commande mode glissant.zip

  • abedellahtizi
    了解作者
  • matlab
    开发工具
  • 34KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 3
    下载次数
  • 2020-04-14 00:16
    上传日期
commande par mode glissant
commande mode glissant.zip
  • example.slx
    24.3KB
  • data.m
    610B
  • SMC.docx
    13.7KB
  • license.txt
    1.5KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/62660a244c65f4125925a1d8/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/62660a244c65f4125925a1d8/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">Sliding Mode Control</div><div class="t m0 x2 h4 y3 ff2 fs1 fc0 sc0 ls0 ws0">This<span class="_ _0"></span> <span class="_ _0"></span>simulation<span class="_ _0"></span> <span class="_ _0"></span>is<span class="_ _0"> </span> <span class="_ _0"> </span>use<span class="_ _0"> </span> <span class="_ _1"> </span>to<span class="_ _0"></span> <span class="_ _0"></span>demonstrate<span class="_ _0"></span> <span class="_ _0"></span>the<span class="_ _0"></span> <span class="_ _0"></span>robustness<span class="_ _0"> </span> <span class="_ _0"> </span>property<span class="_ _0"> </span> <span class="_ _0"> </span>of<span class="_ _0"> </span> <span class="_ _0"> </span>sliding<span class="_ _0"> </span> <span class="_ _1"> </span>mode</div><div class="t m0 x2 h4 y4 ff2 fs1 fc0 sc0 ls0 ws0">control.<span class="_ _2"></span> <span class="_ _3"></span> <span class="_ _2"></span>Here,<span class="_ _2"></span> <span class="_ _2"></span>second<span class="_ _2"></span> <span class="_ _2"></span>order<span class="_ _2"></span> <span class="_ _2"></span>stable<span class="_ _2"></span> <span class="_ _2"></span>system<span class="_ _2"></span> <span class="_ _2"></span>is<span class="_ _2"></span> <span class="_ _2"></span>consider,<span class="_ _2"></span> <span class="_ _2"></span>which<span class="_ _2"></span> <span class="_ _2"></span>means<span class="_ _2"></span> <span class="_ _2"></span>that<span class="_ _2"></span> <span class="_ _2"></span>states<span class="_ _2"></span> <span class="_ _4"></span>of</div><div class="t m0 x2 h4 y5 ff2 fs1 fc0 sc0 ls0 ws0">the system will reach the equilibrium in i<span class="_ _5"></span>nfinite time.</div><div class="t m0 x2 h4 y6 ff2 fs1 fc0 sc0 ls0 ws0">The transfer function of system is given </div><div class="t m0 x3 h5 y7 ff3 fs1 fc0 sc0 ls0 ws0">G(s)=</div></div><div class="c x4 y8 w3 h6"><div class="t m0 x5 h7 y9 ff2 fs2 fc0 sc0 ls0 ws0">1</div><div class="t m0 x6 h8 ya ff3 fs2 fc0 sc0 ls0 ws0">s</div><div class="t m0 x7 h9 yb ff2 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x8 h7 ya ff4 fs2 fc0 sc0 ls0 ws0">+<span class="_ _3"> </span><span class="ff2">5<span class="_ _0"> </span><span class="ff3">s<span class="_ _2"></span></span></span>+<span class="_ _0"> </span><span class="ff2">6</span></div></div><div class="c x0 y1 w2 h2"><div class="t m0 x9 h4 yc ff2 fs1 fc0 sc0 ls0 ws0">1.<span class="_ _6"> </span>First,<span class="_ _0"></span> <span class="_ _3"></span>we<span class="_ _0"></span> <span class="_ _3"></span>will<span class="_ _0"></span> <span class="_ _0"></span>observe<span class="_ _3"></span> <span class="_ _0"></span>the<span class="_ _0"></span> <span class="_ _3"></span>response<span class="_ _0"></span> <span class="_ _0"></span>for<span class="_ _3"></span> <span class="_ _0"></span>system<span class="_ _3"></span> <span class="_ _0"></span>without<span class="_ _0"></span> <span class="_ _3"></span>disturbance<span class="_ _0"></span> <span class="_ _0"></span>using</div><div class="t m0 xa h4 yd ff2 fs1 fc0 sc0 ls0 ws0">state<span class="_ _0"></span> <span class="_ _0"> </span>feedback<span class="_ _1"> </span> <span class="_ _0"></span>controller.