• 牛牛和妞妞
    了解作者
  • matlab
    开发工具
  • 754KB
    文件大小
  • gz
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 2
    下载次数
  • 2020-04-13 22:26
    上传日期
Matlab曲波变换工具箱,安装在matlab上,可以应用曲波变换
CurveLab-2.1.2.tar.gz
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6275bbe616f2c0769c2bd8b0/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6275bbe616f2c0769c2bd8b0/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Curv<span class="_ _0"></span>eLab<span class="_ _1"> </span>T<span class="_ _2"></span>o<span class="_ _3"></span>olb<span class="_ _3"></span>o<span class="_ _0"></span>x,<span class="_ _1"> </span>V<span class="_ _2"></span>ersion<span class="_ _1"> </span>2.0.3</div><div class="t m0 x2 h3 y2 ff2 fs1 fc0 sc0 ls0 ws0">Emman<span class="_ _0"></span>uel<span class="_ _4"> </span>Cand<span class="_ _0"></span>`<span class="_ _5"></span>es,<span class="_ _4"> </span>Lauren<span class="_ _0"></span>t<span class="_ _4"> </span>Demanet,<span class="_ _6"> </span>Lexing<span class="_ _6"> </span>Ying</div><div class="t m0 x3 h4 y3 ff3 fs2 fc0 sc0 ls0 ws0">1<span class="_ _7"> </span>In<span class="_ _0"></span>tro<span class="_ _3"></span>duction</div><div class="t m0 x3 h5 y4 ff4 fs3 fc0 sc0 ls0 ws0">Curv<span class="_ _0"></span>eLab<span class="_ _8"> </span>is<span class="_ _1"> </span>a<span class="_ _8"> </span>collection<span class="_ _1"> </span>of<span class="_ _8"> </span>Matlab<span class="_ _1"> </span>and<span class="_ _1"> </span>C++<span class="_ _8"> </span>programs<span class="_ _1"> </span>for<span class="_ _8"> </span>the<span class="_ _1"> </span><span class="ff5">F<span class="_ _0"></span>ast<span class="_ _1"> </span>Discr<span class="_ _0"></span>ete<span class="_ _8"> </span>Curvelet</span></div><div class="t m0 x3 h5 y5 ff5 fs3 fc0 sc0 ls0 ws0">T<span class="_ _9"></span>r<span class="_ _0"></span>ansform<span class="_ _6"> </span><span class="ff4">in<span class="_ _a"> </span>t<span class="_ _0"></span>wo<span class="_ _a"> </span>and<span class="_ _6"> </span>three<span class="_ _a"> </span>dimensions.</span></div><div class="t m0 x3 h5 y6 ff4 fs3 fc0 sc0 ls0 ws0">F<span class="_ _9"></span>or<span class="_ _a"> </span>the<span class="_ _a"> </span>2d<span class="_ _a"> </span>curv<span class="_ _0"></span>elet<span class="_ _a"> </span>transform,<span class="_ _a"> </span>the<span class="_ _a"> </span>soft<span class="_ _0"></span>w<span class="_ _0"></span>are<span class="_ _a"> </span>pack<span class="_ _9"></span>age<span class="_ _a"> </span>includes<span class="_ _a"> </span>t<span class="_ _0"></span>wo<span class="_ _b"> </span>distinct<span class="_ _b"> </span>implementations:</div><div class="t m0 x3 h5 y7 ff4 fs3 fc0 sc0 ls0 ws0">the<span class="_ _b"> </span>wrapping-based<span class="_ _c"> </span>transform<span class="_ _c"> </span>and<span class="_ _b"> </span>the<span class="_ _c"> </span>transform<span class="_ _b"> </span>using<span class="_ _c"> </span>unequally-spaced<span class="_ _b"> </span>fast<span class="_ _c"> </span>F<span class="_ _9"></span>ourier<span class="_ _b"> </span>trans-</div><div class="t m0 x3 h5 y8 ff4 fs3 fc0 sc0 ls0 ws0">form<span class="_ _d"> </span>(USFFT).