span>其他<span class="_ _2"></span>形状<span class="_ _2"></span>不规<span class="_ _2"></span>则是<span class="_ _2"></span><span class="ff4">由<span class="_ _2"></span></span>于不<span class="_ _2"></span><span class="ff4">足造<span class="_ _2"></span></span>成的<span class="_ _2"></span>。<span class="_ _2"></span> 或<span class="_ _2"></span>较<span class="ff4">差<span class="_ _2"></span></span>的数<span class="_ _2"></span>值模<span class="_ _2"></span><span class="ff4">拟<span class="_ _2"></span></span>。<span class="ff2">T<span class="_ _9"></span>alischi<span class="_"> </span><span class="ff1">等</span>(2009)<span class="_ _2"></span><span class="ff1">研究<span class="_ _2"></span>了使<span class="_ _2"></span>用</span></span></div><div class="t m0 x1 h3 y6 ff1 fs0 fc0 sc0 ls0 ws0">其<span class="_ _2"></span>元件<span class="_ _2"></span>使<span class="_ _2"></span>用<span class="_ _3"> </span><span class="ff2">Wachr<span class="_ _7"></span>ess<span class="_"> </span><span class="ff1">形<span class="_ _2"></span>状函<span class="_ _0"></span>数的<span class="_ _0"></span><span class="ff4">蜂窝<span class="_ _2"></span></span>网<span class="_ _2"></span>的<span class="_ _2"></span>拓<span class="_ _2"></span>扑<span class="_ _2"></span>优<span class="_ _2"></span>化<span class="_ _2"></span>,<span class="_ _2"></span>并<span class="_ _2"></span><span class="ff4">显<span class="_ _2"></span></span>示<span class="_ _2"></span>出了<span class="_ _0"></span><span class="ff4">无</span>棋<span class="_ _2"></span>盘<span class="_ _2"></span>的<span class="_ _2"></span>设<span class="_ _2"></span>计<span class="_ _2"></span> <span class="_ _2"></span>。<span class="_ _2"></span>高<span class="_ _2"></span><span class="ff4">阶<span class="_ _2"></span></span>单</span></span></div><div class="t m0 x1 h3 y7 ff1 fs0 fc0 sc0 ls0 ws0">元和<span class="ff4">混合</span>有<span class="_ _2"></span>限元<span class="_ _2"></span><span class="ff2">(Bruggi<span class="_ _2"></span></span>,<span class="ff2">2008)<span class="ff4">也</span></span>进<span class="_ _2"></span>行了研究<span class="_ _2"></span>,并证明在<span class="ff4">抑<span class="_ _2"></span></span>制棋盘模式方<span class="_ _2"></span><span class="ff4">面</span>是有<span class="ff4">益<span class="_ _2"></span></span>的。在本</div><div class="t m0 x1 h3 y8 ff1 fs0 fc0 sc0 ls0 ws0">文中,<span class="ff4">避免</span>了形状不规则。</div><div class="t m0 x1 h4 y2f ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 ya ff2 fs0 fc0 sc0 ls0 ws0"> <span class="ff1">利<span class="_ _2"></span>用<span class="_ _5"> </span></span>B<span class="_"> </span><span class="ff1">样条单<span class="_ _2"></span>元可以<span class="_ _2"></span>将密度<span class="_ _2"></span>表示为<span class="_ _2"></span><span class="ff4">切</span>线<span class="_ _2"></span>连续和<span class="_ _2"></span><span class="ff4">偶</span>曲<span class="_ _2"></span>率连续<span class="_ _2"></span>函数,<span class="_ _2"></span><span class="ff4">从</span>而使<span class="_ _2"></span>密度<span class="_ _2"></span>函数的<span class="_ _2"></span>等值线</span></div><div class="t m0 x1 h3 yb ff1 fs0 fc0 sc0 ls0 ws0">成为边<span class="_ _2"></span>界。 <span class="_ _2"></span>其形<span class="_ _2"></span>状,<span class="_ _2"></span><span class="ff4">也</span>具有<span class="_ _2"></span><span class="ff4">相似</span>的<span class="_ _2"></span>连续性<span class="_ _2"></span>和光滑<span class="_ _2"></span>性。<span class="_ _1"></span><span class="ff2">B<span class="_"> </span></span>样条<span class="ff4">逼近<span class="_ _2"></span></span>格式最<span class="_ _2"></span><span class="ff4">初</span>是<span class="_ _2"></span>为了<span class="ff4">拟<span class="_ _2"></span>合</span>光滑</div><div class="t m0 x1 h3 yc ff1 fs0 fc0 sc0 ls0 ws0">曲线或曲<span class="ff4">面</span>而<span class="ff4">建立</span>的<span class="ff2">.</span>它们的<span class="ff4">主</span>要用<span class="ff4">途</span>是 <span class="ff4">电子</span>计量<span class="ff4">学建</span>模和<span class="ff4">图</span>形,他们已经证明是一<span class="ff4">个直</span>观</div><div class="t m0 x1 h3 y30 ff1 fs0 fc0 sc0 ls0 ws0">和<span class="ff4">交互<span class="_ _2"></span></span>式的形<span class="_ _2"></span>状设计<span class="_ _2"></span>工具。<span class="_ _b"></span><span class="ff2">B<span class="_"> </span></span>样条<span class="ff4">近似<span class="_ _2"></span></span>是在<span class="ff4">贴<span class="_ _2"></span>片</span>或元<span class="_ _2"></span>素上<span class="_ _2"></span><span class="ff4">按</span>分<span class="ff4">段<span class="_ _2"></span>创建</span>的<span class="_ _2"></span>,其<span class="_ _2"></span>方式是<span class="_ _2"></span>: 如果</div><div class="t m0 x1 h3 ye ff1 fs0 fc0 sc0 ls0 ws0">使用二次样<span class="_ _2"></span>条<span class="ff2">(</span>或三次样<span class="_ _2"></span>条<span class="ff2">)</span>,则<span class="_ _2"></span><span class="ff4">生</span>成的曲线或<span class="_ _2"></span>曲<span class="ff4">面</span>是连<span class="_ _2"></span>续的。