<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/625058e674bc5c01055e33f8/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/625058e674bc5c01055e33f8/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">IEEE<span class="_ _0"> </span>INTERNET<span class="_ _0"> </span>OF<span class="_ _0"> </span>THINGS<span class="_ _0"> </span>JOURNAL,<span class="_ _0"> </span>V<span class="_ _1"></span>OL.<span class="_ _0"> </span>7,<span class="_ _0"> </span>NO.<span class="_ _0"> </span>1,<span class="_ _0"> </span>J<span class="_ _1"></span>ANUAR<span class="_ _1"></span>Y<span class="_ _0"> </span>2020<span class="_ _2"> </span><span class="ls1">505</span></div><div class="t m0 x2 h3 y2 ff1 fs1 fc0 sc0 ls2 ws0">Mobility<span class="_ _3"> </span>Predictions<span class="_ _3"> </span>for<span class="_ _3"> </span>IoT<span class="_ _3"> </span>De<span class="_ _1"></span>vices<span class="_ _3"> </span>Using</div><div class="t m0 x3 h3 y3 ff1 fs1 fc0 sc0 ls3 ws0">Gated<span class="_ _3"> </span>Recurrent<span class="_ _3"> </span>Unit<span class="_ _3"> </span>Netw<span class="_ _4"></span>ork</div><div class="t m0 x4 h4 y4 ff1 fs2 fc0 sc0 ls4 ws0">Abebe<span class="_ _5"> </span>Belay<span class="_ _5"> </span>Adege<span class="_ _6"> </span><span class="ls2">,<span class="_ _5"> </span>Hsin-Piao<span class="_ _5"> </span>Lin,<span class="_ _5"> </span>and<span class="_ _5"> </span>Li-Chun<span class="_ _5"> </span>W<span class="_ _7"></span>ang<span class="_ _6"> </span>,<span class="_ _5"> </span><span class="ff2 ls5">F<span class="_ _7"></span>ellow<span class="_ _1"></span>,<span class="_ _5"> </span>IEEE</span></span></div><div class="t m0 x5 h5 y5 ff3 fs3 fc0 sc0 ls6 ws0">Abstract<span class="ff4 ls2">—Wir<span class="_ _1"></span>eless<span class="_ _8"> </span>and<span class="_ _8"> </span>mobile<span class="_ _5"> </span>technologies,<span class="_ _8"> </span>as<span class="_ _9"> </span>well<span class="_ _9"> </span>as<span class="_ _9"> </span>their</span></div><div class="t m0 x1 h5 y6 ff4 fs3 fc0 sc0 ls6 ws0">users,<span class="_ _a"> </span>are<span class="_ _a"> </span>gr<span class="_ _1"></span>owing<span class="_ _a"> </span>rapidly<span class="_ _a"> </span>as<span class="_ _a"> </span>the<span class="_ _a"> </span>Internet<span class="_ _a"> </span>of<span class="_ _a"> </span>Things<span class="_ _a"> </span>(IoT)<span class="_ _a"> </span>prod-</div><div class="t m0 x1 h5 y7 ff4 fs3 fc0 sc0 ls2 ws0">ucts,<span class="_ _9"> </span>such<span class="_ _8"> </span>as<span class="_ _9"> </span>sensor-network<span class="_ _9"> </span>technologies,<span class="_ _9"> </span>mobile<span class="_ _8"> </span>devices,<span class="_ _9"> </span>and</div><div class="t m0 x1 h5 y8 ff4 fs3 fc0 sc0 ls2 ws0">supporting<span class="_ _a"> </span>applications,<span class="_ _b"> </span>become<span class="_ _a"> </span>widely<span class="_ _b"> </span>dispersed.<span class="_ _a"> </span>Owing<span class="_ _b"> </span>to<span class="_ _a"> </span>the</div><div class="t m0 x1 h5 y9 ff4 fs3 fc0 sc0 ls2 ws0">dynamic<span class="_ _5"> </span>changes<span class="_ _9"> </span>in<span class="_ _5"> </span>the<span class="_ _9"> </span>wireless<span class="_ _5"> </span>networks<span class="_ _5"> </span>and<span class="_ _9"> </span>the<span class="_ _9"> </span>exponential</div><div class="t m0 x1 h5 ya ff4 fs3 fc0 sc0 ls2 ws0">gro<span class="_ _4"></span>wth<span class="_ _8"> </span>of<span class="_ _c"> </span>the<span class="_ _8"> </span>IoT<span class="_ _c"> </span>products,<span class="_ _9"> </span>which<span class="_ _c"> </span>make<span class="_ _8"> </span>it<span class="_ _c"> </span>difficult<span class="_ _8"> </span>to<span class="_ _c"> </span>locate</div><div class="t m0 x1 h5 yb ff4 fs3 fc0 sc0 ls2 ws0">large<span class="_"> </span>quantities<span class="_ _0"> </span>of<span class="_ _d"> </span>users<span class="_ _0"> </span>and<span class="_ _0"> </span>devices,<span class="_ _0"> </span>providing<span class="_"> </span>accurate<span class="_ _0"> </span>tracking</div><div class="t m0 x1 h5 yc ff4 fs3 fc0 sc0 ls2 ws0">and<span class="_ _0"> </span>trajectory<span class="_ _d"> </span>predictions<span class="_ _0"> </span>in<span class="_ _d"> </span>open<span class="_ _0"> </span>and<span class="_ _d"> </span>highly<span class="_ _d"> </span>condensed<span class="_ _0"> </span>wireless</div><div class="t m0 x1 h5 yd ff4 fs3 fc0 sc0 ls2 ws0">networks<span class="_ _a"> </span>is<span class="_ _a"> </span>extremely<span class="_ _d"> </span>difficult.<span class="_ _a"> </span>An<span class="_ _a"> </span>adaptive<span class="_ _a"> </span>and<span class="_ _a"> </span>scalable<span class="_ _a"> </span>system</div><div class="t m0 x1 h5 ye ff4 fs3 fc0 sc0 ls2 ws0">is<span class="_ _5"> </span>requir<span class="_ _1"></span>ed<span class="_ _5"> </span>to<span class="_ _5"> </span>offer<span class="_ _5"> </span>accurate<span class="_ _5"> </span>location-based<span class="_ _5"> </span>services<span class="_ _5"> </span>(LBSs)<span class="_ _5"> </span>for</div><div class="t m0 x1 h5 yf ff4 fs3 fc0 sc0 ls2 ws0">the<span class="_ _d"> </span>success<span class="_ _d"> </span>of<span class="_ _d"> </span>IoT<span class="_ _7"></span>.<span class="_ _d"> </span>T<span class="_ _7"></span>o<span class="_ _d"> </span>enhance<span class="_ _d"> </span>the<span class="_ _d"> </span>attainment<span class="_ _d"> </span>of<span class="_ _d"> </span>IoT<span class="_ _7"></span>,<span class="_ _d"> </span>we<span class="_ _d"> </span>propose</div><div class="t m0 x1 h5 y10 ff4 fs3 fc0 sc0 ls7 ws0">a<span class="_ _0"> </span>hybrid<span class="_"> </span>of<span class="_ _0"> </span>principal<span class="_ _d"> </span>component<span class="_"> </span>analysis<span class="_ _d"> </span>(PCA)<span class="_"> </span>and<span class="_ _d"> </span>gated<span class="_"> </span>recur<span class="_ _4"></span>-</div><div class="t m0 x1 h5 y11 ff4 fs3 fc0 sc0 ls2 ws0">rent<span class="_ _0"> </span>unit<span class="_ _d"> </span>(GRU)<span class="_ _0"> </span>algorithms<span class="_ _d"> </span>for<span class="_ _d"> </span>mobility<span class="_ _d"> </span>predictions<span class="_ _0"> </span>in<span class="_ _d"> </span>a<span class="_ _d"> </span>wireless</div><div class="t m0 x1 h5 y12 ff4 fs3 fc0 sc0 ls2 ws0">urban<span class="_ _5"> </span>area.