07279970基于MATLAB自适应滤波的心电图去噪.zip

  • PUDN用户
    了解作者
  • matlab
    开发工具
  • 269KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 10 积分
    下载积分
  • 21
    下载次数
  • 2019-07-16 13:27
    上传日期
利用matlab自适应滤波器实现心电信号的去噪 自适应滤波器 心电图
07279970基于MATLAB自适应滤波的心电图去噪.zip
  • 07279970.pdf
    315.3KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6250e5a16caf5961922558aa/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6250e5a16caf5961922558aa/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">De-Noising <span class="_ _0"></span>of Electroc<span class="_ _0"></span>ardiogram<span class="_ _0"></span> (ECG) <span class="_ _0"></span>with Adaptive F<span class="_ _0"></span>ilte<span class="_ _0"></span>r Usin<span class="_ _0"></span>g MATLAB </div><div class="t m0 x2 h3 y2 ff2 fs1 fc0 sc0 ls1 ws1">GAURAV MAKWANA</div><div class="t m0 x3 h4 y3 ff2 fs2 fc0 sc0 ls2 ws2">Department of Electronics and <span class="_ _1"></span>communication</div><div class="c x4 y4 w2 h5"><div class="t m0 x5 h4 y5 ff2 fs2 fc0 sc0 ls3 ws3">Engineering, </div></div><div class="t m0 x6 h4 y6 ff2 fs2 fc0 sc0 ls4 ws4">MANIT, Bhopal(M.P.), INDIA</div><div class="t m0 x7 h4 y7 ff2 fs2 fc0 sc0 ls5 ws3">Email: <span class="fc1 ls6">gau<span class="_ _0"></span>ravm<span class="_ _0"></span>ak<span class="_ _0"></span>wan<span class="_ _0"></span>a@gm<span class="_ _0"></span>ai<span class="_ _0"></span>l.c<span class="_ _0"></span>om</span></div><div class="t m0 x8 h3 y2 ff2 fs1 fc0 sc0 ls7 ws5">LALI<span class="_ _0"></span>TA<span class="_ _0"></span> GU<span class="_ _0"></span>PTA</div><div class="c x9 y4 w3 h5"><div class="t m0 xa h4 y5 ff2 fs2 fc0 sc0 ls8 ws6">Department of Electr</div></div><div class="t m0 xb h4 y3 ff2 fs2 fc0 sc0 ls9 ws2">onics and communication</div><div class="c x9 y4 w3 h5"><div class="t m0 xc h4 y5 ff2 fs2 fc0 sc0 ls3 ws3">Engineering,</div></div><div class="t m0 xd h4 y6 ff2 fs2 fc0 sc0 lsa ws7">MANIT,<span class="_"> </span>Bhopal(M.P.), INDIA</div><div class="t m0 xd h4 y7 ff2 fs2 fc0 sc0 ls5 ws3">Email: <span class="fc1 lsb">gupta.lalita@gmail.co<span class="_ _1"></span>m</span></div><div class="t m0 xe h6 y8 ff3 fs3 fc0 sc0 ls5 ws3">Abstract<span class="ff1 lsc ws8">- Problem associated with b<span class="_ _0"></span>iomedical signal like ECG </span></div><div class="t m0 xe h6 y9 ff1 fs3 fc0 sc0 lsd ws9">is to extract noise cause by <span class="_ _1"></span>high frequency interference,<span class="_ _1"></span> </div><div class="t m0 xe h6 ya ff1 fs3 fc0 sc0 lse wsa">electromagnetic fields, pow<span class="_ _1"></span>er line interference and body </div><div class="t m0 xe h6 yb ff1 fs3 fc0 sc0 lse wsb">movement. It is difficult to apply<span class="_ _1"></span> filters with fixed coefficients </div><div class="t m0 xe h6 yc ff1 fs3 fc0 sc0 ls5 wsc">to reduce random noises. Adaptive filter tec<span class="_ _1"></span>hnique is required </div><div class="t m0 xe h6 yd ff1 fs3 fc0 sc0 lsf wsd">to overcome this problem. This paper presents an innovative </div><div class="t m0 xe h6 ye ff1 fs3 fc0 sc0 lsf wse">technique for esti<span class="_ _1"></span>mation of ECG w<span class="_ _1"></span>aves