<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6267b9be4f8811599ef19e4f/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6267b9be4f8811599ef19e4f/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">实验三 <span class="ff2 sc1">Fisher<span class="_ _0"> </span></span>线性判别分类器</div><div class="t m0 x2 h4 y3 ff1 fs1 fc0 sc1 ls0 ws0">本实<span class="_ _1"></span>验旨<span class="_ _1"></span>在让<span class="_ _1"></span>同学<span class="_ _1"></span>进一<span class="_ _1"></span>步了<span class="_ _1"></span>解分<span class="_ _1"></span>类器<span class="_ _1"></span>的设<span class="_ _1"></span>计概<span class="_ _1"></span>念,<span class="_ _1"></span>理解<span class="_ _1"></span>并掌<span class="_ _1"></span>握用<span class="_ _2"> </span><span class="ff3">Fisher<span class="_ _3"> </span></span>准则<span class="_ _1"></span>函数<span class="_ _1"></span>确定</div><div class="t m0 x3 h4 y4 ff1 fs1 fc0 sc1 ls0 ws0">线性决策面方法的原理及方法,并用于实际的数据分类。</div><div class="t m0 x3 h5 y5 ff1 fs2 fc0 sc0 ls0 ws0">一 实验原理</div><div class="t m0 x2 h4 y6 ff1 fs1 fc0 sc1 ls0 ws0">线性判别函数的一般形式可表示成</div><div class="t m0 x3 h4 y7 ff1 fs1 fc0 sc1 ls0 ws0">  <span class="_ _4"> </span> 其中</div><div class="t m0 x4 h6 y8 ff3 fs1 fc0 sc1 ls0 ws0"> </div><div class="t m0 x2 h4 y9 ff1 fs1 fc0 sc1 ls0 ws0">根据<span class="_ _3"> </span><span class="ff3">Fisher<span class="_ _3"> </span></span>选择投影方向<span class="_ _5"> </span><span class="ff3">W<span class="_ _3"> </span></span>的原则,即使原样<span class="_ _1"></span>本向量在该方向上<span class="_ _1"></span>的投影能兼顾类间<span class="_ _1"></span>分</div><div class="t m0 x3 h4 ya ff1 fs1 fc0 sc1 ls0 ws0">布尽可能分开,类内样本投影尽可能密集的要求,用以评价投影方向<span class="_ _3"> </span><span class="ff3">W<span class="_ _6"> </span></span>的函数为: </div><div class="t m0 x5 h4 yb ff1 fs1 fc0 sc1 ls0 ws0">  </div><div class="t m0 x3 h4 yc ff1 fs1 fc0 sc1 ls0 ws0">  <span class="_ _1"></span>上面的<span class="_ _1"></span>公式<span class="_ _1"></span>是使用<span class="_ _2"> </span><span class="ff3">Fisher<span class="_ _3"> </span></span>准则<span class="_ _1"></span>求最佳<span class="_ _1"></span>法线<span class="_ _1"></span>向量的<span class="_ _1"></span>解,该<span class="_ _1"></span>式比<span class="_ _1"></span>较重要<span class="_ _1"></span>。另外<span class="_ _1"></span>,该<span class="_ _1"></span>式这种</div><div class="t m0 x3 h4 yd ff1 fs1 fc0 sc1 ls0 ws0">形<span class="_ _7"></span>式<span class="_ _7"></span>的<span class="_ _7"></span>运<span class="_ _7"></span>算<span class="_ _7"></span>,<span class="_ _1"></span>我<span class="_ _7"></span>们<span class="_ _7"></span>称<span class="_ _7"></span>为<span class="_ _7"></span>线<span class="_ _7"></span>性<span class="_ _7"></span>变<span class="_ _7"></span>换<span class="_ _7"></span>,<span class="_ _7"></span>其<span class="_ _1"></span>中<span class="_ _8"> </span>是<span class="_ _7"></span>一<span class="_ _7"></span>个<span class="_ _7"></span>向<span class="_ _7"></span>量<span class="_ _7"></span>,</div></div><div class="c x6 ye w3 h7"><div class="t m1 x7 h8 yf ff4 fs3 fc0 sc1 ls0 ws0">S</div><div class="t m1 x8 h9 y10 ff4 fs4 fc0 sc1 ls0 ws0">W</div><div class="t m1 x8 ha y11 ff5 fs4 fc0 sc1 ls0 ws0">−<span class="_ _1"></span><span class="ff3">1</span></div></div><div class="c x0 y1 w2 h2"><div class="t m0 x9 h4 yd ff1 fs1 fc0 sc1 ls0 ws0">是</div></div><div class="c xa ye w4 h7"><div class="t m2 x7 hb y12 ff4 fs5 fc0 sc1 ls0 ws0">S</div><div class="t m2 x8 hc y13 ff4 fs6 fc0 sc1 ls0 ws0">W</div></div><div class="c x0 y1 w2 h2"><div class="t m0 xb h4 yd ff1 fs1 fc0 sc1 ls0 ws0">的<span class="_ _7"></span>逆<span class="_ _7"></span>矩<span class="_ _7"></span>阵<span class="_ _7"></span>,<span class="_ _1"></span>如</div><div class="t m0 xc h4 y14 ff1 fs1 fc0 sc1 ls0 ws0">是<span class="_ _6"> </span><span class="ff3">d<span class="_ _3"> </span></span>维,</div></div><div class="c x1 y15 w5 h7"><div class="t m2 x7 hb y16 ff4 fs5 fc0 sc1 ls0 ws0">S</div><div class="t m2 x8 hc y17 ff4 fs6 fc0 sc1 ls0 ws0">W</div></div><div class="c x0 y1 w2 h2"><div class="t m0 xd h4 y14 ff1 fs1 fc0 sc1 ls0 ws0">和</div></div><div class="c xe y15 w6 hd"><div class="t m1 x7 h8 y18 ff4 fs3 fc0 sc1 ls0 ws0">S</div><div class="t m1 x8 h9 y19 ff4 fs4 fc0 sc1 ls0 ws0">W</div><div class="t m1 x8 ha y1a ff5 fs4 fc0 sc1 ls0 ws0">−<span class="_ _1"></span><span class="ff3">1</span></div></div><div class="c x0 y1 w2 h2"><div class="t m0 xf h4 y14 ff1 fs1 fc0 sc1 ls0 ws0">都是<span class="_ _6"> </span><span class="ff3">d×d<span class="_ _3"> </span></span>维,得到的</div></div><div class="c x10 y1b w7 he"><div class="t m3 x7 hf y1c ff4 fs7 fc0 sc1 ls0 ws0">W</div><div class="t m3 x11 h10 y1d ff5 fs8 fc1 sc1 ls0 ws0">¿</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x12 h4 y14 ff1 fs1 fc0 sc1 ls0 ws0">也是一个<span class="_ _6"> </span><span class="ff3">d<span class="_ _3"> </span></span>维的向量。</div><div class="t m0 x3 h4 y1e ff1 fs1 fc0 sc1 ls0 ws0"> <span class="_ _1"></span> 向<span class="_ _1"></span>量</div></div><div class="c x13 y1f w8 h11"><div class="t m3 x7 hf y1c ff4 fs7 fc0 sc1 ls0 ws0">W</div><div class="t m3 x11 h10 y20 ff5 fs8 fc1 sc1 ls0 ws0">¿</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x14 h4 y1e ff1 fs1 fc0 sc1 ls0 ws0">就是<span class="_ _1"></span>使<span class="_ _5"> </span><span class="ff3">Fisher<span class="_ _3"> </span></span>准<span class="_ _1"></span>则函<span class="_ _1"></span>数</div></div><div class="c x15 y21 w9 h12"><div class="t m4 x7 h13 y22 ff4 fs9 fc0 sc1 ls0 ws0">J</div><div