与<span class="ff4">插</span>值<span class="_ _2"></span>方案不同,<span class="_ _2"></span><span class="ff2">B<span class="_"> </span></span>样条<span class="ff4">逼近</span></div><div class="t m0 x1 h3 y31 ff1 fs0 fc0 sc0 ls0 ws0">不通过数<span class="ff4">据<span class="_ _2"></span></span>或 它<span class="ff4">正</span>在<span class="_ _2"></span><span class="ff4">逼近</span>的节点值<span class="_ _2"></span>。因此,节点<span class="_ _2"></span>值不等于节点<span class="_ _2"></span>处的<span class="ff4">逼近<span class="_ _2"></span></span>函数的值。这<span class="_ _2"></span>给使</div><div class="t m0 x1 h3 y10 ff1 fs0 fc0 sc0 ls0 ws0">用<span class="_ _5"> </span><span class="ff2">tra<span class="_"> </span></span>的边界<span class="_ _2"></span>条件<span class="_ _2"></span>的应<span class="_ _2"></span>用<span class="ff4">带<span class="_ _2"></span></span>来了<span class="_ _2"></span><span class="ff4">挑<span class="_ _2"></span>战</span>。<span class="_ _2"></span> 有<span class="_ _2"></span>限元<span class="_ _2"></span>分析<span class="_ _2"></span>中常<span class="_ _2"></span>用的<span class="_ _2"></span>方<span class="_ _2"></span>法。<span class="_ _2"></span><span class="ff4">另<span class="_ _2"></span></span>外,<span class="_ _2"></span>对于<span class="_ _2"></span><span class="ff4">任意<span class="_ _2"></span></span>形状<span class="_ _2"></span><span class="ff4">四</span></div><div class="t m0 x1 h3 y11 ff1 fs0 fc0 sc0 ls0 ws0">边形单元的非结构网格,<span class="_ _2"></span><span class="ff2">B<span class="_"> </span></span>样条<span class="ff4">逼近很难</span>构<span class="ff4">造</span>。基于这些<span class="ff4">原</span>因,<span class="_ _2"></span><span class="ff2">B<span class="_ _5"> </span></span>样条<span class="ff4">逼近</span> <span class="ff2">S<span class="_"> </span></span>在传统的有限</div><div class="t m0 x1 h3 y12 ff1 fs0 fc0 sc0 ls0 ws0">元<span class="_ _0"></span>方<span class="_ _0"></span>法<span class="_ _0"></span>中<span class="_ _0"></span><span class="ff4">没<span class="_ _0"></span></span>有<span class="_ _0"></span>得<span class="_ _0"></span>到<span class="_ _0"></span>应<span class="_ _0"></span>用<span class="_ _0"></span>。<span class="_ _b"></span><span class="ff4">隐<span class="_ _2"></span></span>边<span class="_ _b"></span>界<span class="_ _2"></span>有<span class="_ _b"></span>限<span class="_ _2"></span>元<span class="_ _0"></span>法<span class="_ _b"></span><span class="ff2">(IBFEM)(Kumar<span class="_"> </span></span>等<span class="_ _0"></span>人<span class="_ _0"></span><span class="ff2">)<span class="_ _b"></span></span>。<span class="_ _2"></span><span class="ff2">20<span class="_ _2"></span>08<span class="_ _c"> </span></span>年<span class="_ _2"></span>;<span class="_ _b"></span><span class="ff2">Burla<span class="_ _3"> </span></span>和<span class="_ _c"> </span><span class="ff2">Kumar</span></div><div class="t m0 x1 h3 y13 ff2 fs0 fc0 sc0 ls0 ws0">2008)<span class="_ _2"></span><span class="ff1">,一<span class="_ _2"></span><span class="ff4">个</span>具<span class="_ _2"></span>有均<span class="_ _2"></span>匀规<span class="_ _2"></span>则的<span class="_ _2"></span>结构<span class="_ _2"></span>化网<span class="_ _2"></span>格 <span class="_ _2"></span>采<span class="_ _2"></span>用<span class="_ _3"> </span></span>Ar<span class="_"> </span><span class="ff4">型<span class="_ _2"></span><span class="ff1">单元<span class="_ _2"></span>进行<span class="_ _2"></span>分析<span class="_ _2"></span>,并<span class="_ _2"></span>构</span>造<span class="_ _2"></span><span class="ff1">特<span class="_ _2"></span>殊的<span class="_ _2"></span>解结<span class="_ _2"></span>构来</span></span></div><div class="t m0 x1 h3 y14 ff4 fs0 fc0 sc0 ls0 ws0">施加<span class="ff1">边界条<span class="_ _2"></span>件。这使得<span class="_ _3"> </span><span class="ff2">B<span class="_"> </span></span>样条元素即使<span class="_ _2"></span>在</span>相<span class="ff1">对</span>复杂<span class="ff1">的<span class="_ _2"></span>区域</span>也<span class="ff1">可<span class="_ _2"></span>以使用。 几何<span class="_ _2"></span></span>学<span class="ff1">。本文<span class="_ _2"></span>将此</span></div><div class="t m0 x1 h3 y15 ff1 fs0 fc0 sc0 ls0 ws0">方法<span class="_ _2"></span>用于<span class="_ _2"></span>结构<span class="_ _2"></span>的分<span class="_ _2"></span>析和<span class="_ _2"></span>表<span class="_ _2"></span>示其<span class="_ _2"></span><span class="ff4">轮廓<span class="_ _2"></span></span>定义<span class="_ _2"></span>结<span class="_ _2"></span>构边<span class="_ _2"></span>界的<span class="_ _2"></span>密度<span class="_ _2"></span>函数<span class="_ _2"></span>。最<span class="_ _2"></span><span class="ff4">近<span class="_ _2"></span></span>,人<span class="_ _2"></span>们对<span class="_ _2"></span>此有<span class="_ _2"></span>了<span class="_ _2"></span><span class="ff4">很大<span class="_ _2"></span></span>的</div><div class="t m0 x1 h3 y16 ff1 fs0 fc0 sc0 ls0 ws0">了解<span class="_ _2"></span>。 <span class="_ _2"></span>用等<span class="_ _2"></span>高线<span class="_ _2"></span>法进<span class="_ _2"></span>行形<span class="_ _2"></span>状优<span class="_ _2"></span>化的<span class="_ _2"></span>研<span class="_ _2"></span>究工<span class="_ _2"></span>作<span class="_ _0"></span><span class="ff2">(Wall<span class="_ _5"> </span></span>等人<span class="_ _2"></span><span class="ff2">)</span>。<span class="_ _2"></span><span class="ff2">2008<span class="_"> </span></span>年;<span class="ff2">CHO<span class="_"> </span></span>和<span class="_ _3"> </span><span class="ff2">Ha 2009)<span class="_ _2"></span></span>以<span class="ff4">及<span class="_ _2"></span></span>形</div><div class="t m0 x1 h3 y17 ff1 fs0 fc0 sc0 ls0 ws0">状和拓扑优化<span class="ff2">(Seo<span class="_"> </span></span>等人<span class="ff2">)</span>。<span class="ff2">2010<span class="_ _d"> </span></span>年<span class="ff2">)</span>。</div><div class="t m0 x3 h4 y32 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x3 h3 y19 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="ff1">等几何方法采用<span class="_ _3"> </span></span>B<span class="_"> </span><span class="ff1">样条或<span class="_ _5"> </span></span>NURBS<span class="_ _d"> </span><span class="ff1">基函数表示几何和解析解。应<span class="ff4">该注意</span>的是,在这<span class="ff4">里</span>介绍</span></div><div class="t m0 x1 h3 y1a ff1 fs0 fc0 sc0 ls0 ws0">的方<span class="_ _2"></span>法<span class="_ _2"></span>中,<span class="_ _2"></span>即<span class="_ _2"></span>使<span class="_ _3"> </span><span class="ff2">B-s Pline<span class="_"> </span></span>基<span class="_ _2"></span>用于<span class="_ _2"></span>表<span class="_ _2"></span>示<span class="_ _2"></span>密度<span class="_ _2"></span>函<span class="_ _2"></span>数,<span class="_ _2"></span>表<span class="_ _2"></span>示<span class="_ _2"></span>边界<span class="_ _2"></span>的<span class="_ _2"></span>是这<span class="_ _0"></span><span class="ff4">个<span class="_ _2"></span></span>密度<span class="_ _2"></span>函<span class="_ _2"></span>数的<span class="_ _2"></span>等<span class="_ _2"></span>值线<span class="_ _2"></span>或<span class="_ _2"></span><span class="ff4">水</span></div><div class="t m0 x1 h3 y1b ff1 fs0 fc0 sc0 ls0 ws0">平集。<span class="ff4">当</span>拓<span class="_ _2"></span>扑设计问题被<span class="_ _2"></span><span class="ff4">描述</span>为<span class="ff4">垫<span class="_ _2"></span>子</span>时 材料分布<span class="_ _2"></span>问题,除了形<span class="_ _2"></span>状不规则<span class="_ _2"></span>,网格依赖是<span class="_ _2"></span><span class="ff4">另</span>一</div><div class="t m0 x1 h3 y1c ff1 fs0 fc0 sc0 ls0 ws0">种<span class="ff4">类型<span class="_ _2"></span></span>的数值<span class="_ _2"></span>不<span class="ff4">稳<span class="_ _2"></span></span>定已经<span class="_ _2"></span>观<span class="ff4">察</span>到<span class="_ _2"></span>。传统<span class="_ _2"></span>方法<span class="_ _2"></span>不消除<span class="_ _2"></span>网格依<span class="_ _2"></span>赖。 <span class="_ _2"></span>除非<span class="_ _2"></span>使用其<span class="_ _2"></span>他技术<span class="_ _1"></span><span class="ff2">(Sigmund</span></div><div class="t m0 x1 h3 y1d ff1 fs0 fc0 sc0 ls0 ws0">和<span class="_ _3"> </span><span class="ff2">P<span class="_ _7"></span>eter<span class="_ _7"></span>son<span class="_ _2"></span><span class="ff1">,<span class="_ _2"></span></span>1998<span class="_"> </span><span class="ff1">年<span class="_ _2"></span>;<span class="_ _2"></span></span>Bedds<span class="_ _2"></span> e<span class="_ _3"> </span><span class="ff1">和<span class="_ _3"> </span></span>Sigmund<span class="_ _2"></span><span class="ff1">,<span class="_ _2"></span></span>2003<span class="_ _3"> </span><span class="ff1">年<span class="_ _0"></span></span>)<span class="_ _2"></span><span class="ff1">,<span class="_ _2"></span><span class="ff4">例<span class="_ _2"></span></span>如<span class="_ _2"></span>使<span class="_ _2"></span>用<span class="_ _2"></span><span class="ff4">周<span class="_ _2"></span></span>边<span class="_ _0"></span><span class="ff4">约<span class="_ _2"></span>束<span class="_ _2"></span></span>或<span class="_ _2"></span>过<span class="_ _2"></span>滤<span class="_ _2"></span><span class="ff4">器<span class="_ _2"></span></span>。<span class="_ _2"></span>本<span class="_ _2"></span>文</span></span></div><div class="t m0 x1 h3 y1e ff1 fs0 fc0 sc0 ls0 ws0">提出了一种<span class="_ _2"></span>密度平滑方法<span class="_ _2"></span>。 获得与<span class="_ _2"></span>网格<span class="ff4">无</span>关的解<span class="_ _2"></span>。<span class="ff4">第</span>二节<span class="_ _2"></span><span class="ff4">简</span>要<span class="ff4">总</span>结了<span class="_ _e"> </span><span class="ff2">B<span class="_"> </span></span>样条单元<span class="ff4">及<span class="_ _2"></span></span>其形状</div><div class="t m0 x1 h3 y1f ff1 fs0 fc0 sc0 ls0 ws0">函数<span class="_ _2"></span><span class="ff2">.