小波.rar

  • 晶121
    了解作者
  • matlab
    开发工具
  • 10KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 10 积分
    下载积分
  • 1
    下载次数
  • 2020-07-01 10:11
    上传日期
对图片添加噪音,然后进行降噪处理,提高图像质量
小波.rar
  • 小波.docx
    13.6KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6268c5320990925c043d4a8b/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6268c5320990925c043d4a8b/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">clear; </div><div class="t m0 x1 h3 y3 ff1 fs0 fc0 sc0 ls0 ws0">X=imread('lif<span class="_ _0"></span>e.jpg'); </div><div class="t m0 x1 h3 y4 ff1 fs0 fc0 sc0 ls0 ws0">X=rgb2gr<span class="_ _0"></span>ay(X);</div><div class="t m0 x1 h3 y5 ff1 fs0 fc0 sc0 ls0 ws0">subplot(221); </div><div class="t m0 x1 h3 y6 ff1 fs0 fc0 sc0 ls0 ws0">imshow(X); </div><div class="t m0 x1 h4 y7 ff1 fs0 fc0 sc0 ls0 ws0">&#58911;tle('<span class="ff2">&#21407;&#22987;&#22270;&#20687;</span>'); </div><div class="t m0 x1 h4 y8 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">&#29983;&#25104;&#21547;&#22122;&#22270;&#20687;&#24182;&#22270;&#31034;</span></div><div class="t m0 x1 h3 y9 ff1 fs0 fc0 sc0 ls0 ws0">init=2055615866; </div><div class="t m0 x1 h3 ya ff1 fs0 fc0 sc0 ls0 ws0">randn('seed',init); </div><div class="t m0 x1 h3 yb ff1 fs0 fc0 sc0 ls0 ws0">X=double(X);</div><div class="t m0 x1 h4 yc ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">&#28155;&#21152;&#38543;&#26426;&#22122;&#22768;</span></div><div class="t m0 x1 h3 yd ff1 fs0 fc0 sc0 ls0 ws0">XX=X+8*ra<span class="_ _0"></span>ndn(size(X)); </div><div class="t m0 x1 h3 ye ff1 fs0 fc0 sc0 ls0 ws0">subplot(222); </div><div class="t m0 x1 h3 yf ff1 fs0 fc0 sc0 ls0 ws0">imshow(uint8(XX)); </div><div class="t m0 x1 h4 y10 ff1 fs0 fc0 sc0 ls0 ws0">&#58911;tle(' <span class="ff2">&#21547;&#22122;&#22270;&#20687; </span>'); </div><div class="t m0 x1 h4 y11 ff1 fs0 fc0 sc0 ls0 ws0">%<span class="ff2">&#29992;&#23567;&#27874;&#20989;&#25968;<span class="_ _1"> </span></span>coif2<span class="_ _1"> </span><span class="ff2">&#23545;&#22270;&#20687;<span class="_ _1"> </span></span>XX<span class="_ _1"> </span><span class="ff2">&#36827;&#34892;<span class="_ _1"> </span></span>2<span class="_ _1"> </span><span class="ff2">&#23618;</span></div><div class="t m0 x1 h4 y12 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">&#20998;&#35299;</span></div><div class="t m0 x1 h3 y13 ff1 fs0 fc0 sc0 ls0 ws0">[c,l]=wav<span class="_ _0"></span>edec2(XX,2,'coif2'); </div><div class="t m0 x1 h4 y14 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">&#35774;&#32622;&#23610;&#24230;&#21521;&#37327;</span></div><div class="t m0 x1 h3 y15 ff1 fs0 fc0 sc0 ls0 ws0">n=[1,2]; </div><div class="t m0 x1 h4 y16 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">&#35774;&#32622;&#38408;&#20540;&#21521;&#37327; </span>, <span