<span class="_ _d"> </span>Both<span class="_ _d"> </span>v<span class="_ _9"></span>ariants<span class="_ _d"> </span>are<span class="_ _d"> </span>based<span class="_ _d"> </span>on<span class="_ _d"> </span>the<span class="_ _d"> </span>Curv<span class="_ _0"></span>elet<span class="_ _d"> </span>transform<span class="_ _d"> </span>as<span class="_ _d"> </span>describ<span class="_ _3"></span>ed<span class="_ _d"> </span>in<span class="_ _d"> </span>&#8216;New</div><div class="t m0 x3 h5 y9 ff4 fs3 fc0 sc0 ls0 ws0">Tigh<span class="_ _0"></span>t<span class="_ _a"> </span>F<span class="_ _9"></span>rames<span class="_ _b"> </span>of<span class="_ _a"> </span>Curv<span class="_ _0"></span>elets<span class="_ _a"> </span>and<span class="_ _a"> </span>Optimal<span class="_ _b"> </span>Representations<span class="_ _b"> </span>of<span class="_ _b"> </span>Ob<span class="_ _e"></span>jects<span class="_ _b"> </span>with<span class="_ _a"> </span>Piecewise<span class="_ _a"> </span><span class="ff6">C</span></div><div class="t m0 x4 h6 ya ff7 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x5 h5 y9 ff4 fs3 fc0 sc0 ls0 ws0">Sin-</div><div class="t m0 x3 h5 yb ff4 fs3 fc0 sc0 ls0 ws0">gularities&#8217;,<span class="_ _1"> </span><span class="ff5">Comm.<span class="_ _f"> </span>Pur<span class="_ _0"></span>e<span class="_ _1"> </span>Appl.<span class="_ _f"> </span>Math.<span class="_ _f"> </span><span class="ff8">57<span class="_ _10"> </span><span class="ff4">(2004)<span class="_ _10"> </span>219-266.<span class="_ _f"> </span>The<span class="_ _1"> </span>implemen<span class="_ _0"></span>tation<span class="_ _1"> </span>is<span class="_ _10"> </span>also</span></span></span></div><div class="t m0 x3 h5 yc ff4 fs3 fc0 sc0 ls0 ws0">discussed<span class="_ _1"> </span>in<span class="_ _10"> </span>detail<span class="_ _1"> </span>in<span class="_ _10"> </span>&#8216;F<span class="_ _9"></span>ast<span class="_ _1"> </span>Discrete<span class="_ _10"> </span>Curvelet<span class="_ _10"> </span>T<span class="_ _9"></span>ransforms&#8217;,<span class="_ _8"> </span><span class="ff5">Multisc<span class="_ _0"></span>ale<span class="_ _1"> </span>Mo<span class="_ _9"></span>del.<span class="_ _11"> </span>Simul.<span class="_ _11"> </span><span class="ff8">5</span></span></div><div class="t m0 x3 h5 yd ff4 fs3 fc0 sc0 ls0 ws0">(2006),<span class="_ _a"> </span>no.<span class="_ _1"> </span>3,<span class="_ _a"> </span>861-899.<span class="_ _10"> </span>W<span class="_ _9"></span>e<span class="_ _6"> </span>advise<span class="_ _a"> </span>users<span class="_ _6"> </span>to<span class="_ _6"> </span>becom<span class="_"> </span>e<span class="_ _6"> </span>familiar<span class="_ _6"> </span>with<span class="_ _a"> </span>these<span class="_ _6"> </span>references.</div><div class="t m0 x3 h5 ye ff4 fs3 fc0 sc0 ls0 ws0">The<span class="_ _6"> </span>t<span class="_ _0"></span>wo<span class="_ _a"> </span>implementations<span class="_ _6"> </span>di&#64256;er<span class="_ _6"> </span>b<span class="_ _0"></span>y<span class="_ _6"> </span>the<span class="_ _6"> </span>choice<span class="_ _a"> </span>of<span class="_ _6"> </span>spatial<span class="_ _6"> </span>grid<span class="_ _6"> </span>used<span class="_ _6"> </span>to<span class="_ _6"> </span>translate<span class="_ _6"> </span>curvelets<span class="_ _a"> </span>at</div><div class="t m0 x3 h5 yf ff4 fs3 fc0 sc0 ls0 ws0">eac<span class="_ _0"></span>h<span class="_ _6"> </span>scale<span class="_ _6"> </span>and<span class="_ _a"> </span>angle.