</span>优化<span class="_ _2"></span>问题在<span class="_ _2"></span><span class="ff4">第<span class="_ _3"> </span><span class="ff2">3<span class="_"> </span></span></span>节和几<span class="ff4">个<span class="_ _3"> </span><span class="ff2">2D ex<span class="_"> </span></span></span>中得到了<span class="_ _2"></span><span class="ff4">描述</span>。<span class="_ _2"></span> <span class="ff4">第四<span class="_ _2"></span></span>节给出<span class="_ _2"></span>了比较<span class="_ _2"></span>传统单<span class="_ _2"></span>元和<span class="_"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条</div><div class="t m0 x1 h3 y20 ff1 fs0 fc0 sc0 ls0 ws0">单元结果的<span class="ff4">实例<span class="ff2">.</span></span>最<span class="ff4">后</span>,<span class="ff4">第五</span>节给出了一些结论和<span class="ff4">讨</span>论。</div><div class="t m0 x1 h4 y33 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y22 ff2 fs0 fc0 sc0 ls0 ws0">2 B-<span class="ff1">样条单元</span></div><div class="t m0 x1 h4 y34 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y24 ff2 fs0 fc0 sc0 ls0 ws0">B-SPL <span class="ff1">用光滑多<span class="ff4">项</span>式函数<span class="ff4">逼近</span>给定的一<span class="ff4">组</span>点。在传统的<span class="_"> </span></span>B<span class="_ _d"> </span><span class="ff1">样条应用中,如几何<span class="ff4">造型、图</span>形化</span></div><div class="t m0 x1 h3 y25 ff1 fs0 fc0 sc0 ls0 ws0">等,<span class="_ _2"></span>方<span class="_ _2"></span>便了<span class="_ _2"></span>使<span class="_ _2"></span>用。<span class="_ _2"></span> <span class="_ _0"></span><span class="ff2">Xpress B<span class="_ _3"> </span></span>样<span class="_ _2"></span>条<span class="_ _2"></span>基函<span class="_ _2"></span>数<span class="_ _2"></span>和<span class="_ _2"></span><span class="ff4">递<span class="_ _2"></span>推公<span class="_ _2"></span></span>式<span class="_ _2"></span><span class="ff4">逼近<span class="_ _0"></span><span class="ff2">(Farin</span></span>,<span class="_ _2"></span><span class="ff2">2002<span class="_"> </span></span>年<span class="_ _2"></span><span class="ff2">)<span class="_ _2"></span></span>。对<span class="_ _2"></span>于<span class="_ _2"></span>有限<span class="_ _2"></span>元<span class="_ _2"></span>法<span class="_ _2"></span>,</div><div class="t m0 x1 h3 y26 ff1 fs0 fc0 sc0 ls0 ws0">对于<span class="_ _5"> </span><span class="ff2">B<span class="_"> </span></span>样条曲线,<span class="ff4">宜</span>采<span class="_ _2"></span>用多<span class="ff4">项</span>式形状<span class="_ _2"></span>函数。 使<span class="_ _2"></span><span class="ff4">每个</span>元素<span class="_ _2"></span>内的<span class="ff4">近似</span>可以<span class="_ _2"></span>表示为节点值<span class="_ _2"></span>的<span class="ff4">加权</span></div><div class="t m0 x1 h3 y27 ff1 fs0 fc0 sc0 ls0 ws0">和<span class="_ _2"></span>。<span class="_ _0"></span>这<span class="_ _0"></span>些<span class="_ _2"></span>元<span class="_ _0"></span>素<span class="_ _0"></span>的<span class="_ _2"></span>等<span class="_ _0"></span>参<span class="_ _0"></span>元<span class="_ _0"></span><span class="ff4">公<span class="_ _2"></span></span>式<span class="_ _0"></span>可<span class="_ _0"></span>以<span class="_ _2"></span>通<span class="_ _0"></span>过<span class="_ _0"></span><span class="ff4">导<span class="_ _0"></span></span>出<span class="_ _2"></span>形<span class="_ _0"></span>状<span class="_ _2"></span>函<span class="_ _0"></span>数<span class="_ _0"></span>来<span class="_ _0"></span><span class="ff4">实<span class="_ _2"></span>现<span class="_ _0"></span></span>。<span class="_ _0"></span> <span class="_ _1"></span><span class="ff2">r<span class="_"> </span></span>参<span class="_ _0"></span>数<span class="_ _0"></span>空<span class="_ _2"></span>间<span class="_ _0"></span>中<span class="_ _2"></span>的<span class="_ _0"></span>一<span class="_ _0"></span><span class="ff4">个<span class="_ _0"></span></span>平<span class="_ _2"></span>方<span class="_ _0"></span>元</div><div class="t m0 x1 h3 y28 ff2 fs0 fc0 sc0 ls0 ws0">(Burla<span class="_"> </span><span class="ff1">和<span class="_ _5"> </span></span>Kumar<span class="ff1">,</span>20<span class="_ _2"></span>08<span class="_"> </span><span class="ff1">年</span>)<span class="ff1">。<span class="_ _2"></span>对于<span class="_ _2"></span>网<span class="_ _2"></span>格中<span class="_ _2"></span>的<span class="ff4">每<span class="_ _2"></span>个</span>单<span class="_ _2"></span>元,<span class="_ _2"></span>定义<span class="_ _2"></span>了一<span class="_ _2"></span><span class="ff4">个<span class="_ _2"></span>独立<span class="_ _2"></span></span>的<span class="_ _2"></span>参数<span class="_ _2"></span>空间<span class="_ _2"></span>,就<span class="_ _2"></span><span class="ff4">像</span>传</span></div><div class="t m0 x1 h3 y29 ff1 fs0 fc0 sc0 ls0 ws0">统的<span class="_ _2"></span>等<span class="_ _2"></span>参元<span class="_ _2"></span>一<span class="_ _2"></span>样。