• TvO
    了解作者
  • matlab
    开发工具
  • 152KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 1
    下载次数
  • 2019-06-05 16:42
    上传日期
图像追踪TLD 视频图像识别 数字图像处理
TLD.zip
  • TLD
  • tld
  • tldGeneratePositiveData.m
    1.9KB
  • tldTrack.m
    1.4KB
  • tldPatch2Pattern.m
    849B
  • tldGenerateNegativeData.m
    1.2KB
  • tldExample.m
    2.4KB
  • tldGetPattern_fast.m
    1.2KB
  • tldUpdateDetectorConservative.m
    3.1KB
  • tldLearning.m
    2.4KB
  • tldInitFirstFrame.m
    1.3KB
  • tldInitSource.m
    974B
  • tldTrainNN.m
    1.7KB
  • tldInitDetector.m
    1.6KB
  • tldMinMaxVar.m
    787B
  • tldGeneratePositiveData_single_bbox.m
    1.1KB
  • tldDemo.m
    5.4KB
  • tldGenerateFeatures.m
    1.5KB
  • tldTrack_occlusion.2.m
    2.2KB
  • tldTrack_occlusion.m
    3.4KB
  • tldNN.m
    2.2KB
  • tldUpdateDetector.m
    2.7KB
  • tldGenerateAprioriData.m
    1.2KB
  • tldGetPattern.m
    1.3KB
  • tldDisplay.m
    796B
  • tldInit.m
    4.1KB
  • tldProcessFrame.m
    3.2KB
  • tldDetection.m
    2.9KB
  • tldSaveImages.m
    889B
  • tldLoadAprioriImages.m
    872B
  • tldTracking.m
    2.3KB
  • tldSplitNegativeData.m
    997B
  • mex
  • lk.mexw64.manifest
    618B
  • vs2008.vcproj
    3.7KB
  • distance.mexw32
    8.5KB
  • lk.mexw64.map
    0B
  • fern.cpp
    11.1KB
  • linkagemex.mexw32
    28.5KB
  • warp.mexw32
    8.5KB
  • distance.cpp
    2.3KB
  • ii.cpp
    1.3KB
  • warp.cpp
    4.4KB
  • lk.cpp
    6.2KB
  • tld.h
    869B
  • fern.mexw32
    24KB
  • vs2008.suo
    16.5KB
  • bb_overlap.mexw32
    8.5KB
  • tld.obj
    1.8KB
  • tld.cpp
    1.7KB
  • lk.mexw32
    10.5KB
  • lk.backup.cpp
    3.1KB
  • linkagemex.cpp
    21KB
  • bb_overlap.cpp
    3.4KB
  • ii2.cpp
    1.3KB
  • vs2008.vcproj.XPS1330.Zdenek.user
    1.3KB
  • vs2008.sln
    857B
  • bbox
  • bb_rescale_relative.m
    912B
  • bb_burn.m
    1.1KB
  • bb_draw.m
    1.1KB
  • bb_center.m
    808B
  • bb_cluster.m
    1.3KB
  • bb_click_move.m
    862B
  • bb_click.m
    1.1KB
  • bb_shift_absolute.m
    846B
  • bb_get_similar.m
    784B
  • bb_rescale_absolute.m
    813B
  • bb_height.m
    741B
  • bb_square.m
    903B
  • bb_distance.m
    826B
  • bb_points.m
    1.3KB
  • bb_cluster_confidence.m
    1.5KB
  • bb_size.m
    745B
  • bb_scan.m
    2KB
  • bb_isin.m
    803B
  • bb_predict.m
    1KB
  • bb_isdef.m
    732B
  • bb_correct.m
    1.3KB
  • bb_shift_relative.m
    932B
  • bb_width.m
    740B
  • bb_isout.m
    808B
  • bb_hull.m
    790B
  • bb_normalize.m
    980B
  • bb_scale.m
    804B
  • utils
  • randvalues.m
    953B
  • uniquecount.m
    859B
  • pseudorandom_indexes.m
    754B
  • maximize.m
    688B
  • n2s.m
    754B
  • idx2id.m
    750B
  • mat2img.m
    1.3KB
  • ntuples.m
    974B
  • repcel.m
    791B
  • median2.m
    752B
  • vnormp.m
    755B
  • img
  • img_patch.m
    2.4KB
  • img_alloc.m
    1.1KB
内容介绍