<span class="_ _b"> </span>During<span class="_ _5"> </span>the<span class="_ _9"> </span>system<span class="_ _5"> </span>development<span class="_ _b"> </span>processes,<span class="_ _5"> </span>we<span class="_ _5"> </span>first</div><div class="t m0 x1 h5 y13 ff4 fs3 fc0 sc0 ls7 ws0">collect<span class="_ _b"> </span>an<span class="_ _5"> </span>L<span class="_ _7"></span>TE<span class="_ _b"> </span>signal<span class="_ _5"> </span>from<span class="_ _b"> </span>three<span class="_ _b"> </span>unmanned<span class="_ _b"> </span>aerial<span class="_ _5"> </span>vehicle<span class="_ _b"> </span>base</div><div class="t m0 x1 h5 y14 ff4 fs3 fc0 sc0 ls6 ws0">stations<span class="_ _b"> </span>(U<span class="_ _1"></span>A<span class="_ _7"></span>V<span class="_ _7"></span>-BSs),<span class="_ _b"> </span>the<span class="_ _5"> </span>Wi-Fi<span class="_ _b"> </span>signal<span class="_ _5"> </span>strength<span class="_ _5"> </span>from<span class="_ _b"> </span>each<span class="_ _5"> </span>reach-</div><div class="t m0 x1 h5 y15 ff4 fs3 fc0 sc0 ls2 ws0">able<span class="_"> </span>Wi-Fi<span class="_"> </span>access<span class="_ _0"> </span>points<span class="_ _0"> </span>(APs),<span class="_ _0"> </span>and<span class="_"> </span>channel<span class="_ _0"> </span>information<span class="_"> </span>from<span class="_"> </span>the</div><div class="t m0 x1 h5 y16 ff4 fs3 fc0 sc0 ls2 ws0">Wi-Fi<span class="_ _b"> </span>signal<span class="_ _b"> </span>media.<span class="_ _b"> </span>W<span class="_ _1"></span>e<span class="_ _b"> </span>then<span class="_ _b"> </span>apply<span class="_ _b"> </span>PCA<span class="_ _b"> </span>to<span class="_ _b"> </span>reduce<span class="_ _b"> </span>the<span class="_ _b"> </span>number</div><div class="t m0 x1 h5 y17 ff4 fs3 fc0 sc0 ls2 ws0">of<span class="_ _d"> </span>Wi-Fi<span class="_ _0"> </span>features<span class="_ _d"> </span>and<span class="_ _d"> </span>to<span class="_ _d"> </span>decrease<span class="_ _0"> </span>signal<span class="_ _d"> </span>noise.<span class="_ _d"> </span>Next,<span class="_ _d"> </span>we<span class="_ _d"> </span>train<span class="_ _d"> </span>the</div><div class="t m0 x1 h5 y18 ff4 fs3 fc0 sc0 ls2 ws0">GR<span class="_ _1"></span>U<span class="_ _b"> </span>algorithm<span class="_ _b"> </span>to<span class="_ _a"> </span>develop<span class="_ _a"> </span>models<span class="_ _a"> </span>that<span class="_ _b"> </span>can<span class="_ _b"> </span>pr<span class="_ _1"></span>edict<span class="_ _b"> </span>the<span class="_ _a"> </span>mobility</div><div class="t m0 x1 h5 y19 ff4 fs3 fc0 sc0 ls2 ws0">of<span class="_ _d"> </span>IoT<span class="_ _d"> </span>device<span class="_ _d"> </span>users.<span class="_ _a"> </span>Finally<span class="_ _1"></span>,<span class="_ _d"> </span>we<span class="_ _d"> </span>evaluate<span class="_ _d"> </span>the<span class="_ _d"> </span>tracking<span class="_ _a"> </span>and<span class="_ _d"> </span>trajec-</div><div class="t m0 x1 h5 y1a ff4 fs3 fc0 sc0 ls2 ws0">tory<span class="_ _5"> </span>models.<span class="_ _5"> </span>T<span class="_ _7"></span>o<span class="_ _5"> </span>evaluate<span class="_ _b"> </span>the<span class="_ _5"> </span>proposed<span class="_ _5"> </span>techniques,<span class="_ _5"> </span>we<span class="_ _5"> </span>compare</div><div class="t m0 x1 h5 y1b ff4 fs3 fc0 sc0 ls2 ws0">the<span class="_ _5"> </span>common<span class="_ _9"> </span>parameters<span class="_ _9"> </span>of<span class="_ _9"> </span>the<span class="_ _5"> </span>GRU<span class="_ _5"> </span>with<span class="_ _9"> </span>those<span class="_ _9"> </span>of<span class="_ _9"> </span>other<span class="_ _5"> </span>deep</div><div class="t m0 x1 h5 y1c ff4 fs3 fc0 sc0 ls2 ws0">learning<span class="_ _5"> </span>types.<span class="_ _5"> </span>The<span class="_ _9"> </span>proposed<span class="_ _5"> </span>technique<span class="_ _9"> </span>provides<span class="_ _5"> </span>plausible<span class="_ _5"> </span>and</div><div class="t m0 x1 h5 y1d ff4 fs3 fc0 sc0 ls6 ws0">state-of-the-art<span class="_ _a"> </span>results<span class="_ _a"> </span>for<span class="_ _a"> </span>mobility<span class="_ _a"> </span>predictions<span class="_ _a"> </span>of<span class="_ _a"> </span>IoT<span class="_ _b"> </span>devices<span class="_ _a"> </span>in</div><div class="t m0 x1 h5 y1e ff4 fs3 fc0 sc0 ls2 ws0">a<span class="_ _a"> </span>wireless<span class="_ _b"> </span>en<span class="_ _1"></span>vironment.</div><div class="t m0 x5 h5 y1f ff3 fs3 fc0 sc0 ls2 ws0">Index<span class="_ _8"> </span>T<span class="_ _7"></span>erms<span class="ff4 ls7">—Deep<span class="_ _8"> </span>learning,<span class="_ _8"> </span>gated<span class="_ _8"> </span>recurrent<span class="_ _8"> </span>units<span class="_ _8"> </span>(GRUs),</span></div><div class="t m0 x1 h5 y20 ff4 fs3 fc0 sc0 ls2 ws0">mobility<span class="_ _a"> </span>predictions,<span class="_ _b"> </span>principal<span class="_ _a"> </span>component<span class="_ _b"> </span>analysis<span class="_ _a"> </span>(PCA).</div><div class="t m0 x6 h6 y21 ff1 fs4 fc0 sc0 ls8 ws0">I.<span class="_ _e"> </span>I<span class="fs5 ls9">NTR<span class="_ _1"></span>ODUCTION</span></div><div class="t m0 x1 h7 y22 ff4 fs6 fc0 sc0 ls2 ws0">I</div><div class="t m0 x7 h6 y23 ff1 fs4 fc0 sc0 lsa ws0">NTERNET<span class="_ _c"> </span>OF<span class="_ _e"> </span>THINGS<span class="_ _c"> </span>(IoT)<span class="_ _c"> </span>i<span class="_ _f"></span>s<span class="_ _c"> </span>the<span class="_ _c"> </span>interconnection<span class="_ _e"> </span>of</div><div class="t m0 x7 h6 y24 ff1 fs4 fc0 sc0 lsa ws0">intelligent<span class="_ _d"> </span>objects<span class="_ _d"> </span>for<span class="_ _d"> </span>univ<span class="_ _1"></span>ersal<span class="_ _d"> </span>computing,<span class="_ _d"> </span>and<span class="_ _d"> </span>through<span class="_ _a"> </span>the</div><div class="t m0 x1 h6 y25 ff1 fs4 fc0 sc0 lsb ws0">use<span class="_ _a"> </span>of<span class="_ _b"> </span>the<span class="_ _a"> </span>Internet,<span class="_ _b"> </span>it<span class="_ _a"> </span>enables<span class="_ _b"> </span>smart<span class="_ _a"> </span>devices<span class="_ _a"> </span>to<span class="_ _a"> </span>provide<span class="_ _b"> </span>access</div><div class="t m0 x1 h6 y26 ff1 fs4 fc0 sc0 lsa ws0">to<span class="_ _e"> </span>all<span class="_ _e"> </span>users<span class="_ _b"> </span>[1].