class="t m4 x16 h14 y23 ff4 fsa fc0 sc1 ls0 ws0">F</div><div class="t m4 x17 h15 y22 ff5 fs9 fc0 sc1 ls0 ws0">(<span class="_ _9"></span><span class="ff4">W<span class="_ _6"> </span></span>)</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x18 h4 y1e ff1 fs1 fc0 sc1 ls0 ws0">达极<span class="_ _1"></span>大<span class="_ _1"></span>值的<span class="_ _1"></span>解<span class="_ _1"></span>,也<span class="_ _1"></span>就是<span class="_ _1"></span>按<span class="_ _5"> </span><span class="ff3">Fisher<span class="_"> </span></span>准则<span class="_ _1"></span>将<span class="_ _3"> </span><span class="ff3">d<span class="_"> </span></span>维<span class="_ _3"> </span><span class="ff3">X</span></div><div class="t m0 x3 h4 y24 ff1 fs1 fc0 sc1 ls0 ws0">空间<span class="_ _1"></span>投影<span class="_ _1"></span>到一<span class="_ _1"></span>维<span class="_ _5"> </span><span class="ff3">Y<span class="_ _3"> </span></span>空<span class="_ _1"></span>间的<span class="_ _1"></span>最佳<span class="_ _1"></span>投影<span class="_ _1"></span>方向<span class="_ _1"></span>,该<span class="_ _1"></span>向量</div></div><div class="c x19 y25 wa h16"><div class="t m3 x7 hf y26 ff4 fs7 fc0 sc1 ls0 ws0">W</div><div class="t m3 x11 h10 y20 ff5 fs8 fc1 sc1 ls0 ws0">¿</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x1a h4 y24 ff1 fs1 fc0 sc1 ls0 ws0">的各<span class="_ _1"></span>分量<span class="_ _1"></span>值是<span class="_ _1"></span>对原<span class="_ _2"> </span><span class="ff3">d<span class="_ _3"> </span></span>维特<span class="_ _1"></span>征向<span class="_ _1"></span>量求<span class="_ _1"></span>加</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6267b9be4f8811599ef19e4f/bg2.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x3 h4 y27 ff1 fs1 fc0 sc1 ls0 ws0">权和的权值。</div><div class="t m0 x2 h4 y28 ff1 fs1 fc0 sc1 ls0 ws0">以上讨论了<span class="_ _1"></span>线性判别函数加权<span class="_ _1"></span>向量<span class="_ _2"> </span><span class="ff3">W<span class="_ _6"> </span></span>的确定<span class="_ _1"></span>方法,并讨论了使<span class="_"> </span><span class="ff3">Fish<span class="_ _a"></span>er<span class="_ _3"> </span><span class="ff1">准则函数极大<span class="_ _1"></span>的</span></span></div><div class="t m0 x3 h4 y29 ff3 fs1 fc0 sc1 ls0 ws0">d<span class="_ _6"> </span><span class="ff1">维<span class="_ _1"></span>向量</span></div></div><div class="c x1b y2a wb h17"><div class="t m5 x11 h18 y2b ff3 fsb fc0 sc1 ls0 ws0">*</div><div class="t m6 x1c h19 y2c ff4 fsc fc0 sc1 ls0 ws0">W</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x1d h4 y29 ff1 fs1 fc0 sc1 ls0 ws0"> 的计算方法<span class="_ _1"></span>,但是判别函数中<span class="_ _1"></span>的另一项</div></div><div class="c x1e y2a wc h1a"><div class="t m7 x7 h1b y2d ff4 fsd fc0 sc1 ls0 ws0">W</div><div