<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/625445b447503a0a93a416e4/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/625445b447503a0a93a416e4/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0"><span class="_ _0"></span><span class="_ _1"> </span><span class="ff2">年<span class="_ _1"> </span></span><span class="_ _1"> </span><span class="ff2">月</span></div><div class="t m0 x2 h2 y2 ff2 fs0 fc0 sc0 ls0 ws0">第<span class="_ _1"> </span><span class="ff1"><span class="_ _0"></span><span class="_ _2"> </span><span class="ff2">卷第<span class="_ _1"> </span></span><span class="_ _1"> </span><span class="ff2">期</span></span></div><div class="t m0 x3 h3 y1 ff2 fs0 fc0 sc0 ls0 ws0">西<span class="_ _3"> </span>北<span class="_ _3"> </span>工<span class="_ _3"> </span>业<span class="_ _4"> </span>大<span class="_ _3"> </span>学<span class="_ _3"> </span>学<span class="_ _3"> </span>报</div><div class="t m0 x4 h4 y2 ff3 fs0 fc0 sc0 ls0 ws0">Jou<span class="_ _0"></span>rnal<span class="_ _3"> </span>of<span class="_ _3"> </span>Nor<span class="_ _0"></span>thw<span class="_ _0"></span>est<span class="_ _0"></span>ern<span class="_ _3"> </span>Polyte<span class="_ _0"></span>chn<span class="_ _0"></span>ical<span class="_ _3"> </span>Un<span class="_ _0"></span>ive<span class="_ _0"></span>rsit<span class="_ _0"></span>y</div><div class="t m0 x5 h2 y1 ff3 fs0 fc0 sc0 ls0 ws0">Dec<span class="ff1"></span></div><div class="t m0 x6 h2 y2 ff3 fs0 fc0 sc0 ls0 ws0">Vol<span class="ff1"><span class="_ _5"></span></span></div><div class="t m0 x7 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0"><span class="_ _0"></span></div><div class="t m0 x7 h2 y2 ff3 fs0 fc0 sc0 ls0 ws0">No<span class="ff1"><span class="_ _5"></span></span></div><div class="t m0 x2 h2 y3 ff4 fs0 fc0 sc0 ls0 ws0">收稿日期<span class="ff1"><span class="_ _0"></span><span class="_ _6"></span><span class="_ _0"></span><span class="_ _6"></span></span></div><div class="t m0 x2 h2 y4 ff4 fs0 fc0 sc0 ls0 ws0">作者简介<span class="ff1"><span class="ff2">张<span class="_ _3"> </span>烈</span><span class="_ _7"></span><span class="_ _0"></span><span class="_ _7"></span><span class="ff2">西北工业大学博士研究生<span class="_ _8"></span></span><span class="ff2">主要从事射频功率放大器行为<span class="_ _8"></span>建模与数字预失真研究<span class="_ _8"></span></span></span></div><div class="t m0 x8 h5 y5 ff4 fs1 fc0 sc0 ls0 ws0">一<span class="_ _9"> </span>种<span class="_ _9"> </span>优<span class="_ _9"> </span>化<span class="_ _3"> </span>的<span class="_ _9"> </span>神<span class="_ _3"> </span>经<span class="_ _9"> </span>网<span class="_ _9"> </span>络<span class="_ _9"> </span>数<span class="_ _3"> </span>字<span class="_ _9"> </span>预<span class="_ _3"> </span>失<span class="_ _9"> </span>真<span class="_ _9"> </span>方<span class="_ _9"> </span>法</div><div class="t m0 x9 h6 y6 ff5 fs2 fc0 sc0 ls0 ws0">张烈<span class="ff1"><span class="_ _a"> </span></span>冯燕</div><div class="t m0 xa h2 y7 ff1 fs0 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="ff2">西北工<span class="_ _8"></span>业大学<span class="_ _3"> </span>电子信息学<span class="_ _8"></span>院</span><span class="_ _9"> </span><span class="ff2">陕西<span