<span class="_ _e"> </span>IoT<span class="_ _10"> </span>has<span class="_ _e"> </span>opened<span class="_ _e"> </span>up<span class="_ _10"> </span>tremendous<span class="_ _e"> </span>opportuni-</div><div class="t m0 x1 h6 y27 ff1 fs4 fc0 sc0 lsb ws0">ties<span class="_ _5"> </span>for<span class="_ _5"> </span>novel<span class="_ _b"> </span>applications,<span class="_ _5"> </span>improving<span class="_ _5"> </span>our<span class="_ _5"> </span>lives,<span class="_ _b"> </span>and<span class="_ _5"> </span>creating</div><div class="t m0 x1 h6 y28 ff1 fs4 fc0 sc0 lsb ws0">a<span class="_"> </span>wide<span class="_"> </span>variety<span class="_"> </span>of<span class="_"> </span>smart<span class="_"> </span>systems,<span class="_"> </span>such<span class="_"> </span>as<span class="_"> </span>smart<span class="_"> </span>buildings,<span class="_"> </span>smart</div><div class="t m0 x1 h6 y29 ff1 fs4 fc0 sc0 lsb ws0">homes,<span class="_ _9"> </span>and<span class="_ _8"> </span>smart<span class="_ _9"> </span>factories<span class="_ _b"> </span>[2],<span class="_ _b"> </span>[3].<span class="_ _9"> </span>IoT<span class="_ _8"> </span>allows<span class="_ _9"> </span>all<span class="_ _9"> </span>things<span class="_ _8"> </span>to</div><div class="t m0 x8 h8 y2a ff1 fs5 fc0 sc0 lsc ws0">Manuscript<span class="_ _10"> </span>received<span class="_ _10"> </span>August<span class="_ _11"> </span>17,<span class="_ _10"> </span>2019;<span class="_ _11"> </span>revised<span class="_ _10"> </span>September<span class="_ _11"> </span>21,<span class="_ _10"> </span>2019;</div><div class="t m0 x1 h8 y2b ff1 fs5 fc0 sc0 ls2 ws0">accepted<span class="_ _5"> </span>October<span class="_ _5"> </span>7,<span class="_ _5"> </span>2019.<span class="_ _5"> </span>Date<span class="_ _5"> </span>of<span class="_ _5"> </span>publication<span class="_ _5"> </span>October<span class="_ _5"> </span>17,<span class="_ _5"> </span>2019;<span class="_ _5"> </span>date<span class="_ _5"> </span>of</div><div class="t m0 x1 h8 y2c ff1 fs5 fc0 sc0 lsc ws0">current<span class="_ _d"> </span>version<span class="_ _a"> </span>January<span class="_ _d"> </span>10,<span class="_ _a"> </span>2020.<span class="_ _a"> </span>This<span class="_ _d"> </span>work<span class="_ _a"> </span>was<span class="_ _d"> </span>supported<span class="_ _a"> </span>by<span class="_ _a"> </span>the<span class="_ _d"> </span>Ministry</div><div class="t m0 x1 h8 y2d ff1 fs5 fc0 sc0 ls2 ws0">of<span class="_ _0"> </span>Science<span class="_ _0"> </span>and<span class="_ _0"> </span>T<span class="_ _1"></span>echnology<span class="_ _0"> </span>through<span class="_ _0"> </span>Pervasi<span class="_ _1"></span>ve<span class="_ _0"> </span>Artificial<span class="_ _0"> </span>Intelligence<span class="_ _0"> </span>Research</div><div class="t m0 x1 h8 y2e ff1 fs5 fc0 sc0 ls2 ws0">Labs,<span class="_ _5"> </span>T<span class="_ _1"></span>aiwan,<span class="_ _b"> </span>under<span class="_ _5"> </span>Grant<span class="_ _5"> </span>MOST<span class="_ _5"> </span>108-2221-E-027-020<span class="_ _5"> </span>and<span class="_ _5"> </span>Grant<span class="_ _9"> </span>MOST</div><div class="t m0 x1 h8 y2f ff1 fs5 fc0 sc0 lsd ws0">108-2634-F-009-006.<span class="_ _d"> </span><span class="ff2 lsc">(Corr<span class="_ _1"></span>esponding<span class="_ _d"> </span>author:<span class="_ _d"> </span>Abebe<span class="_ _a"> </span>Belay<span class="_ _0"> </span>Adege<span class="_ _1"></span>.)</span></div><div class="t m0 x8 h8 y30 ff1 fs5 fc0 sc0 ls2 ws0">A.<span class="_"> </span>B.<span class="_"> </span>Ade<span class="_ _1"></span>ge<span class="_"> </span>is<span class="_"> </span>with<span class="_"> </span>the<span class="_"> </span>Department<span class="_"> </span>of<span class="_ _12"> </span>Electrical<span class="_"> </span>Engineering<span class="_"> </span>and<span class="_ _12"> </span>Computer</div><div class="t m0 x1 h8 y31 ff1 fs5 fc0 sc0 ls2 ws0">Science,<span class="_ _9"> </span>National<span class="_ _9"> </span>T<span class="_ _1"></span>aipei<span class="_ _9"> </span>Univ<span class="_ _1"></span>ersity<span class="_ _9"> </span>of<span class="_ _9"> </span>T<span class="_ _1"></span>echnology<span class="_ _1"></span>,<span class="_ _9"> </span>T<span class="_ _1"></span>aipei<span class="_ _9"> </span>10608,<span class="_ _9"> </span>T<span class="_ _1"></span>aiwan</div><div class="t m0 x1 h8 y32 ff1 fs5 fc0 sc0 ls2 ws0">(e-mail:<span class="_ _d"> </span>abbblybelay@gmail.com).</div><div class="t m0 x8 h8 y33 ff1 fs5 fc0 sc0 ls2 ws0">H.-P<span class="_ _7"></span>.<span class="_"> </span>Lin<span class="_ _0"> </span>is<span class="_"> </span>with<span class="_"> </span>the<span class="_ _0"> </span>Department<span class="_"> </span>of<span class="_ _0"> </span>Electronic<span class="_"> </span>Engineering,<span class="_"> </span>National<span class="_ _0"> </span>T<span class="_ _7"></span>aipei</div><div class="t m0 x1 h8 y34 ff1 fs5 fc0 sc0 ls2 ws0">Univ<span class="_ _1"></span>ersity<span class="_ _d"> </span>of<span class="_ _0"> </span>T<span class="_ _1"></span>echnology<span class="_ _1"></span>,<span class="_ _0"> </span>T<span class="_ _1"></span>aipei<span class="_ _0"> </span>10608,<span class="_ _0"> </span>T<span class="_ _1"></span>aiwan<span class="_ _0"> </span>(e-mail:<span class="_ _0"> </span>hplin@ntut.edu.tw).</div><div class="t m0 x8 h8 y35 ff1 fs5 fc0 sc0 ls2 ws0">L.-C.