class="t m7 x1f h1c y2e ff3 fse fc0 sc1 ls0 ws0">0</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x20 h4 y29 ff1 fs1 fc0 sc1 ls0 ws0">尚未确定,<span class="_ _1"></span>一般可采用以下几<span class="_ _1"></span>种方</div><div class="t m0 x3 h4 y2f ff1 fs1 fc0 sc1 ls0 ws0">法确定</div></div><div class="c x21 y30 wd h1d"><div class="t m7 x7 h1b y31 ff4 fsd fc0 sc1 ls0 ws0">W</div><div class="t m7 x1f h1c y32 ff3 fse fc0 sc1 ls0 ws0">0</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x22 h4 y2f ff1 fs1 fc0 sc1 ls0 ws0">,如</div></div><div class="c x23 y33 we h1e"><div class="t m8 x24 h1f y34 ff3 fsf fc0 sc1 ls0 ws0">2</div><div class="t m8 x25 h1f y35 ff3 fsf fc0 sc1 ls0 ws0">~<span class="_ _b"></span>~</div><div class="t m9 x26 h18 y36 ff3 fsb fc0 sc1 ls0 ws0">2<span class="_ _c"></span>1</div><div class="t m9 x1f h18 y37 ff3 fsb fc0 sc1 ls0 ws0">0</div><div class="t m8 x27 h20 y38 ff4 fsf fc0 sc1 ls0 ws0">m<span class="_ _d"></span>m</div><div class="t m8 x1c h20 y39 ff4 fsf fc0 sc1 ls0 ws0">W</div><div class="t m8 x28 h21 y38 ff5 fsf fc0 sc1 ls0 ws0"></div><div class="t m8 x29 h21 y39 ff5 fsf fc0 sc1 ls0 ws0"><span class="_ _e"></span></div></div><div class="c x0 y1 w2 h2"><div class="t m0 x2a h4 y3a ff1 fs1 fc0 sc1 ls0 ws0">   </div><div class="t m0 x2 h4 y3b ff1 fs1 fc0 sc1 ls0 ws0">或者   </div></div><div class="c x2b y3c wf h22"><div class="t ma x2c h23 y3d ff4 fs10 fc0 sc1 ls0 ws0">m</div><div class="t ma x2d h23 y3e ff4 fs10 fc0 sc1 ls0 ws0">N<span class="_ _f"></span>N</div><div class="t ma x2e h23 y3f ff4 fs10 fc0 sc1 ls0 ws0">m<span class="_ _10"></span>N<span class="_ _d"></span>m<span class="_ _11"></span>N</div><div class="t ma x1c h23 y3d ff4 fs10 fc0 sc1 ls0 ws0">W</div><div class="t ma x2f h24 y40 ff3 fs10 fc0 sc1 ls0 ws0">~</div><div class="t ma x30 h24 y41 ff3 fs10 fc0 sc1 ls0 ws0">~<span class="_ _12"></span>~</div><div class="t m0 x31 h25 y34 ff3 fs11 fc0 sc1 ls0 ws0">2<span class="_ _13"></span>1</div><div class="t m0 x32 h25 y42 ff3 fs11 fc0 sc1 ls0 ws0">2<span class="_ _14"></span>2<span class="_ _13"></span>1<span class="_ _15"></span>1</div><div class="t m0 x1f h25 y43 ff3 fs11 fc0 sc1 ls0 ws0">0</div><div class="t ma x33 h26 y3d ff5 fs10 fc0 sc1 ls0 ws0"></div><div class="t ma x34 h26 y3e ff5 fs10 fc0 sc1 ls0 ws0"></div><div class="t ma x35 h26 y3f ff5 fs10 fc0 sc1 ls0 ws0"></div><div class="t ma x29 h26 y3d ff5 fs10 fc0 sc1 ls0 ws0"><span class="_ _e"></span></div></div><div class="c x0 y1 w2 h2"><div class="t m0 x3 h4 y44 ff1 fs1 fc0 sc1 ls0 ws0">  或当</div></div><div class="c x36 y45 w10 h27"><div class="t mb x37 h15 y46 ff4 fs9 fc0 sc1 ls0 ws0">p<span class="_ _7"></span><span class="ff5">(<span class="_ _7"></span></span>ω<span class="_ _16"> </span><span