https://github.com/zk00006/OpenTLD TLD (aka Predator) ---------------------------------------------------------------------------- TLD is an algorithm for tracking of unknown objects in unconstrained video streams. The object of interest is defined by a bounding box in a single frame. TLD simultaneously tracks the object, learns its appearance and detects it whenever it appears in the video. 1. License This source code is released under the GPL license version 3.0. For alternative licensing options contact the main author: zdenek.kalal@gmail.com. 2. Project website You can find more information about TLD at: http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html. This includes the description of TLD, links to research papers, posters and the licensing options. 3. Wiki Many questions regarding TLD are already answered at the following wiki: https://github.com/zk00006/OpenTLD/wiki. These questions include installation and common errors. Make sure to check the wiki first. 4. Discussion group If you do not find your answer in the wiki, ask the question directly at the following discussion group: http://groups.google.com/group/opentld. There are currently around 250 participants and it is likely you will get the answer soon. 5. Feedback Predator learns from its errors; let us do the same in this community! Therefore, if you get an answer that was not covered in the wiki, please update the wiki so that other people do not have to face the same problem. The wiki is freely editable at the moment. 6. Citations In case you use TLD in an academic work, please cite the following paper: @article{Kalal2010, author = {Kalal, Z and Matas, J and Mikolajczyk, K}, journal = {Conference on Computer Vision and Pattern Recognition}, title = {{P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints}}, year = {2010} } @article{Kalal2012, author = {Kalal, Z and Mikolajczyk, K and Matas, J}, journal = {Pattern Analysis and Machine Intelligence}, title {Tracking-learning-detection}, year = {2012} } ---------------------------------------------------------------------------- (c) 2011 Zdenek Kalal, zdenek.kalal@gmail.com
评论
    相关推荐
    • TLD-original-text-translation.rar
      TLD的算法原文翻译,详细阐述了检测学习跟踪三部分内容。
    • 译文_High-Speed Tracking with Kernelized Correlation Filters.rar
      大多数现代跟踪器的核心...KCF和DCF在50个视频基准测试中都优于诸如strike或tld之类的顶级追踪器,尽管它们以每秒数百帧的速度运行,并且在几行代码中实现(算法1)。为了鼓励进一步的发展,我们的跟踪框架是开源的。
    • 深度学习在视频目标跟踪中的应用进展与展望.rar
      重点介绍了目前发展迅猛的深度学习方法, 包括堆叠自编码器、卷积神经网络等在视频目标跟踪中的最新具体应用情况并进行了深入分析与总结. 最后对深度学习方法在视频目标跟踪中的未来应用与发展方向进行了展望.
    • 3D机房.zip
      不多说,上干货 ! 风靡的3D机房具体实现,目前主要提供有以下管理功能:设备资产管理、机房空间统计、机房功耗统计、机房载重统计、场景可视化温度云、机房高级搜索、机房设备空间搜索、机房动环监控、机房链路管理。
    • 720度万能全景开发包flash+AS3+3d+源文件+源代码.rar
      flash全景开源代码,只要换下图片就是自己的作品!! flash全景开源代码,flash3D学习案例,pv3d很好的例子
    • Gait-Tracking-With-x-IMU-master.zip
      x-IMU matlab zupt惯性室内定位算法
    • 上汽软件大赛提交作品.rar
      小车在制定道路上自动驾驶,自动识别车道线等标识。
    • 倒车入库.rar
      主要用来仿真侧方位停车过程中的运动轨迹,为自动泊车做理论基础。
    • 雨流计数法.rar
      可通过matlab 实现雨滴计数法,可直接调用
    • AHRSupdate.rar
      九轴陀螺仪数据融合,用于步态识别、游戏等应用场合