<span class="_ _13"> </span>W<span class="_ _7"></span>ang<span class="_ _13"> </span>is<span class="_ _13"> </span>with<span class="_ _14"> </span>the<span class="_ _13"> </span>Department<span class="_ _13"> </span>of<span class="_ _13"> </span>Electrical<span class="_ _13"> </span>and<span class="_ _13"> </span>Computer</div><div class="t m0 x1 h8 y36 ff1 fs5 fc0 sc0 ls2 ws0">Engineering,<span class="_ _10"> </span>National<span class="_ _11"> </span>Chiao<span class="_ _10"> </span>Tung<span class="_ _10"> </span>Univ<span class="_ _1"></span>ersity<span class="_ _1"></span>,<span class="_ _11"> </span>Hsinchu<span class="_ _10"> </span>300-10,<span class="_ _11"> </span>T<span class="_ _7"></span>aiwan</div><div class="t m0 x1 h8 y37 ff1 fs5 fc0 sc0 ls2 ws0">(e-mail:<span class="_ _d"> </span>lichun@cc.nctu.edu.tw).</div><div class="t m0 x8 h8 y38 ff1 fs5 fc0 sc0 ls2 ws0">Digital<span class="_ _d"> </span>Object<span class="_ _d"> </span>Identifier<span class="_ _d"> </span>10.1109/JIOT<span class="_ _7"></span>.2019.2948075</div><div class="t m0 x9 h6 y5 ff1 fs4 fc0 sc0 lsa ws0">exist<span class="_"> </span>through<span class="_"> </span>Internet<span class="_"> </span>connections.<span class="_"> </span>Because<span class="_"> </span>we<span class="_"> </span>are<span class="_"> </span>highly<span class="_"> </span>con-</div><div class="t m0 x9 h6 y39 ff1 fs4 fc0 sc0 lsa ws0">nected<span class="_"> </span>with<span class="_"> </span>the<span class="_"> </span>Internet<span class="_"> </span>and<span class="_"> </span>large<span class="_"> </span>numbers<span class="_"> </span>of<span class="_"> </span>IoT<span class="_"> </span>de<span class="_ _1"></span>vices<span class="_ _d"> </span>hav<span class="_ _1"></span>e</div><div class="t m0 x9 h6 y3a ff1 fs4 fc0 sc0 lsa ws0">been<span class="_"> </span>produced,<span class="_ _d"> </span>human<span class="_ _d"> </span>daily<span class="_"> </span>activities<span class="_"> </span>are<span class="_ _d"> </span>highly<span class="_ _d"> </span>dependent<span class="_"> </span>on</div><div class="t m0 x9 h6 y3b ff1 fs4 fc0 sc0 lsa ws0">IoT<span class="_ _a"> </span>services.<span class="_ _a"> </span>In<span class="_ _a"> </span>the<span class="_ _b"> </span>coming<span class="_ _a"> </span>years,<span class="_ _a"> </span>increasing<span class="_ _a"> </span>numbers<span class="_ _a"> </span>of<span class="_ _b"> </span>cur<span class="_ _1"></span>-</div><div class="t m0 x9 h6 y3c ff1 fs4 fc0 sc0 lsa ws0">rently<span class="_ _8"> </span>av<span class="_ _1"></span>ailable<span class="_ _8"> </span>IoT<span class="_ _8"> </span>devices<span class="_ _9"> </span>will<span class="_ _8"> </span>become<span class="_ _8"> </span>connected<span class="_ _8"> </span>to<span class="_ _8"> </span>each</div><div class="t m0 x9 h6 y3d ff1 fs4 fc0 sc0 lsa ws0">other<span class="_ _1"></span>,<span class="_ _a"> </span>and<span class="_ _b"> </span>the<span class="_ _a"> </span>global<span class="_ _a"> </span>economic<span class="_ _a"> </span>impact<span class="_ _b"> </span>is<span class="_ _a"> </span>expected<span class="_ _d"> </span>to<span class="_ _b"> </span>increase</div><div class="t m0 x9 h6 y3e ff1 fs4 fc0 sc0 lsb ws0">by<span class="_ _a"> </span>$2<span class="_ _b"> </span>trillion.<span class="_ _a"> </span>Although<span class="_ _b"> </span>IoT<span class="_ _a"> </span>will<span class="_ _b"> </span>lead<span class="_ _a"> </span>to<span class="_ _b"> </span>an<span class="_ _a"> </span>easier<span class="_ _b"> </span>life<span class="_ _a"> </span>for<span class="_ _b"> </span>the</div><div class="t m0 x9 h6 y3f ff1 fs4 fc0 sc0 lsb ws0">Internet<span class="_ _b"> </span>community<span class="_ _b"> </span>[4],<span class="_ _a"> </span>the<span class="_ _b"> </span>explosion<span class="_ _a"> </span>of<span class="_ _b"> </span>IoT<span class="_ _b"> </span>de<span class="_ _1"></span>vices<span class="_ _b"> </span>is<span class="_ _b"> </span>lead-</div><div class="t m0 x9 h6 y40 ff1 fs4 fc0 sc0 lsb ws0">ing<span class="_"> </span>to<span class="_ _d"> </span>higher<span class="_ _d"> </span>signal<span class="_ _d"> </span>interference<span class="_ _d"> </span>in<span class="_ _d"> </span>wireless<span class="_ _d"> </span>networks<span class="_"> </span>owing<span class="_"> </span>to</div><div class="t m0 x9 h6 y41 ff1 fs4 fc0 sc0 lsa ws0">the<span class="_ _9"> </span>additional<span class="_ _9"> </span>protocols,<span class="_ _9"> </span>channels,<span class="_ _8"> </span>and<span class="_ _9"> </span>communication<span class="_ _9"> </span>man-</div><div class="t m0 x9 h6 y42 ff1 fs4 fc0 sc0 ls2 ws0">agement<span class="_ _5"> </span>requirements.<span class="_ _5"> </span>In<span class="_ _9"> </span>wireless<span class="_ _5"> </span>networks,<span class="_ _5"> </span>in<span class="_ _9"> </span>parallel<span class="_ _5"> </span>with</div><div class="t m0 x9 h6 y43 ff1 fs4 fc0 sc0 lsa ws0">the<span class="_ _b"> </span>expansion<span class="_ _b"> </span>of<span class="_ _b"> </span>IoT<span class="_ _7"></span>,<span class="_ _b"> </span>W<span class="_ _4"></span>i-Fi<span class="_ _b"> </span>and<span class="_ _b"> </span>mobile<span class="_ _b"> </span>data<span class="_ _b"> </span>and<span class="_ _b"> </span>traffic<span class="_ _b"> </span>hav<span class="_ _1"></span>e</div><div class="t m0 x9 h6 y44 ff1 fs4 fc0 sc0 lsa ws0">gro<span class="_ _4"></span>wn<span class="_ _c"> </span>rapidly<span class="_ _1"></span>,<span class="_ _c"> </span>causing<span class="_ _c"> </span>unav<span class="_ _1"></span>oidable<span class="_ _e"> </span>interference<span class="_ _c"> </span>and<span class="_ _c"> </span>unsuc-</div><div class="t m0 x9 h6 y45 ff1 fs4 fc0 sc0 lsa ws0">cessful<span class="_ _d"> </span>implementations<span class="_ _d"> </span>of<span class="_ _d"> </span>the<span class="_ _a"> </span>IoT<span class="_ _7"></span>-based<span class="_"> </span>applications,<span class="_ _a"> </span>such<span class="_ _d"> </span>as</div><div class="t m0 x9 h6 y46 ff1 fs4 fc0 sc0 lsa ws0">channel<span class="_ _d"> </span>modeling<span class="_ _a"> </span>and<span class="_ _d"> </span>location-based<span class="_ _d"> </span>services<span class="_ _a"> </span>(LBS).