• Lucas_ftc
    了解作者
  • C/C++
    开发工具
  • 260KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 3
    下载次数
  • 2020-05-25 10:55
    上传日期
使用c++编写的一个使用分枝定界法解决整数规划的程序
branchbound.zip
  • 实验报告.pdf
    266.9KB
  • branchbound.cpp
    12.5KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/625d9da892dc900e627d5808/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/625d9da892dc900e627d5808/bg1.jpg"><div class="c x1 y1 w2 h2"><div class="t m0 x2 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">&#23454;&#39564;&#25253;&#21578;<span class="_ _0"> </span><span class="ff2 fc1"> </span></div><div class="t m0 x2 h4 y3 ff1 fs1 fc0 sc0 ls0 ws0">&#31532;&#19968;&#20010;&#27979;&#35797;&#26679;&#20363;<span class="_ _1"> </span><span class="ff2 fc1"> </span></div><div class="t m0 x2 h5 y4 ff3 fs2 fc0 sc0 ls0 ws0">LP best solution</div><div class="t m0 x2 h5 y5 ff3 fs2 fc0 sc0 ls0 ws0">3.25 2.5</div><div class="t m0 x2 h5 y6 ff3 fs2 fc0 sc0 ls0 ws0">node 1 LP solution is3 2.66667</div><div class="t m0 x2 h5 y7 ff3 fs2 fc0 sc0 ls0 ws0">node 2 LP solution is4 1 integer</div><div class="t m0 x2 h5 y8 ff3 fs2 fc0 sc0 ls0 ws0">res is:4 1 0 3 0</div><div class="t m0 x2 h5 y9 ff3 fs2 fc0 sc0 ls0 ws0">node 3 LP solution is3 2 integer</div><div class="t m0 x2 h5 ya ff3 fs2 fc0 sc0 ls0 ws0">node 4 LP solution is2.5 3 abandon</div><div class="t m0 x2 h5 yb ff3 fs2 fc0 sc0 ls0 ws0">one possible res is:</div><div class="t m0 x2 h5 yc ff3 fs2 fc0 sc0 ls0 ws0">4 1 0 3 0</div><div class="t m0 x2 h6 yd ff4 fs2 fc0 sc0 ls0 ws0">&#21482;&#24471;&#21040;&#19968;&#32452;&#26368;&#20248;&#35299;&#65288;<span class="ff3">4</span>&#65292;<span class="ff3">1</span>&#65289;</div><div class="t m0 x2 h4 ye ff1 fs1 fc0 sc0 ls0 ws0">&#31532;&#20108;&#20010;&#27979;&#35797;&#26679;&#20363;<span class="_ _1"> </span><span class="ff2 fc1"> </span></div><div class="t m0 x2 h5 yf ff3 fs2 fc0 sc0 ls0 ws0">LP best solution</div><div class="t m0 x2 h5 y10 ff3 fs2 fc0 sc0 ls0 ws0">1.63636 3.63636</div><div class="t m0 x2 h5 y11 ff3 fs2 fc0 sc0 ls0 ws0">node 1 LP solution is1 3 integer</div><div class="t m0 x2 h5 y12 ff3 fs2 fc0 sc0 ls0 ws0">node 2 LP solution is2 3.33333</div><div class="t m0 x2 h5 y13 ff3 fs2 fc0 sc0 ls0 ws0">node 3 LP solution is2.4 3</div><div class="t m0 x2 h5 y14 ff3 fs2 fc0 sc0 ls0 ws0">node 4 no solution</div><div class="t m0 x2 h5 y15 ff3 fs2 fc0 sc0 ls0 ws0">node 5 LP solution is2 3 integer</div><div class="t m0 x2 h5 