using Adaptive Noise </div><div class="t m0 xe h6 yf ff1 fs3 fc0 sc0 ls10 wsf">Cancellation (ANC) algorithm,<span class="_ _1"></span> widrow-hoff<span class="_"> </span>LMS algorithm. </div><div class="t m0 xe h6 y10 ff1 fs3 fc0 sc0 ls11 ws10">Comparison<span class="_ _0"></span>s are made for original signa<span class="_ _0"></span>l to noisy. </div><div class="t m0 xe h6 y11 ff1 fs3 fc0 sc0 ls12 ws11">Simulations are done for random noise pattern in <span class="_ _1"></span>matlab.</div><div class="t m0 xe h6 y12 ff3 fs3 fc0 sc0 ls13 ws3">Keywords- <span class="_ _2"> </span><span class="ff1 ls14 ws12">ECG,<span class="_"> </span>Adaptive filtering, random no<span class="_ _0"></span>ise, LMS </span></div><div class="t m0 xe h6 y13 ff1 fs3 fc0 sc0 ls15 ws13">algorithm , MATLAB </div><div class="t m0 xf h4 y14 ff2 fs2 fc0 sc0 ls16 ws3">I.<span class="_ _3"> </span><span class="ff1 ls17">INTRODUCT<span class="_ _1"></span>ION</span></div><div class="t m0 x1 h4 y15 ff2 fs2 fc0 sc0 ls18 ws14">Electrocardiogram (ECG) is a nearly periodic sign<span class="_ _0"></span>al that </div><div class="t m0 xe h4 y16 ff2 fs2 fc0 sc0 ls19 ws15">reflects the activity of the heart. A lot of in<span class="_ _1"></span>formation on the </div><div class="t m0 xe h4 y17 ff2 fs2 fc0 sc0 ls19 ws16">normal and pathological physi<span class="ls1a ws17">ology of h<span class="_ _0"></span>eart can be </span></div><div class="t m0 xe h4 y18 ff2 fs2 fc0 sc0 ls1b ws18">obtained from ECG. However, the ECG signals being non<span class="_ _1"></span>-</div><div class="t m0 xe h4 y19 ff2 fs2 fc0 sc0 ls1c ws19">stationary in nat<span class="_ _1"></span>ure, it is very difficult to <span class="_ _1"></span>visually anal<span class="_ _1"></span>yze </div><div class="t m0 xe h4 y1a ff2 fs2 fc0 sc0 ls1d ws1a">them. Thus the need is there for compu<span class="_ _0"></span>ter based methods </div><div class="t m0 xe h4 y1b ff2 fs2 fc0 sc0 ls1e ws1b">for ECG signal Analysis.<span class="_ _1"></span> </div><div class="t m0 x1 h4 y1c ff2 fs2 fc0 sc0 ls1f ws1c">The heart is divided into 4 ch<span class="_ _0"></span>a<span class="_ _1"></span>mbers as sh<span class="_ _0"></span>own in Fig.1. </div><div class="t m0 xe h4 y1d ff2 fs2 fc0 sc0 ls20 ws1d">The tw<span class="_ _0"></span>o upper cham<span class="_ _0"></span>bers th<span class="ls1f ws1e">e left and righ<span class="_ _0"></span>t atria are </span></div><div class="t m0 xe h4 y1e ff2 fs2 fc0 sc0 ls19 ws1f">synchronized to act toget<span class="_ _1"></span>her. Similarly, the two lower </div><div class="t m0 xe h4 y1f ff2 fs2 fc0 sc0 ls19 ws19">chambers the ventricles operate together. The right atrium </div><div class="t m0 xe h4 y20 ff2 fs2 fc0 sc0 ls21 ws20">receives the blood f<span class="_ _0"></span>rom the veins of th<span class="_ _0"></span>e body and pum<span class="_ _0"></span>ps it </div><div class="t m0 xe h4 y21 ff2 fs2 fc0 sc0 ls4 ws21">into the right<span class="_ _0"></span> ventricle. The right ventricle pum<span class="_ _0"></span>ps the blood </div><div class="t m0 xe h4 y22 ff2 fs2 fc0 sc0 ls4 ws22">through the lungs, where it is oxygenated. The oxygen<span