• 我是大宝呀
    了解作者
  • R language
    开发工具
  • 1KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 0
    下载次数
  • 2019-12-10 15:42
    上传日期
R语言ggplot2画图程序,可以根据程序对数据进行画图
ggplot2.rar
  • Lecture1.R
    3.5KB
内容介绍
#Referrence Book #ggplot2: Elegant Graphics for Data Analysis (Use R!): #http://www.amazon.com/ggplot2-Elegant-Graphics-Data-Analysis/dp/0387981403 #R Graphics Cookbook: #http://www.cookbook-r.com/Graphs/ #http://www.amazon.com/R-Graphics-Cookbook-Winston-Chang/dp/1449316956 #install.packages("ggplot2") library(ggplot2) #Scatter Plot plot(mtcars$wt, mtcars$mpg) #Line Graph plot(pressure$temperature, pressure$pressure, type="l") points(pressure$temperature, pressure$pressure) #add points lines(pressure$temperature, pressure$pressure/2, type="l",col="red") points(pressure$temperature, pressure$pressure/2,col="red") #Bar Graph barplot(table(mtcars$cyl)) #Histogram hist(mtcars$mpg, breaks=10) #Box Plot boxplot(mtcars$mpg) #Plotting a Function Curve curve(x^3 - 5*x, from=-4, to=4) myfun <- function(xvar) { 1/(1 + exp(-xvar + 10)) } curve(myfun(x), from=0, to=20) #Basic use dat=diamonds qplot(carat, price, data = diamonds) qplot(log(carat), log(price), data = diamonds) qplot(carat, x * y * z, data = diamonds) #Colour, size, shape and other aesthetic attributes dsmall = diamonds[sample(nrow(diamonds), 100), ] qplot(carat, price, data = dsmall, colour = color) qplot(carat, price, data = dsmall, shape = cut) #make a semi-transparent colour, from 0 to 1 qplot(carat, price, data = diamonds, alpha = I(1/10)) qplot(carat, price, data = diamonds, alpha = I(1/100)) qplot(carat, price, data = diamonds, alpha = I(1/200)) #Plot geoms #geom = "point" draws points to produce a scatterplot. This is the default #when you supply both x and y arguments to qplot(). #geom = "smooth" fits a smoother to the data and displays the smooth and #its standard error. #geom = "boxplot" produces a box-and-whisker plot to summarise the #distribution of a set of points. #geom = "path" and geom = "line" draw lines between the data points. #Traditionally these are used to explore relationships between time and #another variable, but lines may be used to join observations connected in #some other way. #geom = "histogram" #geom = "freqpoly" #geom = "density" #geom = "bar" qplot(carat, price, data = dsmall, geom = c("point", "smooth")) library(splines) qplot(carat, price, data = dsmall, geom = c("point", "smooth"), method = "lm") qplot(carat, price, data = dsmall, geom = c("point", "smooth"), method = "lm", formula = y ~ ns(x,5)) #color, fill qplot(color, price, data = dsmall, geom = "boxplot") qplot(color, price, data = diamonds, geom = "boxplot",fill=I("blue")) qplot(color, price, data = dsmall, geom = "boxplot",size=2) #geom_boxplot() qplot(color, price, data = dsmall, geom = "boxplot") + geom_boxplot(outlier.colour = "green", outlier.size = 10, fill = "red", colour = "blue", size=2) qplot(carat, data = diamonds, geom = "histogram",colour=color,fill=color) qplot(carat, data = diamonds, geom = "density") qplot(carat, data = diamonds, geom = "density", color = color) qplot(carat, data = diamonds, geom = "density", fill = color) qplot(color, data = diamonds, geom = "bar",fill=color) qplot(date, unemploy / pop, data = economics, geom = "line") qplot(date, uempmed, data = economics, geom = "line") qplot(unemploy / pop, uempmed, data = economics, geom = c("point", "path")) year = function(x) as.POSIXlt(x)$year + 1900 qplot(unemploy / pop, uempmed, data = economics, geom = "path", colour = year(date))
评论
    相关推荐
    • nnet
      R scripts in nnet, R demo and ref.
    • drawingPicture.zip
      R语言运用ggplot2按转包绘制时间折线图
    • matlabcnhelp.rar
      matlab中文帮助很难找的,快速下载
    • MobilePolice.rar
      移动警察,车牌识别,车牌定位系统源代码,已经运用在移动车载稽查系统中。
    • SVM(matlab).rar
      支持向量机(SVM)实现的分类算法源码[matlab]
    • svm.zip
      用MATLAB编写的svm源程序,可以实现支持向量机,用于特征分类或提取
    • Classification-MatLab-Toolbox.rar
      模式识别matlab工具箱,包括SVM,ICA,PCA,NN等等模式识别算法,很有参考价值
    • VC++人脸定位实例.rar
      一个经典的人脸识别算法实例,提供人脸五官定位具体算法及两种实现流程.
    • QPSK_Simulink.rar
      QPSK的Matlab/Simulink的调制解调仿真系统,给出接收信号眼图及系统仿真误码率,包含载波恢复,匹配滤波,定时恢复等重要模块,帮助理解QPSK的系统
    • LPRBPDemo2009KV.rar
      车牌识别,神经网络算法,识别率高达95%,识别时间低于80ms。