y16 ff3 fs2 fc0 sc0 ls0 ws0">node 6 LP solution is3 2.5 abandon</div><div class="t m0 x2 h5 y17 ff3 fs2 fc0 sc0 ls0 ws0">one posible res is:</div><div class="t m0 x2 h5 y18 ff3 fs2 fc0 sc0 ls0 ws0">2 3 1 2 2 0 0 0</div><div class="t m0 x2 h6 y19 ff4 fs2 fc0 sc0 ls0 ws0">&#21482;&#24471;&#21040;&#19968;&#32452;&#26368;&#20248;&#35299;&#20026;&#65288;<span class="ff3">2</span>&#65292;<span class="ff3">3</span>&#65289;</div><div class="t m0 x2 h4 y1a ff1 fs1 fc0 sc0 ls0 ws0">&#31532;&#19977;&#20010;&#27979;&#35797;&#26679;&#20363;<span class="_ _1"> </span><span class="ff2 fc1"> </span></div><div class="t m0 x2 h5 y1b ff3 fs2 fc0 sc0 ls0 ws0">no solution</div><div class="t m0 x2 h6 y1c ff4 fs2 fc0 sc0 ls0 ws0">&#26494;&#24347;&#38382;&#39064;&#26080;&#35299;&#65292;&#25972;&#25968;&#35268;&#21010;&#38382;&#39064;&#20063;&#22240;&#27492;&#26080;&#35299;</div><div class="t m0 x2 h4 y1d ff1 fs1 fc0 sc0 ls0 ws0">&#31532;&#22235;&#20010;&#27979;&#35797;&#26679;&#20363;<span class="_ _1"> </span><span class="ff2 fc1"> </span></div><div class="t m0 x2 h5 y1e ff3 fs2 fc0 sc0 ls0 ws0">no bound</div><div class="t m0 x2 h5 y1f ff3 fs2 fc0 sc0 ls0 ws0">no solution</div><div class="t m0 x2 h6 y20 ff4 fs2 fc0 sc0 ls0 ws0">&#22240;&#20026;&#21407;&#38382;&#39064;&#20855;&#26377;&#26080;&#30028;&#35299;&#65292;&#25152;&#20197;&#25972;&#25968;&#35268;&#21010;&#38382;&#39064;&#27809;&#26377;&#26368;&#20248;&#35299;</div><div class="t m0 x2 h4 y21 ff1 fs1 fc0 sc0 ls0 ws0">&#36755;&#20986;&#26684;&#24335;&#35828;&#26126;<span class="_ _2"> </span><span class="ff2 fc1"> </span></div><div class="t m0 x3 h6 y22 ff3 fs2 fc0 sc0 ls0 ws0">1<span class="_ _3"></span>. <span class="ff4">&#22914;&#26524;&#25972;&#25968;&#35268;&#21010;&#38382;&#39064;&#30340;&#26494;&#24347;&#38382;&#39064;&#27809;&#26377;&#26368;&#20248;&#35299;&#30340;&#35805;&#65292;&#25972;&#25968;&#35268;&#21010;&#38382;&#39064;&#20063;&#27809;&#26377;&#26368;&#20248;&#35299;&#65292;&#27492;&#26102;&#19968;&#23450;&#20250;&#36755;&#20986;</span>no </div><div class="t m0 x4 h6 y23 ff3 fs2 fc0 sc0 ls0 ws0">solution<span class="ff4">&#12290;&#22914;&#26524;&#20110;&#27492;&#21516;&#26102;&#36755;&#20986;&#20102;</span>no bound<span class="ff4">&#65292;&#20195;&#34920;&#21407;&#38382;&#39064;&#20855;&#26377;&#26080;&#30028;&#35299;&#65292;&#21542;&#21017;&#20195;&#34920;&#21407;&#38382;&#39064;&#27809;&#26377;&#21487;&#34892;</span></div><div class="t m0 x4 h6 y24 ff4 fs2 