class="_ _3"> </span>西<span class="_ _8"></span>安</span><span class="_ _0"></span><span class="_ _0"></span><span class="_ _0"></span></div><div class="t m0 xb h7 y8 ff4 fs3 fc0 sc0 ls0 ws0">摘<span class="ff1"></span>要<span class="ff1"><span class="_ _0"></span><span class="ff5">提<span class="_ _0"></span>出<span class="_ _0"></span>一<span class="_ _0"></span>种<span class="_ _0"></span>基于<span class="_ _0"></span>遗<span class="_ _0"></span>传<span class="_ _0"></span>算<span class="_ _0"></span>法<span class="_ _0"></span>和<span class="_ _b"></span>低<span class="_ _b"></span>阶广<span class="_ _b"></span>义记<span class="_ _b"></span>忆多项式实值神经网络<span class="_ _0"></span>的射频功率放大器数字预失真</span></span></div><div class="t m0 xb h7 y9 ff5 fs3 fc0 sc0 ls0 ws0">方<span class="_ _b"></span>法<span class="ff1"><span class="_ _a"> </span></span>该方<span class="_ _b"></span>法将<span class="_ _b"></span>遗<span class="_ _0"></span>传<span class="_ _0"></span>算法<span class="_ _b"></span>优<span class="_ _0"></span>化<span class="_ _0"></span>的<span class="_ _0"></span>低<span class="_ _0"></span>阶<span class="_ _b"></span>广义<span class="_ _b"></span>记忆<span class="_ _b"></span>多项<span class="_ _b"></span>式模<span class="_ _b"></span>型与<span class="_ _b"></span>神<span class="_ _0"></span>经<span class="_ _0"></span>网<span class="_ _b"></span>络模<span class="_ _b"></span>型进行级联<span class="_ _b"></span>来增强校正<span class="_ _b"></span>模型</div><div class="t m0 xb h7 ya ff5 fs3 fc0 sc0 ls0 ws0">与<span class="_ _b"></span>功放<span class="_ _b"></span>失真<span class="_ _b"></span>的匹<span class="_ _b"></span>配<span class="_ _0"></span>程<span class="_ _0"></span>度<span class="_ _0"></span><span class="ff1"><span class="_ _c"> </span><span class="ff5">它<span class="_ _b"></span>不仅<span class="_ _b"></span>可以<span class="_ _b"></span>提升<span class="_ _b"></span>模<span class="_ _0"></span>型<span class="_ _0"></span>的校正<span class="_ _0"></span>能力<span class="_ _b"></span><span class="ff1"><span class="ff5">同时可以加快网络的收敛速度<span class="_ _b"></span><span class="ff1"><span class="_"> </span><span class="ff5">采用<span class="_ _1"> </span></span></span></span></span></span></span></div><div class="t m0 xb h7 yb ff3 fs3 fc0 sc0 ls0 ws0">M<span class="_ _b"></span>Hz<span class="_ _2"> </span><span class="ff5">的<span class="_ _0"></span>三<span class="_ _0"></span>载<span class="_ _0"></span>波<span class="_ _1"> </span><span class="ff3">LT<span class="_ _b"></span>E<span class="_ _9"> </span><span class="ff5">信号<span class="_ _b"></span>进行<span class="_ _b"></span>实<span class="_ _0"></span>验<span class="_ _b"></span><span class="ff1"><span class="ff5">通<span class="_ _b"></span>过与<span class="_ _b"></span>实值<span class="_ _b"></span>延时<span class="_ _b"></span>线神经网<span class="_ _b"></span>络模型对<span class="_ _0"></span>比<span class="_ _b"></span><span class="ff1"><span class="ff5">在收敛速<span class="_ _0"></span>度上有<span class="_ _0"></span>显著提升<span class="_ _b"></span><span class="ff1"></span></span></span></span></span></span></span></span></div><div class="t m0 xb h7 yc ff5 fs3 fc0 sc0 ls0 ws0">同<span class="_ _b"></span>时在<span class="_ _b"></span>邻道<span class="_ _b"></span>功率<span class="_ _b"></span>泄<span class="_ _0"></span>露<span class="_ _1"> </span><span class="ff3">AC<span class="_ _b"></span>LR<span class="_ _2"> </span><span class="ff5">指标<span class="_ _b"></span>上<span class="_ _b"></span>有<span class="_ _1"> </span><span class="ff1"><span class="_ _d"> </span><span class="ff3">dB<span class="_ _2"> </span></span></span>左<span class="_ _0"></span>右<span class="_ _0"></span>改<span class="_ _0"></span>善<span class="_ _0"></span><span class="ff1"></span></span></span></div><div class="t m0 xb h7 yd ff4 fs3 fc0 sc0 ls0 ws0">关<span class="ff1"></span>键<span class="ff1"></span>词<span class="ff1"><span class="_ _0"></span><span class="ff5">射频功率放大器<span class="ff1"></span>数字预失真<span class="ff1"></span>神经网络模<span class="_ _8"></span>型<span class="ff1"></span>广<span class="_ _8"></span>义<span class="_ _8"></span>记<span class="_ _8"></span>忆<span class="_ _8"></span>多<span class="_ _8"></span>项<span class="_ _8"></span>式<span class="_ _8"></span>模<span class="_ _8"></span>型<span class="ff1"><span class="_ _8"></span></span>实<span class="_ _8"></span>值<span class="_ _8"></span>延<span class="_ _8"></span>时<span class="_ _8"></span>线<span class="_ _8"></span>神<span class="_ _8"></span>经</span></span></div><div class="t m0 xc h7 ye ff5 fs3 fc0 sc0 ls0 ws0">网络模型<span class="ff1"></span>遗传算法</div><div class="t m0 xb h7 yf ff4 fs3 fc0 sc0 ls0 ws0">中图分类号<span class="ff1"><span class="ff3">T<span class="_ _b"></span>N<span class="ff1"><span class="_ _b"></span><span class="_ _8"></span><span class="ff4">文献标志码</span><span class="ff3">A</span><span class="ff4">文章编号</span><span class="_ _b"></span><span class="_ _0"></span><span class="_ _5"></span><span class="_ _b"></span><span class="_ _7"></span><span class="_ _0"></span><span class="_ _8"></span><span class="_ _8"></span><span class="_ _e"></span><span class="_ _b"></span><span class="_ _e"></span><span class="_ _b"></span></span></span></span></div><div class="t m0 x2 h7 y10 ff1 fs3 fc0 sc0 ls0 ws0"><span class="ff2">射频功率放大<span class="_ _8"></span>器</span></div><div class="t m0 xd h8 y11 ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span></div><div class="t m0 xe h9 y10 ff2 fs3 fc0 sc0 ls0 ws0">的<span class="_ _8"></span>数<span class="_ _8"></span>字<span class="_ _8"></span>预<span class="_ _7"></span>失真<span class="_ _8"></span>技<span class="_ _7"></span>术</div><div class="t m0 xf h8 y11 ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="_ _f"></span></div><div class="t m0 x10 h9 y10 ff2 fs3 fc0 sc0 ls0 ws0">主<span class="_ _8"></span>要</div><div class="t m0 x2 h7 y12 ff2 fs3 fc0 sc0 ls0 ws0">使用的神经网络模型<span class="_ _7"></span>可<span class="_ _8"></span>以<span class="_ _8"></span>分<span class="_ _8"></span>为<span class="_ _9"> </span><span class="ff1"><span class="_ _4"> </span></span>类<span class="ff1"><span class="_ _8"></span></span>前<span class="_ _7"></span>馈多<span class="_ _7"></span>层感<span class="_ _7"></span>知</div><div class="t m0 x2 h7 y13 ff2 fs3 fc0 sc0 ls0 ws0">机神经网络模型<span class="ff1"></span>径<span class="_ _8"></span>向<span class="_ _8"></span>基<span class="_ _8"></span>神<span class="_ _7"></span>经网<span