class="_ _1"></span>-</div><div class="t m0 xe h4 y23 ff2 fs2 fc0 sc0 ls1c ws23">enriched blood then enters the left atriu<span class="_ _1"></span>m, from which it is </div><div class="t m0 xe h4 y24 ff2 fs2 fc0 sc0 ls1d ws24">pumped into the left ventricle. The left ventricle pumps the </div><div class="t m0 xe h4 y25 ff2 fs2 fc0 sc0 ls22 ws25">blood into arteries to circulate throughout the body. For the </div><div class="t m0 xe h4 y26 ff2 fs2 fc0 sc0 lsa ws26">cardiovascular system to function properly<span class="_ _0"></span>, both the atria </div><div class="t m0 xe h4 y27 ff2 fs2 fc0 sc0 ls1f ws27">and ventricles must operate i<span class="_ _1"></span>n a proper tim<span class="_ _0"></span>e relationship. </div><div class="t m0 xe h4 y28 ff2 fs2 fc0 sc0 ls1d ws28">Each action potential in the heart originates near the top of </div><div class="t m0 xe h4 y29 ff2 fs2 fc0 sc0 ls1f ws29">the right atrium at a poin<span class="_ _0"></span>t called pac<span class="_ _1"></span>emaker or sinoatrial </div><div class="t m0 xe h4 y2a ff2 fs2 fc0 sc0 ls23 ws2a">(SA) node. The pacem<span class="_ _0"></span>aker is a group of<span class="_ _0"></span> specialized cells </div><div class="t m0 xe h4 y2b ff2 fs2 fc0 sc0 lsb ws2b">that spontaneously generate action potentials<span class="_ _1"></span> at a regular </div><div class="t m0 xe h4 y2c ff2 fs2 fc0 sc0 ls24 ws2c">rate. The biopotentials gener<span class="_ _1"></span>ated by the muscles of the </div><div class="t m0 xe h4 y2d ff2 fs2 fc0 sc0 ls1d ws2d">heart result in the electrocardiogram. ECG signal is the </div><div class="t m0 xe h4 y2e ff2 fs2 fc0 sc0 ls19 ws2e">electrical signal which occurs due to electrical activity of </div><div class="t m0 xe h4 y2f ff2 fs2 fc0 sc0 ls18 ws2f">heart. This signal i<span class="_ _1"></span>s measure by surface electrode on limb </div><div class="t m0 xe h4 y30 ff2 fs2 fc0 sc0 ls25 ws30">and chest. The typical ECG signal as shown in Figure 2, as </div><div class="t m0 xe h4 y31 ff2 fs2 fc0 sc0 ls26 ws31">it appears when recorded from the surf<span class="_ _0"></span>ace of the body. </div><div class="t m0 xe h4 y32 ff2 fs2 fc0 sc0 lsb ws32">Alphabetic designations hav<span class="_ _1"></span>e been given to each of the </div><div class="t m0 xe h4 y33 ff2 fs2 fc0 sc0 ls27 ws33">prominent features. These can be identified w<span class="_ _0"></span>ith events </div><div class="t m0 xe h4 y34 ff2 fs2 fc0 sc0 ls1d ws34">related to the action poten<span class="ls18 ws35">tial propagation<span class="_ _0"></span> pattern. To </span></div><div class="t m0 xe h4 y35 ff2 fs2 fc0 sc0 ls8 ws36">facilitate analysis, the horizontal seg<span class="_ _1"></span>ment of this waveform </div><div class="t m0 xe h4 y36 ff2 fs2 fc0 sc0 ls1b ws37">preceding the P wave is designated as the baseline or the </div><div class="t m0 xe h4 y37 ff2 fs2 fc0 sc0 ls1c ws38">isopotential line.