<span class="_ _d"> </span>Because</div><div class="t m0 x9 h6 y47 ff1 fs4 fc0 sc0 lsa ws0">LBS<span class="_"> </span>serves<span class="_"> </span>to<span class="_"> </span>locate<span class="_ _d"> </span>IoT<span class="_"> </span>devices,<span class="_"> </span>apply<span class="_"> </span>resource<span class="_"> </span>management,</div><div class="t m0 x9 h6 y48 ff1 fs4 fc0 sc0 lsa ws0">and<span class="_ _a"> </span>supply<span class="_ _a"> </span>a<span class="_ _b"> </span>higher<span class="_ _a"> </span>quality<span class="_ _a"> </span>of<span class="_ _a"> </span>service<span class="_ _a"> </span>(QoS),<span class="_ _b"> </span>it<span class="_ _a"> </span>is<span class="_ _a"> </span>a<span class="_ _a"> </span>key<span class="_ _a"> </span>tech-</div><div class="t m0 x9 h6 y49 ff1 fs4 fc0 sc0 lsb ws0">nology<span class="_ _5"> </span>for<span class="_ _5"> </span>wireless<span class="_ _5"> </span>IoT<span class="_ _5"> </span>applications<span class="_ _b"> </span>[1],<span class="_ _b"> </span>[5].<span class="_ _5"> </span>Thus,<span class="_ _5"> </span>adaptiv<span class="_ _1"></span>e,</div><div class="t m0 x9 h6 y4a ff1 fs4 fc0 sc0 lsa ws0">accurate,<span class="_ _a"> </span>robust,<span class="_ _d"> </span>and<span class="_ _a"> </span>scalable<span class="_ _a"> </span>technologies<span class="_ _a"> </span>are<span class="_ _a"> </span>vital<span class="_ _a"> </span>for<span class="_ _a"> </span>aiding</div><div class="t m0 x9 h6 y4b ff1 fs4 fc0 sc0 lsa ws0">an<span class="_ _b"> </span>IoT<span class="_ _b"> </span>world.</div><div class="t m0 xa h6 y4c ff1 fs4 fc0 sc0 lsb ws0">Satellite-based<span class="_ _11"> </span>positioning,<span class="_ _11"> </span>such<span class="_ _11"> </span>as<span class="_ _15"> </span>a<span class="_ _11"> </span>global<span class="_ _11"> </span>positioning</div><div class="t m0 x9 h6 y4d ff1 fs4 fc0 sc0 lsb ws0">system<span class="_"> </span>(GPS),<span class="_ _d"> </span>global<span class="_"> </span>navigation<span class="_"> </span>satellite<span class="_ _d"> </span>system<span class="_"> </span>(GLONASS),</div><div class="t m0 x9 h6 y4e ff1 fs4 fc0 sc0 lsa ws0">and<span class="_ _6"> </span>Galileo,<span class="_ _6"> </span>commonly<span class="_ _6"> </span>offer<span class="_ _6"> </span>localization<span class="_ _6"> </span>services<span class="_ _b"> </span>[6].</div><div class="t m0 x9 h6 y4f ff1 fs4 fc0 sc0 lsb ws0">Ne<span class="_ _4"></span>vertheless,<span class="_ _8"> </span>the<span class="_ _c"> </span>satellite-based<span class="_ _8"> </span>applications<span class="_ _c"> </span>are<span class="_ _c"> </span>inappropri-</div><div class="t m0 x9 h6 y50 ff1 fs4 fc0 sc0 lsa ws0">ate<span class="_ _b"> </span>for<span class="_ _b"> </span>urban<span class="_ _b"> </span>and<span class="_ _a"> </span>hierarchical<span class="_ _b"> </span>geolocation<span class="_ _b"> </span>applications<span class="_ _b"> </span>owing</div><div class="t m0 x9 h6 y51 ff1 fs4 fc0 sc0 lsb ws0">to<span class="_ _8"> </span>the<span class="_ _8"> </span>line-of-sight<span class="_ _8"> </span>(LoS)<span class="_ _8"> </span>problems,<span class="_ _8"> </span>the<span class="_ _8"> </span>requirement<span class="_ _8"> </span>of<span class="_ _8"> </span>sig-</div><div class="t m0 x9 h6 y52 ff1 fs4 fc0 sc0 lsa ws0">nificant<span class="_ _b"> </span>power<span class="_ _b"> </span>and<span class="_ _b"> </span>additional<span class="_ _b"> </span>devices,<span class="_ _b"> </span>and<span class="_ _b"> </span>their<span class="_ _b"> </span>sensitivity<span class="_ _b"> </span>to</div><div class="t m0 x9 h6 y53 ff1 fs4 fc0 sc0 lsa ws0">occlusions.<span class="_ _9"> </span>GPS,<span class="_ _8"> </span>for<span class="_ _9"> </span>example,<span class="_ _8"> </span>requires<span class="_ _9"> </span>a<span class="_ _8"> </span>significant<span class="_ _9"> </span>amount</div><div class="t m0 x9 h6 y54 ff1 fs4 fc0 sc0 lsa ws0">of<span class="_ _c"> </span>po<span class="_ _1"></span>wer<span class="_ _e"> </span>and<span class="_ _c"> </span>needs<span class="_ _c"> </span>LoS<span class="_ _8"> </span>s<span class="_ _f"></span>ervices,<span class="_ _c"> </span>and<span class="_ _c"> </span>it<span class="_ _8"> </span>is<span class="_ _c"> </span>too<span class="_ _c"> </span>difficult<span class="_ _8"> </span>to</div><div class="t m0 x9 h6 y55 ff1 fs4 fc0 sc0 lsa ws0">de<span class="_ _4"></span>velop<span class="_"> </span>a<span class="_"> </span>model<span class="_ _d"> </span>that<span class="_"> </span>can<span class="_ _d"> </span>offer<span class="_"> </span>accurate<span class="_"> </span>mobility<span class="_ _d"> </span>predictions<span class="_"> </span>in</div><div class="t m0 x9 h6 y56 ff1 fs4 fc0 sc0 lse ws0">highly<span class="_ _a"> </span>rev<span class="_ _1"></span>ealing<span class="_ _b"> </span>and<span class="_ _a"> </span>changing<span class="_ _a"> </span>urban<span class="_ _a"> </span>areas<span class="_ _b"> </span>[7].<span class="_ _a"> </span>Localizing<span class="_ _b"> </span>the</div><div class="t m0 x9 h6 y57 ff1 fs4 fc0 sc0 lsa ws0">moving<span class="_"> </span>objects<span class="_"> </span>in<span class="_"> </span>a<span class="_"> </span>wireless<span class="_"> </span>network<span class="_"> </span>incurs<span class="_"> </span>higher<span class="_"> </span>data<span class="_"> </span>fluctu-</div><div class="t m0 x9 h6 y58 ff1 fs4 fc0 sc0 lsa ws0">ations,<span class="_"> </span>which<span class="_"> </span>causes<span class="_"> </span>dif<span class="_ _1"></span>ferent<span class="_"> </span>objects<span class="_"> </span>to<span class="_"> </span>be<span class="_ _16"> </span>erroneously<span class="_"> </span>located</div><div class="t m0 x9 h6 y59 ff1 fs4 fc0 sc0 lsa ws0">or<span class="_ _8"> </span>tracked<span class="_ _c"> </span>because<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _c"> </span>complex<span class="_ _8"> </span>wireless<span class="_ _c"> </span>areas<span class="_ _c"> </span>o<span class="_ _1"></span>wing<span class="_ _c"> </span>to</div><div class="t m0 x9 h6 y5a ff1 fs4 fc0 sc0 lsa ws0">significant<span class="_ _b"> </span>interference,<span class="_ _b"> </span>blocking,<span class="_ _b"> </span>and<span class="_ _b"> </span>shado<span class="_ _1"></span>wing<span class="_ _b"> </span>effects.