class="_ _8"></span>络<span class="_ _7"></span>模型<span class="_ _7"></span>以及<span class="_ _7"></span>反馈<span class="_ _8"></span>回</div><div class="t m0 x2 h7 y14 ff2 fs3 fc0 sc0 ls0 ws0">归神经网络模型<span class="ff1"><span class="_"> </span></span>文献<span class="ff1"><span class="_ _7"></span><span class="_ _10"> </span></span>中<span class="_ _8"></span>利<span class="_ _8"></span>用后<span class="_ _7"></span>向传<span class="_ _8"></span>播<span class="_ _8"></span>学习<span class="_ _7"></span>方</div><div class="t m0 x2 h9 y15 ff2 fs3 fc0 sc0 ls0 ws0">法计算前馈多层感知机神经网络模型参<span class="_ _b"></span>数使模型非</div><div class="t m0 x2 h7 y16 ff2 fs3 fc0 sc0 ls0 ws0">常适合用于功放的非线性行为建模<span class="ff1"><span class="_ _c"> </span></span>由于发射机的</div><div class="t m0 x2 h7 y17 ff2 fs3 fc0 sc0 ls0 ws0">数字信号是复数的<span class="_ _9"> </span><span class="ff6">I<span class="_ _10"> </span><span class="ff1"><span class="_ _5"></span><span class="ff6">Q<span class="_ _d"> </span><span class="ff2">信<span class="_ _8"></span>号<span class="ff1"><span class="_ _8"></span></span>所<span class="_ _8"></span>以<span class="_ _8"></span>可<span class="_ _8"></span>以<span class="_ _7"></span>按照<span class="_ _7"></span>幅度<span class="_ _7"></span>与</span></span></span></span></div><div class="t m0 x2 h7 y18 ff2 fs3 fc0 sc0 ls0 ws0">相位分别进<span class="_ _8"></span>行<span class="_ _8"></span>建<span class="_ _7"></span>模<span class="_ _8"></span>补<span class="_ _7"></span>偿<span class="ff1"><span class="_ _8"></span></span>文<span class="_ _7"></span>献<span class="_ _8"></span><span class="ff1"><span class="_ _7"></span><span class="_ _7"></span><span class="_ _10"></span></span>就<span class="_ _8"></span>是<span class="_ _7"></span>采<span class="_ _8"></span>用<span class="_ _7"></span>这<span class="_ _8"></span>种<span class="_ _7"></span>方</div><div class="t m0 x2 h7 y19 ff2 fs3 fc0 sc0 ls0 ws0">法处理<span class="ff1"><span class="_"> </span></span>另一<span class="_ _8"></span>种<span class="_ _7"></span>方<span class="_ _8"></span>法<span class="_ _8"></span>在<span class="_ _7"></span>文<span class="_ _8"></span>献<span class="_ _7"></span><span class="ff1"><span class="_ _7"></span><span class="_ _7"></span><span class="_ _10"> </span></span>中<span class="_ _8"></span>被<span class="_ _7"></span>采<span class="_ _7"></span>用<span class="ff1"><span class="_ _8"></span></span>它<span class="_ _7"></span>按<span class="_ _8"></span>照</div><div class="t m0 x2 h7 y1a ff2 fs3 fc0 sc0 ls0 ws0">实值<span class="_ _2"> </span><span class="ff6">I<span class="_ _3"> </span></span>与<span class="_ _2"> </span><span class="ff6">Q<span class="_ _9"> </span></span>统一建模进行补偿<span class="ff1"><span class="_"> </span></span>这<span class="_ _1"> </span><span class="ff1"><span class="_ _9"> </span></span>种方法在表达</div><div class="t m0 x2 h7 y1b ff2 fs3 fc0 sc0 ls0 ws0">记忆效应时都需要<span class="_ _8"></span>加<span class="_ _8"></span>入<span class="_ _7"></span>延迟<span class="_ _8"></span>线<span class="_ _8"></span>来<span class="_ _7"></span>完成<span class="ff1"><span class="_ _7"></span></span>但是<span class="_ _7"></span>后者<span class="_ _7"></span>是</div><div class="t m0 x2 h7 y1c ff2 fs3 fc0 