</div><div class="t m0 x6 h5 y10 ff9 fs3 fc0 sc0 ls0 ws0">&#8226;<span class="_ _8"> </span><span class="ff4">The<span class="_ _b"> </span>USFFT<span class="_ _c"> </span>version<span class="_ _b"> </span>uses<span class="_ _c"> </span>a<span class="_ _b"> </span>decimated<span class="_ _b"> </span>rectangular<span class="_ _b"> </span>grid<span class="_ _b"> </span>tilted<span class="_ _b"> </span>along<span class="_ _c"> </span>the<span class="_ _b"> </span>main<span class="_ _b"> </span>direction</span></div><div class="t m0 x7 h5 y11 ff4 fs3 fc0 sc0 ls0 ws0">of<span class="_ _b"> </span>each<span class="_ _b"> </span>curvelet.<span class="_ _10"> </span>There<span class="_ _b"> </span>is<span class="_ _a"> </span>one<span class="_ _a"> </span>suc<span class="_ _0"></span>h<span class="_ _a"> </span>grid<span class="_ _a"> </span>p<span class="_ _3"></span>er<span class="_ _b"> </span>scale<span class="_ _a"> </span>and<span class="_ _a"> </span>angle,<span class="_ _a"> </span>and<span class="_ _a"> </span>this<span class="_ _a"> </span>implementation</div><div class="t m0 x7 h5 y12 ff4 fs3 fc0 sc0 ls0 ws0">is<span class="_ _4"> </span>therefore<span class="_ _4"> </span>v<span class="_ _0"></span>ery<span class="_ _4"> </span>close<span class="_ _4"> </span>to<span class="_ _4"> </span>the<span class="_ _4"> </span>de&#64257;nition<span class="_ _4"> </span>given<span class="_ _6"> </span>in<span class="_ _4"> </span>the<span class="_ _4"> </span>ab<span class="_ _3"></span>o<span class="_ _0"></span>v<span class="_ _0"></span>e<span class="_ _4"> </span>reference.<span class="_ _12"> </span>F<span class="_ _9"></span>or<span class="_ _6"> </span>the<span class="_ _4"> </span>digital</div><div class="t m0 x7 h5 y13 ff4 fs3 fc0 sc0 ls0 ws0">transform,<span class="_ _d"> </span>tilting<span class="_ _10"> </span>the<span class="_ _4"> </span>grids<span class="_ _d"> </span>induces<span class="_ _10"> </span>a<span class="_ _d"> </span>resampling<span class="_ _d"> </span>of<span class="_ _d"> </span>the<span class="_ _d"> </span>F<span class="_ _9"></span>ourier<span class="_ _d"> </span>transform<span class="_ _d"> </span>on<span class="_ _d"> </span>semi-</div><div class="t m0 x7 h5 y14 ff4 fs3 fc0 sc0 ls0 ws0">regular<span class="_ _6"> </span>grids,<span class="_ _4"> </span>hence<span class="_ _6"> </span>the<span class="_ _4"> </span>use<span class="_ _6"> </span>of<span class="_ _4"> </span>a<span class="_ _6"> </span>(p<span class="_ _3"></span>erhaps<span class="_ _6"> </span>nov<span class="_ _0"></span>el)<span class="_ _6"> </span>USFFT<span class="_ _4"> </span>routine.<span class="_ _8"> </span>F<span class="_ _9"></span>or<span class="_ _6"> </span>the<span class="_ _4"> </span>inv<span class="_ _0"></span>ersion,</div><div class="t m0 x7 h5 y15 ff4 fs3 fc0 sc0 ls0 ws0">a<span class="_ _a"> </span>conjugate-gradient<span class="_ _a"> </span>solver<span class="_ _a"> </span>rapidly<span class="_ _6"> </span>con<span class="_ _0"></span>verges<span class="_ _a"> </span>to<span class="_ _a"> </span>the<span class="_ _6"> </span>solution.