<span class="_ _2"></span>在<span class="_ _2"></span>参<span class="_ _2"></span>数中<span class="_ _2"></span> <span class="_ _2"></span>空<span class="_ _2"></span>间,<span class="_ _2"></span>元<span class="_ _2"></span>素域<span class="_ _0"></span><span class="ff4">沿<span class="_ _2"></span>每个<span class="_ _2"></span>维<span class="_ _2"></span></span>数<span class="_ _2"></span>是<span class="_ _0"></span><span class="ff2">[<span class="ff3">−</span>1<span class="_ _2"></span></span>,<span class="_ _2"></span><span class="ff2">1]</span>。<span class="_ _2"></span>对<span class="_ _2"></span>于<span class="_ _2"></span>一<span class="ff4">维<span class="_ _2"></span>情<span class="_ _2"></span>况<span class="_ _2"></span></span>,可<span class="_ _2"></span>以<span class="_ _2"></span>利</div><div class="t m0 x1 h3 y2a ff1 fs0 fc0 sc0 ls0 ws0">用<span class="_ _5"> </span><span class="ff2">AP<span class="_"> </span></span>的<span class="_ _2"></span>连续<span class="_ _2"></span>性<span class="_ _2"></span>条<span class="_ _2"></span>件<span class="_ _2"></span><span class="ff4">导</span>出<span class="_ _2"></span>对<span class="_ _2"></span>应于<span class="_ _2"></span>均<span class="_ _2"></span>匀<span class="_ _3"> </span><span class="ff2">B<span class="_"> </span></span>样<span class="_ _2"></span>条<span class="_ _2"></span>的形<span class="_ _2"></span>状<span class="_ _2"></span>函数<span class="_ _2"></span>。<span class="_ _2"></span> <span class="_ _2"></span>在节<span class="_ _2"></span>点<span class="_ _2"></span><span class="ff4">附<span class="_ _2"></span>近<span class="_ _2"></span></span>。<span class="_ _2"></span>如果<span class="_ _2"></span><span class="ff4">我<span class="_ _2"></span></span>们<span class="_ _2"></span>假设<span class="_ _2"></span>网<span class="_ _2"></span>格</div><div class="t m0 x1 h3 y2b ff1 fs0 fc0 sc0 ls0 ws0">中的<span class="_ _2"></span>元素<span class="_ _2"></span>是<span class="_ _2"></span><span class="ff4">矩</span>形<span class="_ _2"></span>和均<span class="_ _2"></span>匀的<span class="_ _2"></span>,或<span class="_ _2"></span>者<span class="ff4">换<span class="_ _2"></span>句话<span class="_ _2"></span>说<span class="_ _2"></span></span>,如<span class="_ _2"></span>果网<span class="_ _2"></span>格是<span class="_ _2"></span>结构<span class="_ _2"></span>化<span class="_ _2"></span>的,<span class="_ _2"></span><span class="ff4">那么<span class="_ _2"></span></span>这些<span class="_ _2"></span>元素<span class="_ _2"></span>可<span class="_ _2"></span>以<span class="ff4">很<span class="_ _2"></span>容</span></div><div class="t m0 x1 h3 y2c ff4 fs0 fc0 sc0 ls0 ws0">易地<span class="_ _2"></span>扩<span class="ff1">展<span class="_ _2"></span>到<span class="_ _2"></span></span>更<span class="ff1">高<span class="_ _2"></span>的</span>维<span class="_ _2"></span><span class="ff1">度。<span class="_ _0"></span><span class="ff2">WH <span class="_ _2"></span>En<span class="_"> </span></span>位移<span class="_ _2"></span>用<span class="_ _5"> </span><span class="ff2">B<span class="_"> </span></span>样条<span class="_ _2"></span></span>逼<span class="_ _2"></span>近<span class="ff1">表<span class="_ _2"></span>示,<span class="_ _2"></span>节点<span class="_ _2"></span>值不<span class="_ _2"></span>对应<span class="_ _2"></span>于节<span class="_ _2"></span>点的<span class="_ _2"></span></span>实<span class="_ _2"></span>际<span class="_ _2"></span><span class="ff1">位移<span class="_ _b"></span>,</span></div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/62676cae4f8811599ee8f495/bg3.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2d ff1 fs0 fc0 sc0 ls0 ws0">因为<span class="_ _5"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条不<span class="ff4">插</span>值节点值。</div><div class="t m0 x4 h4 y35 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y14 ff4 fs0 fc0 sc0 ls0 ws0">图<span class="_ _5"> </span><span class="ff2">1 <span class="ff1">给出了用<span class="_ _5"> </span></span>C2<span class="_"> </span><span class="ff1">连续的一</span></span>维<span class="ff1">三次<span class="_ _5"> </span><span class="ff2">B<span class="_"> </span></span>样条</span>逼近<span class="ff1">的三次<span class="_ _5"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条</span>图<span class="_ _5"> </span><span class="ff2">1<span class="_"> </span><span class="ff1">函数</span>.<span class="ff1">如</span></span>图所<span class="ff1">示,与传统的有</span></div><div class="t m0 x1 h3 y15 ff1 fs0 fc0 sc0 ls0 ws0">限元<span class="_ _2"></span><span class="ff4">插</span>值<span class="_ _2"></span>不同<span class="_ _2"></span>,<span class="_ _2"></span><span class="ff2">B<span class="_"> </span></span>样条 <span class="_ _2"></span><span class="ff2">E<span class="_"> </span><span class="ff4">近似<span class="_ _2"></span></span></span>不通<span class="_ _2"></span>过节<span class="_ _2"></span>点值<span class="_ _2"></span>。