sc0 ls0 ws0">统一建模只需要一<span class="_ _8"></span>次<span class="_ _8"></span>模<span class="_ _7"></span>型提<span class="_ _8"></span>取<span class="ff1"><span class="_ _7"></span></span>这<span class="_ _8"></span>对<span class="_ _8"></span>系<span class="_ _8"></span>统<span class="_ _8"></span>应<span class="_ _7"></span>用更<span class="_ _8"></span>加</div><div class="t m0 x2 h7 y1d ff2 fs3 fc0 sc0 ls0 ws0">有利<span class="ff1"><span class="_"> </span></span>在文献<span class="_ _8"></span><span class="ff1"><span class="_ _11"></span><span class="_ _8"></span><span class="_ _10"> </span></span>中<span class="_ _8"></span>采<span class="_ _7"></span>用<span class="_ _8"></span>径<span class="_ _7"></span>向<span class="_ _8"></span>基<span class="_ _7"></span>神<span class="_ _8"></span>经<span class="_ _7"></span>网<span class="_ _7"></span>络<span class="_ _8"></span>模<span class="_ _7"></span>型<span class="ff1"><span class="_ _7"></span></span>它</div><div class="t m0 x2 h7 y1e ff2 fs3 fc0 sc0 ls0 ws0">具有对动态非线性系统的建模能力<span class="ff1"><span class="_ _c"> </span></span>为了完成复数</div><div class="t m0 x2 h7 y1f ff2 fs3 fc0 sc0 ls0 ws0">形式的补偿<span class="ff1"></span>径向基<span class="_ _8"></span>神<span class="_ _8"></span>经<span class="_ _8"></span>网<span class="_ _7"></span>络同<span class="_ _8"></span>样<span class="_ _7"></span>需要<span class="_ _7"></span>完成<span class="_ _7"></span>复数<span class="_ _8"></span>的</div><div class="t m0 x2 h7 y20 ff2 fs3 fc0 sc0 ls0 ws0">运算<span class="ff1"></span>计算量<span class="_ _7"></span>不<span class="_ _8"></span>会<span class="_ _8"></span>降<span class="_ _7"></span>低<span class="ff1"><span class="_"> </span></span>文<span class="_ _7"></span>献<span class="_ _8"></span><span class="ff1"><span class="_ _11"></span><span class="_ _7"></span><span class="_ _10"> </span></span>中<span class="_ _8"></span>采<span class="_ _7"></span>用<span class="_ _7"></span>了<span class="_ _8"></span>反<span class="_ _7"></span>馈<span class="_ _8"></span>回</div><div class="t m0 x2 h7 y21 ff2 fs3 fc0 sc0 ls0 ws0">归神经网络模型<span class="ff1"></span>它<span class="_ _8"></span>是<span class="_ _8"></span>在<span class="_ _8"></span>前<span class="_ _7"></span>馈网<span class="_ _8"></span>络<span class="_ _7"></span>的输<span class="_ _7"></span>出中<span class="_ _7"></span>加入<span class="_ _8"></span>反</div><div class="t m0 x2 h7 y22 ff2 fs3 fc0 sc0 ls0 ws0">馈回路来进一步增<span class="_ _8"></span>强<span class="_ _8"></span>非<span class="_ _7"></span>线性<span class="_ _8"></span>逼<span class="_ _8"></span>近<span class="_ _7"></span>性能<span class="ff1"><span class="_ _7"></span></span>由于<span class="_ _7"></span>反馈<span class="_ _7"></span>回</div><div class="t m0 x2 h7 y23 ff2 fs3 fc0 sc0 ls0 ws0">路的增加<span class="ff1"></span>计算复<span class="_ _8"></span>杂<span class="_ _7"></span>度进<span class="_ _7"></span>一步<span class="_ _7"></span>增大<span class="ff1"><span class="_ _12"> </span></span>最<span class="_ _8"></span>近<span class="_ _8"></span>科<span class="_ _7"></span>研工<span class="_ _8"></span>作</div><div class="t m0 x2 h7 y24 ff2 fs3 fc0 sc0 ls0 ws0">者按照逼近性能<span class="ff1"></span>收敛速<span class="_ _b"></span>度与泛化性能<span class="_ _8"></span><span