class="ff2">&#23545;&#39640;&#39057;&#23567;&#27874;&#31995;&#25968;&#36827;&#34892;&#38408;&#20540;&#22788;&#29702;</span></div><div class="t m0 x1 h3 y17 ff1 fs0 fc0 sc0 ls0 ws0">p=[10.28,24.08]; </div><div class="t m0 x1 h3 y18 ff1 fs0 fc0 sc0 ls0 ws0">nc=wthcoef2('h',c,l,n,p,'s');</div><div class="t m0 x1 h4 y19 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">&#22270;&#20687;&#30340;&#20108;&#32500;&#23567;&#27874;&#37325;&#26500;</span></div><div class="t m0 x1 h3 y1a ff1 fs0 fc0 sc0 ls0 ws0">X1=wav<span class="_ _0"></span>erec2(nc,l,'coif2'); </div><div class="t m0 x1 h3 y1b ff1 fs0 fc0 sc0 ls0 ws0">subplot(223); </div><div class="t m0 x1 h3 y1c ff1 fs0 fc0 sc0 ls0 ws0">imshow(uint8(X1)); </div><div class="t m0 x1 h3 y1d ff1 fs0 fc0 sc0 ls0 ws0">%colormap(map); </div><div class="t m0 x1 h4 y1e ff1 fs0 fc0 sc0 ls0 ws0">&#58911;tle(' <span class="ff2">&#31532;&#19968;&#27425;&#28040;&#22122;&#21518;&#30340;&#22270;&#20687; </span>'); </div><div class="t m0 x1 h4 y1f ff1 fs0 fc0 sc0 ls0 ws0">%<span class="ff2">&#20877;&#27425;&#23545;&#39640;&#39057;&#23567;&#27874;&#31995;&#25968;&#36827;&#34892;&#38408;&#20540;&#22788;&#29702;</span></div><div class="t m0 x1 h3 y20 ff1 fs0 fc0 sc0 ls0 ws0">mc=wthcoef2('v',nc,l,n,p,'s');</div><div class="t m0 x1 h4 y21 ff1 fs0 fc0 sc0 ls0 ws0">% <span class="ff2">&#22270;&#20687;&#30340;&#20108;&#32500;&#23567;&#27874;&#37325;&#26500;</span></div><div class="t m0 x1 h3 y22 ff1 fs0 fc0 sc0 ls0 ws0">X2=wav<span class="_ _0"></span>erec2(mc,l,'coif2'); </div><div class="t m0 x1 h3 y23 ff1 fs0 fc0 sc0 ls0 ws0">subplot(224); </div><div class="t m0 x1 h3 y24 ff1 fs0 fc0 sc0 ls0 ws0">imshow(uint8(X2)); </div><div class="t m0 x1 h4 y25 ff1 fs0 fc0 sc0 ls0 ws0">&#58911;tle(' <span class="ff2">&#31532;&#20108;&#27425;&#28040;&#22122;&#21518;&#30340;&#22270;&#20687; </span>'); </div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • 小波分析.rar
      小波分析优于傅立叶之处在于,小波分析在时域和频域同时具有良好的局部化性质,本套资料从信号与系统着手,延伸拓展到小波分析,对于处理工程上的信号以及相关算法的理解有一定的帮助
    • Gabor小波提取特征.rar
      Gabor小波提取特征,然后用支持向量机作分类器,可以用于掌纹,人脸,指纹识别
    • 小波分解.rar
      用matlab语言实现小波分解,程序简单易懂,比较使用于初学者,可以通过编程加深对小波分解的理解
    • 突变+小波.zip
      进行小波分析,得到更好地结果,画出较为精准的图像
    • 小波十讲.zip
      小波十讲,全部代码,及其小波十讲的相关资料
    • 小波模极大值程序.rar
      小波模极大源代码,可用来进行小波降噪或小波模态参数识别
    • 小波神经网络.zip
      一些基础的小波神经网络用于基础的分类代码,不是很复杂
    • 小波边缘检测matlab程序
      小波边缘检测matlab程序。。。。。。小波边缘检测matlab程序
    • MATLAB小波分析
      从信号时-频联合分析引入小波变换,将小波变换工具箱的函数作为全书的重点,并以此为基础,阐述了小波在信号处理、图像处理、数字水印中的应用,提升小波变换及应用以及小波在其他领域中的应用等内容。书中提供了...
    • codesforimageprocessing.rar
      实现简单图像处理,包括256色转灰度图、Hough变换、Walsh变换、中值滤波、二值化变换、亮度增减、傅立叶变换、反色、取对数、取指数、图像平移、图像旋转、图像细化、图像缩放、图像镜像、均值滤波、对比度拉伸、拉普拉斯锐化(边缘检测)、方块编码、梯度锐化、灰度均衡、直方图均衡、离散余弦变换、维纳滤波处理、逆滤波处理、阈值变换、高斯平滑。