</div><div class="t m0 x6 h5 y16 ff9 fs3 fc0 sc0 ls0 ws0">&#8226;<span class="_ _8"> </span><span class="ff4">The<span class="_ _d"> </span>wrapping<span class="_ _10"> </span>v<span class="_ _0"></span>ersion<span class="_ _d"> </span>uses,<span class="_ _10"> </span>instead,<span class="_ _10"> </span>a<span class="_ _d"> </span>decimated<span class="_ _10"> </span>rectangular<span class="_ _d"> </span>grid<span class="_ _d"> </span>aligned<span class="_ _10"> </span>with<span class="_ _d"> </span>the</span></div><div class="t m0 x7 h5 y17 ff4 fs3 fc0 sc0 ls0 ws0">image<span class="_ _a"> </span>axes.<span class="_ _10"> </span>F<span class="_ _9"></span>or<span class="_ _a"> </span>a<span class="_ _6"> </span>giv<span class="_ _0"></span>en<span class="_ _6"> </span>scale,<span class="_ _a"> </span>there<span class="_ _a"> </span>are<span class="_ _6"> </span>essen<span class="_ _0"></span>tially<span class="_ _6"> </span>t<span class="_ _0"></span>wo<span class="_ _b"> </span>such<span class="_ _b"> </span>grids<span class="_ _6"> </span>(decimated<span class="_ _a"> </span>mostly</div><div class="t m0 x7 h5 y18 ff4 fs3 fc0 sc0 ls0 ws0">horizon<span class="_ _0"></span>tally<span class="_ _10"> </span>or<span class="_ _10"> </span>mostly<span class="_ _d"> </span>vertically).<span class="_ _13"> </span>The<span class="_ _10"> </span>resulting<span class="_ _d"> </span>sampling<span class="_ _10"> </span>is<span class="_ _10"> </span>not<span class="_ _d"> </span>as<span class="_ _10"> </span>faithful<span class="_ _10"> </span>to<span class="_ _d"> </span>the</div><div class="t m0 x7 h5 y19 ff4 fs3 fc0 sc0 ls0 ws0">original<span class="_ _4"> </span>transform,<span class="_ _d"> </span>but<span class="_ _4"> </span>the<span class="_ _d"> </span>basis<span class="_ _4"> </span>functions<span class="_ _4"> </span>are<span class="_ _d"> </span>curv<span class="_ _0"></span>elets<span class="_ _d"> </span>as<span class="_ _4"> </span>muc<span class="_ _0"></span>h<span class="_ _4"> </span>as<span class="_ _4"> </span>in<span class="_ _d"> </span>the<span class="_ _4"> </span>USFFT-</div><div class="t m0 x7 h5 y1a ff4 fs3 fc0 sc0 ls0 ws0">based<span class="_ _b"> </span>implemen<span class="_ _0"></span>tation.<span class="_ _10"> </span>Since<span class="_ _b"> </span>no<span class="_ _b"> </span>in<span class="_ _0"></span>terp<span class="_ _3"></span>olation<span class="_ _b"> </span>is<span class="_ _b"> </span>necessary<span class="_ _b"> </span>in<span class="_ _b"> </span>the<span class="_ _b"> </span>frequency<span class="_ _b"> </span>plane,<span class="_ _b"> </span>the</div><div class="t m0 x7 h5 y1b ff4 fs3 fc0 sc0 ls0 ws0">transform<span class="_ _a"> </span>is<span class="_ _6"> </span>a<span class="_ _6"> </span>n<span class="_ _0"></span>umerical<span class="_ _6"> </span>isometry<span class="_ _a"> </span>and<span class="_ _6"> </span>can<span class="_ _6"> </span>b<span class="_ _3"></span>e<span class="_ _a"> </span>inv<span class="_ _0"></span>erted<span class="_ _a"> </span>by<span class="_ _a"> </span>its<span class="_ _6"> </span>adjoin<span class="_ _0"></span>t.