</div><div class="t m0 xa h6 y5b ff1 fs4 fc0 sc0 lsb ws0">Mobility<span class="_ _13"> </span>prediction<span class="_ _14"> </span>is<span class="_ _14"> </span>a<span class="_ _14"> </span>significant<span class="_ _14"> </span>technique<span class="_ _14"> </span>for<span class="_ _14"> </span>dif-</div><div class="t m0 x9 h6 y5c ff1 fs4 fc0 sc0 lsa ws0">ferent<span class="_ _13"> </span>applications,<span class="_ _13"> </span>such<span class="_ _13"> </span>as<span class="_ _13"> </span>locating,<span class="_ _14"> </span>tracking,<span class="_ _13"> </span>predicting</div><div class="t m0 x9 h6 y5d ff1 fs4 fc0 sc0 lsa ws0">future<span class="_ _11"> </span>routes,<span class="_ _11"> </span>or<span class="_ _15"> </span>patterns<span class="_ _11"> </span>of<span class="_ _11"> </span>IoT<span class="_ _15"> </span>de<span class="_ _4"></span>vices<span class="_ _11"> </span>in<span class="_ _11"> </span>sequences<span class="_ _15"> </span>of</div><div class="t m0 x9 h6 y5e ff1 fs4 fc0 sc0 lsb ws0">time<span class="_ _10"> </span>slots,<span class="_ _11"> </span>and<span class="_ _10"> </span>location-based<span class="_ _10"> </span>advertisements<span class="_ _10"> </span>and<span class="_ _11"> </span>resource</div><div class="t m0 x9 h6 y5f ff1 fs4 fc0 sc0 ls2 ws0">allocations<span class="_ _b"> </span>[6],<span class="_ _b"> </span>[8],<span class="_ _a"> </span>[9].</div><div class="t m0 xa h6 y60 ff1 fs4 fc0 sc0 lsa ws0">Mobility<span class="_ _a"> </span>prediction<span class="_ _a"> </span>is<span class="_ _a"> </span>implemented<span class="_ _a"> </span>through<span class="_ _a"> </span>location<span class="_ _d"> </span>updat-</div><div class="t m0 x9 h6 y61 ff1 fs4 fc0 sc0 lsb ws0">ing<span class="_ _15"> </span>and<span class="_ _17"> </span>location<span class="_ _15"> </span>prediction<span class="_ _17"> </span>strategies,<span class="_ _15"> </span>where<span class="_ _15"> </span>the<span class="_ _17"> </span>location</div><div class="t m0 x9 h6 y62 ff1 fs4 fc0 sc0 lsa ws0">updating<span class="_ _d"> </span>strategy<span class="_ _d"> </span>is<span class="_ _d"> </span>used<span class="_ _d"> </span>to<span class="_ _d"> </span>predict<span class="_ _d"> </span>the<span class="_ _a"> </span>current<span class="_ _d"> </span>locations<span class="_ _d"> </span>based</div><div class="t m0 x9 h6 y63 ff1 fs4 fc0 sc0 lsb ws0">on<span class="_ _5"> </span>the<span class="_ _5"> </span>av<span class="_ _1"></span>ailable<span class="_ _9"> </span>records,<span class="_ _5"> </span>which<span class="_ _5"> </span>refers<span class="_ _5"> </span>to<span class="_ _9"> </span>tracking<span class="_ _5"> </span>prediction.</div><div class="t m0 x9 h6 y64 ff1 fs4 fc0 sc0 lsb ws0">By<span class="_ _9"> </span>contrast,<span class="_ _9"> </span>a<span class="_ _9"> </span>trajectory<span class="_ _8"> </span>prediction<span class="_ _9"> </span>is<span class="_ _9"> </span>a<span class="_ _9"> </span>dynamic<span class="_ _8"> </span>strategy<span class="_ _9"> </span>in</div><div class="t m0 x9 h6 y65 ff1 fs4 fc0 sc0 lsb ws0">which<span class="_ _e"> </span>the<span class="_ _10"> </span>operation<span class="_ _e"> </span>estimations<span class="_ _10"> </span>of<span class="_ _e"> </span>future<span class="_ _10"> </span>locations<span class="_ _e"> </span>of<span class="_ _10"> </span>IoT</div><div class="t m0 x9 h6 y66 ff1 fs4 fc0 sc0 lsa ws0">de<span class="_ _4"></span>vices<span class="_ _9"> </span>are<span class="_ _9"> </span>based<span class="_ _9"> </span>on<span class="_ _9"> </span>user<span class="_ _9"> </span>mov<span class="_ _1"></span>ements<span class="_ _9"> </span>or<span class="_ _9"> </span>patterns.<span class="_ _9"> </span>This<span class="_ _9"> </span>type</div><div class="t m0 xb h8 y67 ff1 fs5 fc0 sc0 ls3 ws0">2327-4662</div><div class="t m0 xc h8 y68 ff1 fs5 fc0 sc0 ls2 ws0">c</div><div class="t m0 xd h8 y67 ff5 fs5 fc0 sc0 ls2 ws0"><span class="_"> </span><span class="ff1">2019<span class="_ _d"> </span>IEEE.<span class="_ _d"> </span>Personal<span class="_ _d"> </span>use<span class="_ _d"> </span>is<span class="_ _d"> </span>permitted,<span class="_ _a"> </span>b<span class="_ _4"></span>ut<span class="_ _d"> </span>republication/redistribution<span class="_ _0"> </span>requires<span class="_ _d"> </span>IEEE<span class="_ _d"> </span>permission.</span></div><div class="t m0 xe h8 y69 ff1 fs5 fc0 sc0 ls2 ws0">See<span class="_ _d"> </span>http://www<span class="_ _1"></span>.ieee.org/publications_standards/publications/rights/index.html<span class="_ _0"> </span>for<span class="_ _d"> </span>more<span class="_ _d"> </span>information.</div><div class="t m0 xf h9 y6a ff6 fs7 fc0 sc0 ls2 ws0">Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on June 07,2020 at 15:16:03 UTC from IEEE Xplore. Restrictions apply. </div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/625058e674bc5c01055e33f8/bg2.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls1 ws0">506<span class="_ _2"> </span><span class="ls0">IEEE<span class="_ _0"> </span>INTERNET<span class="_ _0"> </span>OF<span class="_ _0"> </span>THINGS<span class="_ _0"> </span>JOURNAL,<span class="_ _16"> </span>VOL.<span class="_ _16"> </span>7,<span class="_ _0"> </span>NO.<span class="_ _0"> </span>1,<span class="_ _0"> </span>J<span class="_ _1"></span>ANUAR<span class="_ _1"></span>Y<span class="_ _0"> </span>2020</span></div><div class="t m0 x1 h6 y6b ff1 fs4 fc0 sc0 lsa ws0">of<span class="_ _10"> </span>strategy<span class="_ _10"> </span>is<span class="_ _10"> </span>affected<span class="_ _10"> </span>by<span class="_ _11"> </span>the<span class="_ _10"> </span>speed<span class="_ _10"> </span>and<span class="_ _11"> </span>system<span class="_ _10"> </span>resources</div><div class="t m0 x1 h6 y6c ff1 fs4 fc0 sc0 lsb ws0">used<span class="_ _b"> </span>in<span class="_ _b"> </span>mobile<span class="_ _b"> </span>networks.