<span class="_ _1"></span> </div><div class="t m0 x10 h7 y38 ff1 fs2 fc0 sc0 ls19 ws39">Figure 1: Conduction System of Heart<span class="_ _1"></span> </div><div class="t m0 x11 h7 y39 ff1 fs2 fc0 sc0 ls2 ws3a">Figure 2: A Typica<span class="ls27 ws3b">l Cardiac Signal </span></div><div class="t m0 x12 h4 y3a ff2 fs2 fc0 sc0 ls27 ws3c">The P wave represents repolarization of the atrial </div><div class="t m0 x13 h4 y3b ff2 fs2 fc0 sc0 ls8 ws3d">muscular. The QRS co<span class="_ _1"></span>mplex is the co<span class="_ _1"></span>mbined results of the </div><div class="t m0 x13 h4 y3c ff2 fs2 fc0 sc0 ls2 ws3e">repolarization of the atria and the repolarization o<span class="_ _1"></span>f the </div><div class="t m0 x13 h4 y3d ff2 fs2 fc0 sc0 ls1c ws3f">ventricles, which occur almos<span class="_ _1"></span>t simultaneously. T<span class="_ _1"></span>he T wave </div><div class="t m0 x13 h4 y3e ff2 fs2 fc0 sc0 ls24 ws40">is the wave of the ventricular repolarization, whereas the U </div><div class="t m0 x13 h4 y3f ff2 fs2 fc0 sc0 ls9 ws41">wave, if present, is generally believed to be the result of </div><div class="t m0 x13 h4 y40 ff2 fs2 fc0 sc0 ls2 ws42">after potentials in the ventri<span class="ls8 ws43">c<span class="_ _1"></span>ular muscle. The P<span class="_ _1"></span>-Q <span class="_ _0"></span>interval </span></div><div class="t m0 x13 h4 y41 ff2 fs2 fc0 sc0 lsb ws44">represents the time during which the excitation wave is </div><div class="t m0 x13 h4 y42 ff2 fs2 fc0 sc0 ls18 ws45">delayed in the fibers near the AV node. </div><div class="t m0 x12 h4 y43 ff2 fs2 fc0 sc0 ls18 ws46">Signal processing (DSP) has been used for noise </div><div class="t m0 x13 h4 y44 ff2 fs2 fc0 sc0 ls24 ws47">filtering, system identification, and <span class="_ _1"></span>voice prediction.<span class="_ _1"></span> </div><div class="t m0 x13 h4 y45 ff2 fs2 fc0 sc0 ls27 ws48">Standard DSP techniques are not able to solve t<span class="_ _1"></span>his problem </div><div class="t m0 x13 h4 y46 ff2 fs2 fc0 sc0 ls9 ws21">accurately and quickly. Adaptive filtering technique is used </div><div class="t m0 x13 h4 y47 ff2 fs2 fc0 sc0 lsb ws49">to get accurate solutions. </div><div class="t m0 x12 h4 y48 ff2 fs2 fc0 sc0 ls19 ws4a">In many <span class="_ _0"></span>applications for biomedical signal-processing </div><div class="t m0 x13 h4 y49 ff2 fs2 fc0 sc0 ls28 ws4b">the information-bearing<span class="_ _0"></span> signals are superpos<span class="_ _0"></span>ed by further </div><div class="t m0 x13 h4 y4a ff2 fs2 fc0 sc0 ls19 ws4c">components. Thus signals get distorted and the extractio<span class="_ _1"></span>n of </div><div class="t m0 x13 h4 y4b ff2 fs2 fc0 sc0 ls19 ws4d">information is complicated. Commonly frequency selective </div><div class="t m0 x13 h4 y4c ff2 fs2 fc0 sc0 ls29 ws4e">filters with fixed coe<span class="_ _1"></span>fficients ar<span class="ls2 ws4f">e used to s<span class="_ _1"></span>uppress a specific </span></div><div class="t m0 x14 h8 y4d ff4 fs4 fc0 sc0 ls5 ws3">2015 Fifth International Conference on Communication Systems and Network Technologies</div><div class="t m0 x15 h9 y4e ff5 fs5 fc0 sc0 ls5 ws3">978-1-4799-1797-6/15 $31.00 &#169; 2015 IEEE</div><div class="t m0 x15 h9 y4f ff5 fs5 fc0 sc0 ls5 ws3">DOI 10.1109/CSNT.2015.126</div><div class="t m0 x16 h9 y4e ff5 fs5 fc0 sc0 ls5 ws3">511</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