class="ff5">)</span></div><div class="t mb x38 h28 y47 ff3 fsa fc0 sc1 ls0 ws0">1</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x2b h4 y44 ff1 fs1 fc0 sc1 ls0 ws0">与</div></div><div class="c x39 y45 w11 h27"><div class="t mc x37 h15 y46 ff4 fs9 fc0 sc1 ls0 ws0">p<span class="_ _7"></span><span class="ff5">(<span class="_ _7"></span></span>ω<span class="_ _16"> </span><span class="ff5">)</span></div><div class="t mc x38 h28 y47 ff3 fsa fc0 sc1 ls0 ws0">2</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x3a h4 y44 ff1 fs1 fc0 sc1 ls0 ws0">已知时可用</div></div><div class="c x2 y48 w12 h29"><div class="t md x7 h2a y49 ff4 fs12 fc0 sc1 ls0 ws0">W</div><div class="t md x17 h2b y4a ff3 fs13 fc0 sc1 ls0 ws0">0</div><div class="t md x3b h2c y49 ff5 fs12 fc0 sc1 ls0 ws0">=</div><div class="t me x29 h2d y4b ff5 fs14 fc0 sc1 ls0 ws0">[</div><div class="t md x3c h2c y4c ff5 fs12 fc0 sc1 ls0 ws0">~</div><div class="t md x3d h2a y4d ff4 fs12 fc0 sc1 ls0 ws0">m</div><div class="t md x3e h2b y4e ff3 fs13 fc0 sc1 ls0 ws0">1</div><div class="t md x3f h2c y4d ff5 fs12 fc0 sc1 ls0 ws0">+</div><div class="t md x40 h2c y4c ff5 fs12 fc0 sc1 ls0 ws0">~</div><div class="t md x40 h2a y4d ff4 fs12 fc0 sc1 ls0 ws0">m</div><div class="t md x41 h2b y4e ff3 fs13 fc0 sc1 ls0 ws0">2</div><div class="t md x42 h2e y4f ff3 fs12 fc0 sc1 ls0 ws0">2</div><div class="t md x43 h2c y49 ff5 fs12 fc0 sc1 ls0 ws0">−</div><div class="t md x44 h2e y50 ff3 fs12 fc0 sc1 ls0 ws0">ln</div><div class="t mf x30 h2f y51 ff5 fs15 fc0 sc1 ls0 ws0">[</div><div class="t md x45 h2c y50 ff4 fs12 fc0 sc1 ls0 ws0">p<span class="_ _16"> </span><span class="ff5">(<span class="_ _7"></span></span>ω</div><div class="t md x46 h2b y52 ff3 fs13 fc0 sc1 ls0 ws0">1</div><div class="t md x47 h2c y50 ff5 fs12 fc0 sc1 ls0 ws0">)<span class="_ _1"></span>/<span class="_ _5"> </span><span class="ff4">p<span class="_ _7"></span></span>(<span class="_ _7"></span><span class="ff4">ω</span></div><div class="t md x1d h2b y52 ff3 fs13 fc0 sc1 ls0 ws0">2</div><div class="t md x14 h2c y50 ff5 fs12 fc0 sc1 ls0 ws0">)</div><div class="t mf x48 h2f y51 ff5 fs15 fc0 sc1 ls0 ws0">]</div><div class="t md x32 h2a y4f ff4 fs12 fc0 sc1 ls0 ws0">N</div><div class="t md x33 h2b y53 ff3 fs13 fc0 sc1 ls0 ws0">1</div><div class="t md x49 h2c y4f ff5 fs12 fc0 sc1 ls0 ws0">+<span class="_ _9"></span><span class="ff4">N</span></div><div class="t md x4a h2b y53 ff3 fs13 fc0 sc1 ls0 ws0">2</div><div class="t md x1b h2c y4f ff5 fs12 fc0 sc1 ls0 ws0">−<span class="_"> </span><span class="ff3">2</span></div><div class="t me x4b h2d y4b ff5 fs14 fc0 sc1 ls0 ws0">]</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x2 h6 y54 ff3 fs1 fc0 sc1 ls0 ws0">……</div><div class="t