<span class="_ _0"> </span> <span class="_ _1"> </span>In<span class="_ _0"></span> <span class="_ _0"> </span>order<span class="_ _0"> </span> <span class="_ _1"> </span>to<span class="_ _0"></span> <span class="_ _0"></span>do<span class="_ _0"> </span> <span class="_ _1"> </span>so<span class="_ _0"></span> <span class="_ _0"> </span>keep<span class="_ _0"> </span> <span class="_ _1"> </span>the<span class="_ _0"></span> <span class="_ _0"> </span>switch<span class="_ _0"> </span> <span class="_ _1"> </span>2<span class="_ _0"></span> <span class="_ _0"> </span>in<span class="_ _0"> </span> <span class="_ _1"> </span>SW<span class="_ _0"></span> <span class="_ _0"> </span>1</div><div class="t m0 xa h4 ye ff2 fs1 fc0 sc0 ls0 ws0">position (open <span class="_ _5"></span>plant). Observer<span class="_ _5"></span> the <span class="_ _5"></span>response, you wil<span class="_ _5"></span>l find <span class="_ _5"></span>that both<span class="_ _5"></span> the state</div><div class="t m0 xa h4 yf ff2 fs1 fc0 sc0 ls0 ws0">will reach to the zero in infinite time, </div><div class="t m0 x9 h4 y10 ff2 fs1 fc0 sc0 ls0 ws0">2.<span class="_ _6"> </span>In<span class="_ _2"></span> <span class="_ _2"></span>next<span class="_ _2"></span> <span class="_ _2"></span>step<span class="_ _2"></span> <span class="_ _2"></span>we<span class="_ _2"></span> <span class="_ _2"></span>will<span class="_ _2"></span> <span class="_ _2"></span>introduce<span class="_ _2"></span> <span class="_ _2"></span>the<span class="_ _2"></span> <span class="_ _2"></span>sinusoidal<span class="_ _2"></span> <span class="_ _2"></span>disturbance<span class="_ _2"></span> <span class="_ _2"></span>by<span class="_ _2"></span> <span class="_ _2"></span>moving<span class="_ _2"></span> <span class="_ _2"></span>switch</div><div class="t m0 xa h4 y11 ff2 fs1 fc0 sc0 ls0 ws0">from<span class="_ _1"> </span> <span class="_ _0"> </span>SW1<span class="_ _7"> </span> <span class="_ _0"> </span>position<span class="_ _1"> </span> <span class="_ _7"> </span>to<span class="_ _0"> </span> <span class="_ _7"> </span>SW<span class="_ _0"> </span> <span class="_ _1"> </span>2<span class="_ _1"> </span> <span class="_ _1"> </span>position<span class="_ _1"> </span> <span class="_ _1"> </span>and<span class="_ _1"> </span> <span class="_ _1"> </span>observer<span class="_ _1"> </span> <span class="_ _1"> </span>the<span class="_ _1"> </span> <span class="_ _1"> </span>response<span class="_ _1"> </span> <span class="_ _1"> </span>of<span class="_ _1"> </span> <span class="_ _1"> </span>the</div><div class="t m0 xa h4 y12 ff2 fs1 fc0 sc0 ls0 ws0">system; you will find that both the state will oscillate.<span class="_ _5"></span> </div><div class="t m0 x9 h4 y13 ff2 fs1 fc0 sc0 ls0 ws0">3.<span class="_ _6"> </span>In<span class="_ _2"></span> <span class="_ _2"></span>the<span class="_ _2"></span> <span class="_ _4"></span>last<span class="_ _2"></span> <span class="_ _2"></span>step<span class="_ _4"></span> <span class="_ _2"></span>will<span class="_ _2"></span> <span class="_ _2"></span>apply<span class="_ _4"></span> <span class="_ _2"></span>the<span class="_ _2"></span> <span class="_ _4"></span>SMC<span class="_ _2"></span> <span class="_ _2"></span>controller<span class="_ _2"></span> <span class="_ _4"></span>to<span class="_ _2"></span> <span class="_ _2"></span>the<span class="_ _4"></span> <span class="_ _2"></span>plant<span class="_ _2"></span> <span class="_ _4"></span>with<span class="_ _2"></span> <span class="_ _2"></span>disturbance</div><div class="t m0 xa h4 y14 ff2 fs1 fc0 sc0 ls0 ws0">and observer the response. </div></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