元<span class="_ _2"></span>素<span class="_ _3"> </span><span class="ff2">E2<span class="_"> </span></span>是在<span class="_ _2"></span><span class="ff4">顶</span>点<span class="_ _3"> </span><span class="ff2">3<span class="_"> </span></span>和<span class="_ _5"> </span><span class="ff2">4<span class="_"> </span></span>之间<span class="_ _2"></span>定义<span class="_ _2"></span>的,<span class="_ _2"></span><span class="ff4">但</span>是<span class="_ _2"></span>定</div><div class="t m0 x1 h3 y16 ff1 fs0 fc0 sc0 ls0 ws0">义在<span class="_ _3"> </span><span class="ff2">E2<span class="_"> </span></span>上的<span class="ff4">近<span class="_ _2"></span>似<span class="_ _2"></span><span class="ff2">(<span class="_ _2"></span></span></span>称为<span class="_ _2"></span>它的<span class="_ _2"></span><span class="ff4">跨</span>度<span class="_ _0"></span><span class="ff2">)<span class="_ _2"></span></span>是<span class="ff4">由<span class="_ _3"> </span><span class="ff2">NOD<span class="_"> </span></span>控</span>制的<span class="_ _2"></span>。 <span class="_ _2"></span>作为<span class="_ _2"></span>其<span class="_ _2"></span><span class="ff4">支持<span class="_ _2"></span></span>节点<span class="_ _2"></span>的<span class="_ _2"></span><span class="ff4">四个<span class="_ _2"></span></span>节点<span class="_ _b"></span><span class="ff2">(<span class="_ _2"></span></span>节点<span class="_ _3"> </span><span class="ff2">2<span class="_"> </span></span>到</div><div class="t m0 x1 h3 y17 ff1 fs0 fc0 sc0 ls0 ws0">节点<span class="_ _3"> </span><span class="ff2">5)</span>的<span class="_ _5"> </span><span class="ff2">al<span class="_"> </span></span>值<span class="_ _2"></span>。利<span class="_ _2"></span>用<span class="ff4">相<span class="_ _2"></span>邻</span>单<span class="_ _2"></span>元间<span class="_ _2"></span>的连<span class="_ _2"></span>续<span class="_ _2"></span>性要<span class="_ _2"></span><span class="ff4">求<span class="_ _2"></span></span>,可<span class="_ _2"></span>以<span class="ff4">导<span class="_ _2"></span></span>出基<span class="_ _2"></span>函数<span class="_ _2"></span>的多<span class="_ _2"></span><span class="ff4">项<span class="_ _2"></span></span>式表<span class="_ _2"></span><span class="ff4">达</span>式<span class="_ _2"></span>。一<span class="_ _2"></span><span class="ff4">个<span class="_ _2"></span></span> <span class="_ _0"></span><span class="ff2">K</span></div><div class="t m0 x1 h3 y18 ff4 fs0 fc0 sc0 ls0 ws0">阶<span class="_ _5"> </span><span class="ff2">B<span class="_ _5"> </span><span class="ff1">样条具有<span class="_ _5"> </span></span>k1<span class="_"> </span></span>支撑<span class="ff1">节点,其中一些节点位于单元外<span class="_ _2"></span><span class="ff2">.</span></span>导<span class="ff1">出了一</span>维<span class="ff1">二次<span class="_ _5"> </span><span class="ff2">B<span class="_"> </span></span>样条和三次<span class="_ _5"> </span><span class="ff2">B<span class="_"> </span></span>样条</span></div><div class="t m0 x1 h3 y19 ff1 fs0 fc0 sc0 ls0 ws0">的基函数<span class="ff2">(Burla<span class="_ _5"> </span></span>和<span class="_ _5"> </span><span class="ff2">Kuma)</span>。 <span class="ff2">(2008<span class="_ _5"> </span></span>年<span class="_ _5"> </span><span class="ff2">r)</span>。二次<span class="_ _5"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条单元: </div><div class="t m0 x5 h4 y36 ff2 fs0 fc0 sc0 ls0 ws0"> </div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/62676cae4f8811599ee8f495/bg4.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h4 y37 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y2 ff2 fs0 fc0 sc0 ls0 ws0"> <span class="ff1">这些<span class="_ _2"></span>基函数构成单<span class="_ _2"></span>位的<span class="ff4">划</span>分<span class="_ _2"></span>,是<span class="ff4">近似</span>解<span class="ff4">收<span class="_ _2"></span>敛</span>的一<span class="ff4">个重<span class="_ _2"></span></span>要性<span class="ff4">质</span>。单<span class="_ _2"></span>元内的<span class="ff4">近似</span>是<span class="_ _2"></span>这些形状函</span></div><div class="t m0 x1 h3 y2e ff1 fs0 fc0 sc0 ls0 ws0">数的<span class="ff4">加权</span>和。 可以表示为:</div><div class="t m0 x6 h4 y38 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y8 ff1 fs0 fc0 sc0 ls0 ws0">其<span class="_ _2"></span>中,<span class="_ _0"></span><span class="ff4">权重<span class="_ _3"> </span><span class="ff2">u<span class="_ _2"></span> i<span class="_"> </span></span></span>被<span class="_ _2"></span>称<span class="_ _2"></span>为<span class="_ _2"></span>节<span class="_ _2"></span>点<span class="_ _2"></span>值<span class="_ _2"></span>,<span class="_ _2"></span><span class="ff4">尽<span class="_ _2"></span>管<span class="_ _2"></span></span>在<span class="_ _2"></span>传统<span class="_ _2"></span>的<span class="_ _2"></span>几<span class="_ _2"></span>何<span class="_ _2"></span><span class="ff4">建<span class="_ _2"></span></span>模<span class="_ _2"></span>文<span class="_ _2"></span><span class="ff4">献<span class="_ _2"></span></span>中<span class="_ _2"></span>它<span class="_ _2"></span>们<span class="_ _2"></span>是<span class="_ _c"> </span><span class="ff2">Calle<span class="_ _2"></span></span>。