m0 x2 h4 y55 ff1 fs1 fc0 sc1 ls0 ws0"> 当<span class="_ _6"> </span><span class="ff3">W0<span class="_ _3"> </span></span>确定之后,则可按以下规则分类,</div><div class="t m0 x3 h4 y56 ff1 fs1 fc0 sc1 ls0 ws0"> <span class="_ _17"> </span> </div></div><div class="c x4c y57 w13 h30"><div class="t m10 x37 h31 y58 ff4 fs16 fc0 sc1 ls0 ws0">W</div><div class="t m10 x17 h32 y59 ff4 fs17 fc0 sc1 ls0 ws0">T</div><div class="t m10 x4d h33 y58 ff4 fs16 fc0 sc1 ls0 ws0">X<span class="_ _6"> </span><span class="ff5">>−<span class="_ _7"></span></span>w</div><div class="t m10 x4e h34 y5a ff3 fs17 fc0 sc1 ls0 ws0">0</div><div class="t m10 x35 h33 y58 ff5 fs16 fc0 sc1 ls0 ws0">→<span class="_ _6"> </span><span class="ff4">X<span class="_ _6"> </span><span class="ff6">∈<span class="_ _16"> </span></span>ω</span></div><div class="t m10 x33 h34 y5a ff3 fs17 fc0 sc1 ls0 ws0">1</div><div class="t m10 x37 h31 y5b ff4 fs16 fc0 sc1 ls0 ws0">W</div><div class="t m10 x17 h32 y5c ff4 fs17 fc0 sc1 ls0 ws0">T</div><div class="t m10 x4d h33 y5b ff4 fs16 fc0 sc1 ls0 ws0">X<span class="_ _6"> </span><span class="ff5">>−<span class="_ _7"></span></span>w</div><div class="t m10 x4e h34 y5d ff3 fs17 fc0 sc1 ls0 ws0">0</div><div class="t m10 x35 h33 y5b ff5 fs16 fc0 sc1 ls0 ws0">→<span class="_ _6"> </span><span class="ff4">X<span class="_ _6"> </span><span class="ff6">∈<span class="_ _16"> </span></span>ω</span></div><div class="t m10 x33 h34 y5d ff3 fs17 fc0 sc1 ls0 ws0">2</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x3 h4 y5e ff1 fs1 fc0 sc1 ls0 ws0">  </div><div class="t m0 x3 h5 y5f ff1 fs2 fc0 sc0 ls0 ws0">二 实验内容</div><div class="t m0 x2 h4 y60 ff1 fs1 fc0 sc1 ls0 ws0">已知有两类数据</div></div><div class="c x4f y61 w14 h35"><div class="t m11 x7 h36 y62 ff4 fs18 fc0 sc1 ls0 ws0">ω</div><div class="t m11 x1f h37 y63 ff3 fs19 fc0 sc1 ls0 ws0">1</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x50 h4 y60 ff1 fs1 fc0 sc1 ls0 ws0">和</div></div><div class="c x51 y61 w15 h38"><div class="t m12 x7 h39 y64 ff4 fs1a fc0 sc1 ls0 ws0">ω</div><div class="t m12 x1f h3a y65 ff3 fs1b fc0 sc1 ls0 ws0">2</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x52 h4 y60 ff1 fs1 fc0 sc1 ls0 ws0">,</div></div><div class="c x53 y61 w16 h38"><div class="t m13 x7 h39 y64 ff4 fs1a fc0 sc1 ls0 ws0">ω</div><div class="t m13 x16 h3a y65 ff3 fs1b fc0 sc1 ls0 ws0">1</div></div><div class="c x0 y1 w2 h2"><div class="t m0 x54 h4 y60 ff1 fs1 fc0 sc1 ls0 ws0">中数据点的坐标对应一一如下: </div><div class="t m0 x2 h4 y66 ff1 fs1 fc0 sc1 ls0 ws0">数据:</div><div class="t m0 x2 h6 y67 ff3 fs1 fc0 sc1 ls0 ws0">x1 =</div><div class="t m0 x2 h6 y68 ff3 fs1 fc0 sc1 ls0 ws0"> 0.2331 1.5207 0.6499 0.7757 1.0524 1.1974</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>