class="ff1"></span>提出了动态</div><div class="t m0 x2 h9 y25 ff2 fs3 fc0 sc0 ls0 ws0">实值延<span class="_ _8"></span>时<span class="_ _11"></span>线<span class="_ _7"></span>神<span class="_ _7"></span>经<span class="_ _7"></span>网<span class="_ _11"></span>络<span class="_ _7"></span>模<span class="_ _7"></span>型</div><div class="t m0 x11 h8 y26 ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span></div><div class="t m0 x12 h7 y25 ff1 fs3 fc0 sc0 ls0 ws0"><span class="_ _11"></span><span class="ff2">双<span class="_ _7"></span>隐<span class="_ _11"></span>层<span class="_ _7"></span>实<span class="_ _11"></span>值<span class="_ _7"></span>网<span class="_ _7"></span>络<span class="_ _11"></span>模</span></div><div class="t m0 x2 h9 y27 ff2 fs3 fc0 sc0 ls0 ws0">型</div><div class="t m0 x13 h8 y28 ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="_ _8"></span></div><div class="t m0 x14 h7 y27 ff1 fs3 fc0 sc0 ls0 ws0"><span class="ff2">切<span class="_ _8"></span>比<span class="_ _7"></span>雪<span class="_ _8"></span>夫<span class="_ _7"></span>基<span class="_ _8"></span>模<span class="_ _7"></span>型</span></div><div class="t m0 xe h8 y28 ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="_ _8"></span></div><div class="t m0 x15 h7 y27 ff1 fs3 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="ff3">B<span class="_ _d"> </span><span class="ff2">样<span class="_ _8"></span>条<span class="_ _7"></span>基<span class="_ _7"></span>模<span class="_ _8"></span>型</span></span></div><div class="t m0 x16 h8 y28 ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="_ _8"></span></div><div class="t m0 x17 h7 y27 ff1 fs3 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="_ _4"> </span><span class="ff2">层</span></div><div class="t m0 x2 h9 y29 ff2 fs3 fc0 sc0 ls0 ws0">记忆多项式<span class="_ _8"></span>基</div><div class="t m0 x18 h8 y2a ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"> </span><span class="_ _8"></span></div><div class="t m0 xc h7 y29 ff2 fs3 fc0 sc0 ls0 ws0">的<span class="_ _8"></span>改<span class="_ _7"></span>进<span class="_ _8"></span>方<span class="_ _8"></span>式<span class="ff1"><span class="_ _12"> </span></span>这<span class="_ _7"></span>些<span class="_ _8"></span>方<span class="_ _8"></span>法<span class="_ _7"></span>通<span class="_ _8"></span>过<span class="_ _8"></span>调<span class="_ _7"></span>整</div><div class="t m0 x19 h7 y10 ff2 fs3 fc0 sc0 ls0 ws0">神经网络的基函数来改善性能<span class="ff1"></span>但是<span class="_ _b"></span>基函数调整后<span class="ff1"></span></div><div class="t m0 x19 h7 y2b ff2 fs3 fc0 sc0 ls0 ws0">计算复<span class="_ _8"></span>杂<span class="_ _11"></span>度<span class="_ _7"></span>随<span class="_ _7"></span>之<span class="_ _7"></span>增<span class="_ _7"></span>大<span class="ff1"><span class="_ _11"></span></span>降<span class="_ _7"></span>低<span class="_ _11"></span>了<span class="_ _7"></span>系<span class="_ _11"></span>统<span class="_ _7"></span>实<span class="_ _7"></span>时<span class="_ _11"></span>处<span class="_ _7"></span>理<span class="_ _11"></span>的<span class="_ _7"></span>时</div><div class="t m0 x19 h7 y2c ff2 fs3 fc0 sc0 ls0 ws0">效性<span class="ff1"></span></div><div class="t m0 x1a