<span class="_ _2"></span> <span class="_ _2"></span><span class="ff2">d<span class="_"> </span><span class="ff4">控<span class="_ _2"></span></span></span>制<span class="_ _2"></span>点<span class="_ _2"></span>。<span class="ff4">由</span></div><div class="t m0 x1 h3 y9 ff1 fs0 fc0 sc0 ls0 ws0">于<span class="_ _2"></span>形状<span class="_ _2"></span>函<span class="_ _2"></span>数<span class="_ _3"> </span><span class="ff2">Ni<span class="_"> </span></span>在<span class="_ _2"></span>节<span class="_ _2"></span>点<span class="_ _3"> </span><span class="ff2">I<span class="_"> </span><span class="ff4">没</span></span>有<span class="_ _2"></span>单<span class="_ _2"></span>位<span class="_ _2"></span>值<span class="_ _2"></span>,<span class="_ _2"></span><span class="ff4">该<span class="_ _2"></span></span>节<span class="_ _2"></span>点<span class="_ _2"></span>的<span class="_ _2"></span><span class="ff4">逼近<span class="_ _0"></span></span>值不<span class="_ _2"></span>等<span class="_ _2"></span>于<span class="_ _3"> </span><span class="ff2">ui<span class="_ _2"></span></span>。<span class="_ _2"></span><span class="ff2">B<span class="_"> </span></span>样<span class="_ _2"></span>条<span class="_ _2"></span>基<span class="_ _2"></span>函<span class="_ _2"></span>数<span class="_ _2"></span>具<span class="_ _2"></span>有<span class="_ _2"></span><span class="ff4">紧<span class="_ _2"></span>凑</span>的</div><div class="t m0 x1 h3 ya ff4 fs0 fc0 sc0 ls0 ws0">支撑<span class="ff1">和</span>引<span class="ff1">线<span class="_ _2"></span>。 </span>带<span class="ff1">状</span>刚<span class="_ _2"></span><span class="ff1">度</span>矩阵<span class="ff1">。</span>但<span class="ff1">是<span class="_ _2"></span>,</span>由<span class="ff1">于元素的<span class="_ _2"></span>某些节点<span class="_ _2"></span>位于元素之外<span class="_ _2"></span>,因此它比传<span class="_ _2"></span>统元</span></div><div class="t m0 x1 h3 yb ff1 fs0 fc0 sc0 ls0 ws0">素具有<span class="ff4">更广泛</span>的<span class="ff4">支持</span>。</div><div class="t m0 x1 h4 y39 ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y18 ff4 fs0 fc0 sc0 ls0 ws0">图<span class="_ _5"> </span><span class="ff2">2<span class="_"> </span></span>显<span class="ff1">示了<span class="_ _2"></span>二</span>维<span class="ff1">二<span class="_ _2"></span>次<span class="_ _3"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条和<span class="_ _2"></span>三次<span class="_ _3"> </span><span class="ff2">B<span class="_"> </span></span>样条。 元<span class="_ _2"></span>素</span>及<span class="_ _2"></span><span class="ff1">其</span>支持<span class="_ _2"></span><span class="ff1">节点。<span class="_ _2"></span>利用一<span class="_ _2"></span></span>维<span class="ff1">二<span class="_ _2"></span>次基函<span class="_ _2"></span>数的<span class="_ _2"></span></span>乘</div><div class="t m0 x1 h3 y19 ff4 fs0 fc0 sc0 ls0 ws0">积<span class="_ _2"></span><span class="ff1">,可<span class="_ _2"></span>以<span class="_ _2"></span>构<span class="_ _2"></span></span>造<span class="_ _2"></span>双<span class="_ _2"></span><span class="ff1">二<span class="_ _2"></span>次<span class="_ _c"> </span><span class="ff2">B<span class="_"> </span></span>样条<span class="_ _2"></span>单<span class="_ _2"></span>元<span class="_ _2"></span>的<span class="_ _2"></span>二<span class="_ _2"></span></span>维<span class="_ _2"></span><span class="ff1">基<span class="_ _2"></span>函<span class="_ _2"></span>数<span class="_ _2"></span>。在<span class="_ _0"></span>这种<span class="_ _0"></span></span>情况<span class="_ _0"></span><span class="ff1">下,<span class="_ _2"></span>有<span class="_"> </span><span class="ff2">9<span class="_"> </span></span></span>个支<span class="_ _2"></span>持<span class="_ _2"></span><span class="ff1"> <span class="_ _0"></span><span class="ff2">ODES<span class="_"> </span></span>和元<span class="_ _2"></span>素</span></div><div class="t m0 x1 h3 y1a ff1 fs0 fc0 sc0 ls0 ws0">在这<span class="ff4">里</span>被称为<span class="_ _3"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条<span class="_ _5"> </span><span class="ff2">9N<span class="_ _5"> </span></span>元素。同样<span class="ff4">地</span>,二<span class="ff4">维</span>三次<span class="_ _3"> </span><span class="ff2">B<span class="_"> </span></span>样条单元被构<span class="ff4">造</span>为一<span class="ff4">维</span>三次<span class="_ _3"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条函数</div><div class="t m0 x1 h3 y1b ff1 fs0 fc0 sc0 ls0 ws0">的<span class="ff4">乘积<span class="ff2">.</span></span>在这种<span class="ff4">情况</span>下,有<span class="_ _5"> </span><span class="ff2">16<span class="_ _5"> </span><span class="ff4">个支持否</span></span>。 <span class="ff2">DES<span class="_ _5"> </span></span>和元素在这<span class="ff4">里</span>被称为<span class="_ _5"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条<span class="_ _5"> </span><span class="ff2">16N</span>。