fc0 sc0 ls0 ws0">&#35299;&#12290;</div><div class="t m0 x3 h6 y25 ff3 fs2 fc0 sc0 ls0 ws0">2<span class="_ _3"></span>. <span class="ff4">&#22914;&#26524;&#21407;&#38382;&#39064;&#20855;&#26377;&#21487;&#34892;&#35299;&#65292;&#23601;&#39318;&#20808;&#25171;&#21360;</span>&#8220;LP best solution&#8221;<span class="ff4">&#65292;&#24182;&#23558;&#21407;&#38382;&#39064;&#30340;&#26368;&#20248;&#35299;&#25171;&#21360;&#20986;&#26469;&#12290;</span></div><div class="t m0 x3 h6 y26 ff3 fs2 fc0 sc0 ls0 ws0">3<span class="_ _3"></span>. <span class="ff4">&#25509;&#19979;&#26469;&#30340;&#27599;&#19968;&#34892;&#37117;&#20195;&#34920;&#20998;&#26525;&#23450;&#30028;&#27861;&#20043;&#20013;&#30340;&#19968;&#20010;&#33410;&#28857;&#65292;&#39318;&#20808;&#25171;&#21360;&#35813;&#33410;&#28857;&#23545;&#24212;&#30340;&#32534;&#21495;&#65292;&#28982;&#21518;&#25171;&#21360;&#35813;&#33410;&#28857;</span></div><div class="t m0 x4 h6 y27 ff4 fs2 fc0 sc0 ls0 ws0">&#23545;&#24212;&#30340;<span class="ff3">LP</span>&#38382;&#39064;&#30340;&#26368;&#20248;&#35299;&#12290;&#22312;&#26368;&#20248;&#35299;&#20043;&#21518;&#20250;&#26631;&#26126;&#36825;&#20010;&#35299;&#30340;&#24773;&#20917;&#12290;&#22914;&#26524;&#36825;&#20010;&#35299;&#26102;&#25972;&#25968;&#35299;&#65292;&#20250;&#26174;&#31034;</div></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[1.611792,0.000000,0.000000,1.611792,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • 运筹学整数规划分支定界法MATLAB实现(中文注释).zip
      运筹学整数规划和分支定界的matlab实现!
    • BranchBound.rar
      最优化问题中分枝定界法求解整数线性规划问题
    • 离散优化.rar
      离散优化:枚举法、蒙特卡洛法、线性整数规划整数规划枚举法、非线性整数规划、动态规划
    • branchbound.zip
      适用于整数规划中的分枝定界方法,比较常用的算法。参数说明在程序中写的很清楚了,欢迎大家下载使用。
    • 离散优化.rar
      用于处理关于数据的离散优化问题,包括枚举法、蒙特卡洛法、线性整数规划整数规划枚举法、非线性整数规划(在MATLAB5.3使用)、非线性整数规划图形工具(在MATLAB5.3使用)、最小生成树kruskal算法、 最短路dijkstra...
    • 离散优化.zip
      离散优化问题,又称为整数规划 (线性整数规划),整数规划是指规划中的变量(全部或部分)限制为整数,若在线性模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法往往只适用于整数线性...
    • 整数规划问题Matlab函数.rar
      运筹学中整数规划问题的matlab求解方式,自编函数。
    • 离散优化.zip
      % *lpint (BranchBound)- 线性整数规划 % *L01p_e - 0-1整数规划枚举法 % *L01p_ie - 0-1整数规划隐枚举法 % *bnb18 - 非线性整数规划(在MATLAB5.3使用) % *bnbgui - 非线性整数规划图形工具(在MATLAB5.3使用) ...
    • 离散优化.rar
      % *lpint (BranchBound)- 线性整数规划 % *L01p_e - 0-1整数规划枚举法 % *L01p_ie - 0-1整数规划隐枚举法 % *bnb18 - 非线性整数规划(在MATLAB5.3使用) % *bnbgui - 非线性整数规划图形工具(在MATLAB5.3使用) % *...
    • matlabcnhelp.rar
      matlab中文帮助很难找的,快速下载