<span class="_ _b"> </span>The<span class="_ _5"> </span>trajectory<span class="_ _b"> </span>prediction<span class="_ _b"> </span>in<span class="_ _5"> </span>mobile</div><div class="t m0 x1 h6 y6d ff1 fs4 fc0 sc0 lsa ws0">technology<span class="_ _b"> </span>is<span class="_ _b"> </span>used<span class="_ _5"> </span>for<span class="_ _b"> </span>efficient<span class="_ _b"> </span>base<span class="_ _b"> </span>station<span class="_ _5"> </span>deployment,<span class="_ _b"> </span>risk</div><div class="t m0 x1 h6 y6e ff1 fs4 fc0 sc0 lsa ws0">management,<span class="_ _8"> </span>controlling<span class="_ _c"> </span>the<span class="_ _8"> </span>consumption<span class="_ _c"> </span>of<span class="_ _c"> </span>resources,<span class="_ _8"> </span>and</div><div class="t m0 x1 h6 y6f ff1 fs4 fc0 sc0 lsb ws0">improving<span class="_ _a"> </span>the<span class="_ _b"> </span>quality<span class="_ _b"> </span>of<span class="_ _b"> </span>the<span class="_ _b"> </span>decisions.</div><div class="t m0 x5 h6 y70 ff1 fs4 fc0 sc0 lsa ws0">A<span class="_ _a"> </span>mobility<span class="_ _a"> </span>prediction<span class="_ _a"> </span>has<span class="_ _a"> </span>been<span class="_ _a"> </span>highly<span class="_ _a"> </span>emphasized<span class="_ _b"> </span>for<span class="_ _d"> </span>pub-</div><div class="t m0 x1 h6 y71 ff1 fs4 fc0 sc0 lsb ws0">lic<span class="_ _b"> </span>service<span class="_ _b"> </span>provisioning,<span class="_ _b"> </span>urban<span class="_ _5"> </span>planning,<span class="_ _b"> </span>and<span class="_ _b"> </span>mobile<span class="_ _5"> </span>network</div><div class="t m0 x1 h6 y72 ff1 fs4 fc0 sc0 lsa ws0">resource<span class="_ _d"> </span>management<span class="_ _b"> </span>[10]<span class="_ _a"> </span>as<span class="_ _d"> </span>the<span class="_ _a"> </span>streaming<span class="_ _d"> </span>sources<span class="_ _a"> </span>of<span class="_ _a"> </span>mobile</div><div class="t m0 x1 h6 y73 ff1 fs4 fc0 sc0 lsa ws0">networks<span class="_ _9"> </span>and<span class="_ _8"> </span>IoT<span class="_ _8"> </span>devices<span class="_ _8"> </span>are<span class="_ _8"> </span>exponentially<span class="_ _9"> </span>enlarged.<span class="_ _8"> </span>Thus,</div><div class="t m0 x1 h6 y74 ff1 fs4 fc0 sc0 lsa ws0">div<span class="_ _1"></span>ergence<span class="_ _b"> </span>applicability<span class="_ _5"> </span>of<span class="_ _5"> </span>IoT<span class="_ _b"> </span>devices<span class="_ _b"> </span>and<span class="_ _5"> </span>excessi<span class="_ _1"></span>ve<span class="_ _b"> </span>mobile</div><div class="t m0 x1 h6 y75 ff1 fs4 fc0 sc0 lsa ws0">data<span class="_ _9"> </span>products<span class="_ _8"> </span>hav<span class="_ _1"></span>e<span class="_ _8"> </span>encouraged<span class="_ _9"> </span>further<span class="_ _8"> </span>research<span class="_ _9"> </span>in<span class="_ _8"> </span>this<span class="_ _8"> </span>area.</div><div class="t m0 x1 h6 y76 ff1 fs4 fc0 sc0 lsb ws0">Ho<span class="_ _4"></span>we<span class="_ _4"></span>ver<span class="_ _1"></span>,<span class="_"> </span>designing<span class="_ _d"> </span>an<span class="_"> </span>accurate<span class="_"> </span>system<span class="_ _d"> </span>for<span class="_"> </span>mobility<span class="_ _d"> </span>prediction</div><div class="t m0 x1 h6 y77 ff1 fs4 fc0 sc0 lsa ws0">is<span class="_ _11"> </span>extremely<span class="_ _11"> </span>challenging<span class="_ _11"> </span>owing<span class="_ _11"> </span>to<span class="_ _11"> </span>the<span class="_ _11"> </span>dynamical<span class="_ _11"> </span>changes</div><div class="t m0 x1 h6 y78 ff1 fs4 fc0 sc0 lsa ws0">of<span class="_ _9"> </span>wireless<span class="_ _8"> </span>networks,<span class="_ _8"> </span>the<span class="_ _9"> </span>heterogeneous<span class="_ _8"> </span>nature<span class="_ _8"> </span>of<span class="_ _8"> </span>data,<span class="_ _8"> </span>and</div><div class="t m0 x1 h6 y79 ff1 fs4 fc0 sc0 lsa ws0">changes<span class="_ _b"> </span>in<span class="_ _b"> </span>location<span class="_ _b"> </span>over<span class="_ _b"> </span>time<span class="_ _a"> </span>[9].<span class="_ _b"> </span>The<span class="_ _5"> </span>W<span class="_ _1"></span>i-Fi-based<span class="_ _b"> </span>RSS<span class="_ _b"> </span>val-</div><div class="t m0 x1 h6 y7a ff1 fs4 fc0 sc0 lsa ws0">ues<span class="_ _5"> </span>are<span class="_ _9"> </span>commonly<span class="_ _5"> </span>used<span class="_ _9"> </span>in<span class="_ _5"> </span>indoor<span class="_ _9"> </span>positioning,<span class="_ _5"> </span>although<span class="_ _9"> </span>they</div><div class="t m0 x1 h6 y7b ff1 fs4 fc0 sc0 lsa ws0">can<span class="_ _d"> </span>also<span class="_ _a"> </span>be<span class="_ _a"> </span>applied<span class="_ _d"> </span>i<span class="_ _f"></span>n<span class="_ _d"> </span>urban<span class="_ _a"> </span>and<span class="_ _a"> </span>smart<span class="_ _d"> </span>areas<span class="_ _a"> </span>that<span class="_ _a"> </span>hav<span class="_ _1"></span>e<span class="_ _a"> </span>numer-</div><div class="t m0 x1 h6 y7c ff1 fs4 fc0 sc0 lsa ws0">ous<span class="_ _9"> </span>IoT<span class="_ _9"> </span>connections<span class="_ _b"> </span>[11].<span class="_ _8"> </span>Howe<span class="_ _1"></span>ver<span class="_ _1"></span>,<span class="_ _9"> </span>using<span class="_ _9"> </span>Wi-Fi<span class="_ _5"> </span>technology</div><div class="t m0 x1 h6 y7d ff1 fs4 fc0 sc0 lsa ws0">alone<span class="_ _10"> </span>for<span class="_ _e"> </span>outdoor<span class="_ _10"> </span>positioning<span class="_ _10"> </span>causes<span class="_ _10"> </span>a<span class="_ _10"> </span>nonrobust<span class="_ _e"> </span>position-</div><div class="t m0 x1 h6 y7e ff1 fs4 fc0 sc0 lsb ws0">ing<span class="_ _5"> </span>model<span class="_ _5"> </span>o<span class="_ _1"></span>wing<span class="_ _5"> </span>to<span class="_ _5"> </span>multipath<span class="_ _5"> </span>fading,<span class="_ _5"> </span>reflections,<span class="_ _5"> </span>diffraction,</div><div class="t m0 x1 h6 y7f ff1 fs4 fc0 sc0 lsb ws0">and<span class="_ _b"> </span>interference<span class="_ _b"> </span>effects.