</div><div class="t m0 x1 h3 y1c ff1 fs0 fc0 sc0 ls0 ws0">二次<span class="_ _5"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条单元和三次<span class="_ _5"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条单元的形状函数<span class="ff4">简捷地</span>表示为:</div><div class="t m0 x1 h4 y3a ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x7 h4 y3b ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y22 ff1 fs0 fc0 sc0 ls0 ws0">二次和高<span class="ff4">阶<span class="_ _5"> </span><span class="ff2">B<span class="_"> </span></span></span>样条单元在单元间<span class="ff4">产生</span>连续的应力和应变<span class="_ _2"></span><span class="ff2">.</span>如果密度 利用<span class="_ _3"> </span><span class="ff2">B<span class="_ _5"> </span></span>样条形状函数对拓</div><div class="t m0 x1 h3 y23 ff1 fs0 fc0 sc0 ls0 ws0">扑<span class="_ _2"></span>优化<span class="_ _2"></span>函<span class="_ _2"></span>数<span class="_ _2"></span>进<span class="_ _2"></span>行<span class="_ _2"></span><span class="ff4">逼<span class="_ _2"></span>近<span class="_ _2"></span></span>,<span class="_ _2"></span>得<span class="_ _2"></span>到<span class="_ _2"></span>的<span class="_ _2"></span>边界<span class="_ _0"></span>为二<span class="_ _2"></span>次<span class="_ _2"></span>连<span class="_ _2"></span>续<span class="_ _2"></span>的<span class="_ _2"></span><span class="ff4">切<span class="_ _2"></span></span>线<span class="_ _2"></span>边<span class="_ _2"></span>界<span class="_ _2"></span>和<span class="_ _2"></span>三<span class="_ _2"></span>次<span class="_ _3"> </span><span class="ff2">B-s<span class="_"> </span></span>的曲<span class="_ _2"></span>率<span class="_ _2"></span>连<span class="_ _2"></span>续<span class="_ _2"></span>的<span class="_ _2"></span>边<span class="_ _2"></span>界<span class="_ _2"></span>线<span class="_ _2"></span>。</div><div class="t m0 x1 h3 y24 ff4 fs0 fc0 sc0 ls0 ws0">当<span class="_ _2"></span><span class="ff1">节点<span class="_ _2"></span>处<span class="_ _2"></span>的<span class="_ _2"></span></span>逼<span class="_ _2"></span>近<span class="_ _2"></span><span class="ff1">值<span class="_ _2"></span>与<span class="_ _2"></span>节<span class="_ _2"></span>点<span class="_ _2"></span>值<span class="_ _2"></span>不<span class="_ _2"></span></span>相<span class="_ _2"></span><span class="ff1">等<span class="_ _2"></span>时,<span class="_ _2"></span>传<span class="_ _2"></span>统<span class="_ _2"></span>的<span class="_ _2"></span>位<span class="_ _2"></span>移<span class="_ _2"></span>边<span class="_ _2"></span>界<span class="_ _2"></span>条<span class="_ _2"></span>件<span class="_ _2"></span></span>求<span class="_ _2"></span><span class="ff1">解<span class="_ _2"></span>方<span class="_ _2"></span>法不<span class="_ _0"></span></span>起<span class="ff1">作<span class="_ _2"></span>用<span class="_ _2"></span>。<span class="_ _2"></span></span>例<span class="_ _2"></span><span class="ff1">如<span class="_ _2"></span>,<span class="_ _d"> </span><span class="ff2">d</span></span></div><div class="t m0 x1 h3 y25 ff1 fs0 fc0 sc0 ls0 ws0">的值 <span class="ff4">沿<span class="_ _2"></span></span>边界的位<span class="ff4">置</span>不<span class="_ _2"></span>能通过分<span class="ff4">配</span>等<span class="_ _2"></span>于<span class="ff4">指</span>定值的节<span class="_ _2"></span>点值来设<span class="_ _2"></span><span class="ff4">置</span>为<span class="ff4">指</span>定值。<span class="_ _2"></span>本文采用<span class="ff4">隐</span>式<span class="_ _2"></span>边界</div><div class="t m0 x1 h3 y26 ff1 fs0 fc0 sc0 ls0 ws0">方法<span class="_ _2"></span><span class="ff2">(Burla<span class="_"> </span></span>和<span class="_ _5"> </span><span class="ff2">Kumar</span>,<span class="ff2">2008)</span>。<span class="_ _2"></span> 用于<span class="_ _2"></span><span class="ff4">指</span>定边<span class="_ _2"></span>界条件<span class="_ _2"></span>。这种<span class="_ _2"></span>方法<span class="_ _2"></span>即使边<span class="_ _2"></span>界上<span class="_ _2"></span><span class="ff4">没</span>有节<span class="_ _2"></span>点,<span class="ff4">也<span class="_ _2"></span></span>可以</div><div class="t m0 x1 h3 y27 ff4 fs0 fc0 sc0 ls0 ws0">施加<span class="ff1">边界条件。下文对这一</span>办<span class="ff1">法作了</span>简<span class="ff1">要概</span>述<span class="ff1">。</span></div><div class="t m0 x1 h3 y28 ff4 fs0 fc0 sc0 ls0 ws0">隐<span class="ff1">边界 方法构</span>造<span class="ff1">位移场的</span>试<span class="ff1">解结构为</span></div><div class="t m0 x8 h4 y3c ff2 fs0 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h3 y2b ff1 fs0 fc0 sc0 ls0 ws0">在这<span class="ff4">个</span>解结构中,<span class="ff3">{ug}</span>是一<span class="ff4">个</span>网格变量,它是用<span class="_ _5"> </span><span class="ff3">B<span class="_ _5"> </span></span>样条函数表示的网格变量,</div><div class="t m0 x1 h3 y2c ff3 fs0 fc0 sc0 ls0 ws0">{UA}<span class="ff1">是边值函数,它是构<span class="ff4">造</span>的向量场,使得它在边界处具有<span class="ff4">指</span>定的位移值。</span></div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>