</div><div class="t m0 x3 h5 y1c ff4 fs3 fc0 sc0 ls0 ws0">F<span class="_ _9"></span>or<span class="_ _b"> </span>the<span class="_ _a"> </span>3d<span class="_ _a"> </span>curvelet<span class="_ _b"> </span>transform,<span class="_ _a"> </span>the<span class="_ _a"> </span>softw<span class="_ _0"></span>are<span class="_ _a"> </span>in<span class="_ _a"> </span>this<span class="_ _a"> </span>pac<span class="_ _0"></span>k<span class="_ _0"></span>age<span class="_ _a"> </span>is<span class="_ _a"> </span>an<span class="_ _a"> </span>extension<span class="_ _a"> </span>of<span class="_ _a"> </span>the<span class="_ _a"> </span>wrapping</div><div class="t m0 x3 h5 y1d ff4 fs3 fc0 sc0 ls0 ws0">v<span class="_ _0"></span>ersion<span class="_ _d"> </span>in<span class="_ _4"> </span>2d.<span class="_ _14"> </span>Due<span class="_ _4"> </span>to<span class="_ _d"> </span>the<span class="_ _4"> </span>large<span class="_ _4"> </span>size<span class="_ _d"> </span>of<span class="_ _4"> </span>the<span class="_ _d"> </span>3d<span class="_ _4"> </span>data<span class="_ _4"> </span>and<span class="_ _d"> </span>the<span class="_ _4"> </span>increasing<span class="_ _4"> </span>redundancy<span class="_ _d"> </span>of<span class="_ _4"> </span>the</div><div class="t m0 x3 h5 y1e ff4 fs3 fc0 sc0 ls0 ws0">curv<span class="_ _0"></span>elet<span class="_ _6"> </span>transform,<span class="_ _6"> </span>three<span class="_ _a"> </span>di&#64256;erent<span class="_ _a"> </span>implementation<span class="_ _b"> </span>are<span class="_ _6"> </span>included:</div><div class="t m0 x6 h5 y1f ff9 fs3 fc0 sc0 ls0 ws0">&#8226;<span class="_ _8"> </span><span class="ff4">The<span class="_ _6"> </span>in-core<span class="_ _6"> </span>implementation<span class="_ _6"> </span>whic<span class="_ _0"></span>h<span class="_ _4"> </span>stores<span class="_ _6"> </span>b<span class="_ _3"></span>oth<span class="_ _6"> </span>the<span class="_ _6"> </span>input<span class="_ _4"> </span>data<span class="_ _6"> </span>and<span class="_ _4"> </span>the<span class="_ _6"> </span>curvelet<span class="_ _6"> </span>coef-</span></div><div class="t m0 x7 h5 y20 ff4 fs3 fc0 sc0 ls0 ws0">&#64257;cien<span class="_ _0"></span>ts<span class="_ _6"> </span>in<span class="_ _6"> </span>the<span class="_ _a"> </span>memory<span class="_ _6"> </span>(suitable<span class="_ _a"> </span>for<span class="_ _6"> </span>small<span class="_ _6"> </span>size<span class="_ _a"> </span>data<span class="_ _6"> </span>set).</div><div class="t m0 x6 h5 y21 ff9 fs3 fc0 sc0 ls0 ws0">&#8226;<span class="_ _8"> </span><span class="ff4">The<span class="_ _b"> </span>out-core<span class="_ _b"> </span>implementation<span class="_ _b"> </span>whic<span class="_ _0"></span>h<span class="_ _a"> </span>stores<span class="_ _b"> </span>the<span class="_ _a"> </span>input<span class="_ _b"> </span>data<span class="_ _a"> </span>in<span class="_ _b"> </span>the<span class="_ _b"> </span>memory<span class="_ _a"> </span>and<span class="_ _b"> </span>most<span class="_ _a"> </span>of</span></div><div class="t m0 x7 h5 y22 ff4 fs3 fc0 sc0 ls0 ws0">the<span class="_ _a"> </span>curvelet<span class="_ _a"> </span>co<span class="_ _3"></span>e&#64259;cien<span class="_ _0"></span>ts<span class="_ _6"> </span>on<span class="_ _6"> </span>the<span class="_ _a"> </span>disc<span class="_ _6"> </span>(suitable<span class="_ _6"> </span>for<span class="_ _a"> </span>medium<span class="_ _6"> </span>size<span class="_ _6"> </span>data<span class="_ _a"> </span>set).