h9 y2d ff2 fs3 fc0 sc0 ls0 ws0">遗传算<span class="_ _8"></span>法是<span class="_ _8"></span>密<span class="_ _8"></span>执安<span class="_ _8"></span>大<span class="_ _8"></span>学教<span class="_ _8"></span>授<span class="_ _9"> </span><span class="ff3">Hollan<span class="_ _b"></span>d<span class="_ _13"> </span><span class="ff2">及其<span class="_ _8"></span>学生</span></span></div><div class="t m0 x19 h7 y2e ff2 fs3 fc0 sc0 ls0 ws0">于<span class="_ _1"> </span><span class="ff1"><span class="_ _4"> </span></span>年创建</div><div class="t m0 x1b h8 y2f ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="_ _8"></span></div><div class="t m0 x1c h7 y2e ff1 fs3 fc0 sc0 ls0 ws0"><span class="_ _8"></span><span class="ff2">是<span class="_ _7"></span>基<span class="_ _8"></span>于<span class="_ _8"></span>生<span class="_ _7"></span>物<span class="_ _8"></span>自<span class="_ _7"></span>然选<span class="_ _7"></span>择<span class="_ _8"></span>与<span class="_ _7"></span>遗<span class="_ _8"></span>传<span class="_ _8"></span>机</span></div><div class="t m0 x19 h7 y30 ff2 fs3 fc0 sc0 ls0 ws0">理的随机搜索与优化方法<span class="ff1"><span class="_"> </span><span class="ff3">R<span class="_ _8"></span></span><span class="_ _14"></span><span class="ff3">Spe<span class="_ _b"></span>rlich<span class="_ _3"> </span><span class="ff2">将<span class="_ _8"></span>其<span class="_ _8"></span>应<span class="_ _8"></span>用<span class="_ _8"></span>到</span></span></span></div><div class="t m0 x19 h9 y31 ff2 fs3 fc0 sc0 ls0 ws0">数字预失真的<span class="_ _8"></span>模<span class="_ _8"></span>型<span class="_ _7"></span>优<span class="_ _8"></span>化<span class="_ _8"></span>中</div><div class="t m0 x1d h8 y32 ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="_ _8"></span></div><div class="t m0 x1e h9 y31 ff2 fs3 fc0 sc0 ls0 ws0">获<span class="_ _8"></span>得<span class="_ _7"></span>了<span class="_ _8"></span>参<span class="_ _8"></span>数<span class="_ _7"></span>优<span class="_ _8"></span>化<span class="_ _8"></span>的<span class="_ _7"></span>效</div><div class="t m0 x19 h7 y33 ff2 fs3 fc0 sc0 ls0 ws0">果<span class="ff1"><span class="_"> </span></span>但<span class="_ _1"> </span><span class="ff3">R<span class="_ _8"></span><span class="ff1"><span class="_ _15"></span><span class="ff3">Spe<span class="_ _b"></span>rlich<span class="_ _9"> </span><span class="ff2">并未采用神经网络模型<span class="ff1"><span class="_ _c"> </span></span>遗传算</span></span></span></span></div><div class="t m0 x19 h9 y34 ff2 fs3 fc0 sc0 ls0 ws0">法同样可用于优化神经网络的参数<span class="_ _b"></span>维度以及神经网</div><div class="t m0 x19 h7 y35 ff2 fs3 fc0 sc0 ls0 ws0">络的参数初值<span class="ff1"><span class="_"> </span></span>经<span class="_ _0"></span>其优化后可以使神经网络的收敛</div><div class="t m0 x19 h7 y36 ff2 fs3 fc0 sc0 ls0 ws0">速度和收敛性能得到进一步提升<span class="ff1"><span class="_ _a"> </span></span>本文将把遗传算</div><div class="t m0 x19 h7 y37 ff2 fs3 fc0 sc0 ls0 ws0">法优化引入到神经网络的数字预失<span class="_ _b"></span>真模型当中<span class="ff1"></span></div><div class="t m0 x1a h7 y38 ff2 fs3 fc0 sc0 ls0 ws0">本文<span class="_ _8"></span>综<span class="_ _8"></span>合<span class="_ _8"></span>以<span class="_ _8"></span>上<span class="_ _8"></span>神<span class="_ _8"></span>经<span class="_ _8"></span>网<span class="_ _8"></span>络<span class="_ _8"></span>模<span class="_ _8"></span>型<span class="_ _8"></span>的<span class="_ _8"></span>优势<span class="ff1"><span class="_ _8"></span></span>从<span class="_ _8"></span>计<span class="_ _8"></span>算<span class="_ _8"></span>复</div><div class="t m0 x19 h7 y39 ff2 fs3 fc0 sc0 ls0 ws0">杂度<span class="ff1"></span>收敛速度与线性化性能角度出<span class="_ _b"></span>发<span class="ff1"></span>提出一种优</div><div class="t m0 x19 h7 y3a ff2 fs3 fc0 sc0 ls0 ws0">化的广义记忆多项式实值神经网络<span class="_ _b"></span>模型<span class="ff1"><span class="_"> </span></span>该模型通</div><div class="t m0 x19 h9 y3b ff2 fs3 fc0 sc0 ls0 ws0">过遗传算法优化的低阶的广义记忆<span class="_ _b"></span>多项式模型来增</div><div class="t m0 x19 h7 y3c ff2 fs3 fc0 sc0 ls0 ws0">加模型与功放失真<span class="_ _8"></span>的<span class="_ _8"></span>匹<span class="_ _8"></span>配<span class="_ _7"></span>程度<span class="ff1"><span class="_ _8"></span></span>更<span class="_ _8"></span>加<span class="_ _7"></span>有效<span class="_ _7"></span>的<span class="_ _8"></span>补<span class="_ _8"></span>偿<span class="_ _8"></span>宽</div><div class="t m0 x19 h7 y3d ff2 fs3 fc0 sc0 ls0 ws0">带功放的记忆效应与非线性效应<span class="ff1"><span class="_ _a"> </span></span>优化后的参数计</div><div class="t m0 x19 h7 y3e ff2 fs3 fc0 sc0 ls0 ws0">算量可控制在合理范围且便于系统<span class="_ _b"></span>实现<span class="ff1"><span class="_"> </span></span>神经网络</div><div class="t m0 x19 h7 y3f ff2 fs3 fc0 sc0 ls0 ws0">训<span class="_ _10"> </span>练<span class="_ _1"> </span>采<span class="_ _2"> </span>用<span class="_ _16"> </span><span class="ff3">BP<span class="_ _8"></span>LM<span class="_ _9"> </span><span class="ff1"><span class="_ _2"> </span></span>back<span class="ff1"><span class="_ _e"></span><span class="ff3">propa<span class="_ _0"></span>gati<span class="_ _0"></span>on<span class="_ _17"> </span>leve<span class="_ _b"></span>nberg<span class="ff1"><span class="_ _e"></span><span class="ff3">mar<span class="ff1"></span></span></span></span></span></span></div><div class="t m0 x19 h7 y40 ff3 fs3 fc0 sc0 ls0 ws0">qua<span class="_ _b"></span>rdt<span class="ff1"></span></div><div class="t m0 x1f h8 y41 ff1 fs4 fc0 sc0 ls0 ws0"><span class="_ _7"></span><span class="_ _8"></span></div><div class="t m0 x20 h7 y40 ff2 fs3 fc0 sc0 ls0 ws0">方<span class="_ _8"></span>法<span class="ff1"><span class="_ _12"> </span></span>实<span class="_ _7"></span>验中<span class="_ _7"></span>采<span class="_ _8"></span>用<span class="_ _4"> </span><span class="ff3">LTE<span class="_ _4"> </span></span>的<span class="_ _3"> </span><span class="ff1"><span class="_ _13"> </span><span class="ff3">MHz<span class="_ _3"> </span></span></span>三<span class="_ _7"></span>载</div><div class="t m0 x19 h7 y42 ff2 fs3 fc0 sc0 ls0 ws0">波信号进行验证<span class="ff1"><span class="_ _c"> </span></span>实验结果表明采用该方法较实值</div><div class="t m0 x19 h7 y43 ff2 fs3 fc0 sc0 ls0 ws0">延时的神经网络模型在收敛速度上<span class="_ _b"></span>较文献<span class="ff1"><span class="_ _7"></span><span class="_ _11"></span></span>节</div></div><div class="pi" data-data='{"ctm":[1.829951,0.000000,0.000000,1.829951,0.000000,0.000000]}'></div></div>
</body>
</html>