</div><div class="t m0 x6 h5 y23 ff9 fs3 fc0 sc0 ls0 ws0">&#8226;<span class="_ _8"> </span><span class="ff4">The<span class="_ _d"> </span>MPI-based<span class="_ _d"> </span>parallel<span class="_ _d"> </span>implemen<span class="_ _0"></span>tation<span class="_ _d"> </span>which<span class="_ _4"> </span>distributes<span class="_ _d"> </span>b<span class="_ _3"></span>oth<span class="_ _d"> </span>input<span class="_ _d"> </span>data<span class="_ _d"> </span>and<span class="_ _d"> </span>the</span></div><div class="t m0 x7 h5 y24 ff4 fs3 fc0 sc0 ls0 ws0">curv<span class="_ _0"></span>elet<span class="_ _6"> </span>co<span class="_ _3"></span>e&#64259;cien<span class="_ _0"></span>ts<span class="_ _6"> </span>on<span class="_ _6"> </span>m<span class="_ _0"></span>ultiple<span class="_ _6"> </span>no<span class="_ _3"></span>des.<span class="_ _10"> </span>The<span class="_ _a"> </span>parallel<span class="_ _6"> </span>implementation<span class="_ _a"> </span>can<span class="_ _6"> </span>successfully</div><div class="t m0 x7 h5 y25 ff4 fs3 fc0 sc0 ls0 ws0">handle<span class="_ _a"> </span>input<span class="_ _6"> </span>data<span class="_ _6"> </span>of<span class="_ _a"> </span>size<span class="_ _6"> </span>1<span class="ff6">k<span class="_ _c"> </span><span class="ff9">&#215;<span class="_ _c"> </span></span></span>1<span class="ff6">k<span class="_ _c"> </span><span class="ff9">&#215;<span class="_ _15"> </span></span></span>1<span class="ff6">k<span class="_ _3"></span></span>.</div><div class="t m0 x8 h5 y26 ff4 fs3 fc0 sc0 ls0 ws0">1</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • CurveLab-2.1.3 - 副本.zip
      可用于图像处理的曲波变换程序包,包括MATLAB和C++实现
    • 基于matlab的纹理特征.zip
      此文件收集了一些经常用到的纹理特征提取的代码,包括GLCM(灰度共生矩阵)、GGCM、GLDS(灰度差分统计)、Tamura纹理特征、LBP(局部二值模式)、HMRF、gabor变换、小波变换、Laws纹理测量等,希望给有需要的人省去...
    • 曲波变换matlab代码-curvelops:适用于CurveLab2D和3DCurvelet转换的Python包装器
      曲波变换matlab代码弯嘴 用于2D和3D Curvelet转换的Python包装器。 它使用设计框架以无矩阵线性运算的形式提供正向和逆向Curvelet变换。 如果您仍然感到困惑,请查看下面的或! 安装 安装curvelops需要以下组件: ...
    • 图像压缩:我们使用曲波变换来产生高压缩比和低 PSNR-matlab开发
      客观的实现曲波变换对图像进行压缩,实现比JPEG2000、SPIHT等其他现有压缩算法更高的压缩率基于小波的算法只能再现点和直线理论上,curvelets 可以使用更少的系数来存储弯曲的边缘。 从而提供更高压缩比的可能性
    • 曲波变换(Curvelet)融合算法工具箱
      用于图像融合的曲波变换工具箱,包括MATALAB和C++代码。
    • Ridgelet 和 Curvelet 第一代工具箱:用于第一代Curvelet 和 ridgelet 变换Matlab
      使用脊波变换定义第一代曲波。 该包包含曲线波和脊波的 MATLAB 实现,如 [1] 中所述。 它还包括用于在曲线波域中进行图像去噪的 MATLAB 程序。 [1] JL Starck、EJ Candes 和 DL Donoho,“用于图像去噪的曲线波变换...
    • 基于曲波变换的医学图像噪声抑制
      对传统去噪算法、小波去噪算法和曲波去噪算法的理论进行了介绍,采用Matlab编程对两种算法进行了测试。对原图加不同类型和不同强度的噪声,采用小波去噪和曲波去噪算法对这些图片进行去噪仿真实验。计算不同噪声图片...
    • curvelet-matlab-1.zip
      Curvelet 曲波变换matlab代码压缩包,曲波(Curvelet)变换
    • curvelet.rar
      根据曲波变换Curvelet,用MATLAB实现对二维图像信号的分解和重建,计算图像熵和信噪比。内涵Curvelet工具包。
    • codesforimageprocessing.rar
      实现简单图像处理,包括256色转灰度图、Hough变换、Walsh变换、中值滤波、二值化变换、亮度增减、傅立叶变换、反色、取对数、取指数、图像平移、图像旋转、图像细化、图像缩放、图像镜像、均值滤波、对比度拉伸、拉普拉斯锐化(边缘检测)、方块编码、梯度锐化、灰度均衡、直方图均衡、离散余弦变换、维纳滤波处理、逆滤波处理、阈值变换、高斯平滑。