<span class="_ _b"> </span>A<span class="_ _b"> </span>cellular<span class="_ _b"> </span>network<span class="_ _b"> </span>by<span class="_ _b"> </span>contrast<span class="_ _b"> </span>com-</div><div class="t m0 x1 h6 y80 ff1 fs4 fc0 sc0 lsa ws0">monly<span class="_ _a"> </span>uses<span class="_ _b"> </span>outdoor<span class="_ _a"> </span>positioning,<span class="_ _b"> </span>which<span class="_ _a"> </span>is<span class="_ _a"> </span>less<span class="_ _b"> </span>accurate<span class="_ _a"> </span>owing</div><div class="t m0 x1 h6 y81 ff1 fs4 fc0 sc0 lsa ws0">to<span class="_ _b"> </span>higher<span class="_ _a"> </span>signal<span class="_ _b"> </span>fluctuations.<span class="_ _b"> </span>Heterogeneous<span class="_ _b"> </span>networks<span class="_ _a"> </span>that<span class="_ _b"> </span>do</div><div class="t m0 x1 h6 y82 ff1 fs4 fc0 sc0 lsa ws0">not<span class="_ _c"> </span>vanish<span class="_ _8"> </span>in<span class="_ _c"> </span>the<span class="_ _c"> </span>presence<span class="_ _c"> </span>of<span class="_ _c"> </span>other<span class="_ _e"> </span>networks<span class="_ _8"> </span>(e.g.,<span class="_ _c"> </span>cellular</div><div class="t m0 x1 h6 y83 ff1 fs4 fc0 sc0 lsb ws0">networks,<span class="_ _a"> </span>channel<span class="_ _b"> </span>state<span class="_ _b"> </span>information,<span class="_ _a"> </span>and<span class="_ _b"> </span>W<span class="_ _1"></span>i-Fi<span class="_ _b"> </span>networks)<span class="_ _a"> </span>are</div><div class="t m0 x1 h6 y84 ff1 fs4 fc0 sc0 lsa ws0">useful<span class="_ _c"> </span>to<span class="_ _c"> </span>fill<span class="_ _c"> </span>in<span class="_ _e"> </span>the<span class="_ _c"> </span>breaks<span class="_ _c"> </span>in<span class="_ _e"> </span>other<span class="_ _c"> </span>networks<span class="_ _c"> </span>and<span class="_ _c"> </span>can<span class="_ _e"> </span>pro-</div><div class="t m0 x1 h6 y85 ff1 fs4 fc0 sc0 lsa ws0">vide<span class="_ _b"> </span>a<span class="_ _b"> </span>better<span class="_ _b"> </span>LBS<span class="_ _b"> </span>in<span class="_ _a"> </span>areas<span class="_ _b"> </span>where<span class="_ _b"> </span>high<span class="_ _b"> </span>signal<span class="_ _b"> </span>damage<span class="_ _b"> </span>occurs.</div><div class="t m0 x1 h6 y86 ff1 fs4 fc0 sc0 lsb ws0">In<span class="_ _b"> </span>[10],<span class="_ _b"> </span>the<span class="_ _5"> </span>W<span class="_ _1"></span>i-Fi,<span class="_ _5"> </span>Bluetooth,<span class="_ _b"> </span>4G<span class="_ _5"> </span>L<span class="_ _7"></span>TE,<span class="_ _b"> </span>and<span class="_ _5"> </span>magnetic<span class="_ _5"> </span>signals</div><div class="t m0 x1 h6 y87 ff1 fs4 fc0 sc0 lsa ws0">were<span class="_ _9"> </span>collected<span class="_ _9"> </span>and<span class="_ _9"> </span>used<span class="_ _9"> </span>interactiv<span class="_ _1"></span>ely<span class="_ _9"> </span>to<span class="_ _9"> </span>provide<span class="_ _9"> </span>an<span class="_ _9"> </span>accurate</div><div class="t m0 x1 h6 y88 ff1 fs4 fc0 sc0 lsa ws0">LBS<span class="_"> </span>using<span class="_ _16"> </span>the<span class="_"> </span>simultaneous<span class="_"> </span>localization<span class="_ _16"> </span>and<span class="_"> </span>mapping<span class="_ _16"> </span>(SLAM)</div><div class="t m0 x1 h6 y89 ff1 fs4 fc0 sc0 lsb ws0">algorithm.</div><div class="t m0 x5 h6 y8a ff1 fs4 fc0 sc0 lsa ws0">Mobility<span class="_ _e"> </span>prediction<span class="_ _e"> </span>can<span class="_ _e"> </span>be<span class="_ _e"> </span>computed<span class="_ _e"> </span>through<span class="_ _e"> </span>the<span class="_ _e"> </span>aid<span class="_ _e"> </span>of</div><div class="t m0 x1 h6 y8b ff1 fs4 fc0 sc0 lse ws0">image<span class="_ _5"> </span>and<span class="_ _5"> </span>video<span class="_ _9"> </span>data;<span class="_ _5"> </span>howe<span class="_ _1"></span>ver<span class="_ _1"></span>,<span class="_ _9"> </span>this<span class="_ _5"> </span>approach<span class="_ _5"> </span>has<span class="_ _9"> </span>an<span class="_ _5"> </span>unpre-</div><div class="t m0 x1 h6 y8c ff1 fs4 fc0 sc0 lsa ws0">dictable<span class="_ _d"> </span>effect<span class="_ _d"> </span>when<span class="_ _a"> </span>the<span class="_ _d"> </span>camera,<span class="_ _a"> </span>observer<span class="_ _1"></span>,<span class="_ _d"> </span>or<span class="_ _a"> </span>observ<span class="_ _4"></span>ed<span class="_ _d"> </span>objects</div><div class="t m0 x1 h6 y8d ff1 fs4 fc0 sc0 lsa ws0">mov<span class="_ _1"></span>e<span class="_ _a"> </span>or<span class="_ _a"> </span>cross<span class="_ _d"> </span>each<span class="_ _a"> </span>other<span class="_ _1"></span>,<span class="_ _a"> </span>and<span class="_ _d"> </span>its<span class="_ _a"> </span>accuracy<span class="_ _d"> </span>easily<span class="_ _a"> </span>defects<span class="_ _d"> </span>from</div><div class="t m0 x1 h6 y8e ff1 fs4 fc0 sc0 lsb ws0">blurry<span class="_ _9"> </span>light<span class="_ _b"> </span>[4].<span class="_ _5"> </span>A<span class="_ _9"> </span>visual-based<span class="_ _9"> </span>trajectory<span class="_ _9"> </span>requires<span class="_ _9"> </span>too<span class="_ _9"> </span>many</div><div class="t m0 x1 h6 y8f ff1 fs4 fc0 sc0 lsa ws0">resources<span class="_ _5"> </span>and<span class="_ _9"> </span>a<span class="_ _9"> </span>greater<span class="_ _5"> </span>light<span class="_ _9"> </span>intensity<span class="_ _5"> </span>dependence<span class="_ _9"> </span>compared</div><div class="t m0 x1 h6 y90 ff1 fs4 fc0 sc0 lsb ws0">with<span class="_"> </span>the<span class="_ _d"> </span>radio-frequency-based<span class="_"> </span>mobility<span class="_"> </span>predictions.<span class="_ _d"> </span>The<span class="_"> </span>costs</div><div class="t m0 x1 h6 y91 ff1 fs4 fc0 sc0 lsa ws0">of<span class="_ _5"> </span>these<span class="_ _9"> </span>technologies<span class="_ _5"> </span>are<span class="_ _9"> </span>too<span class="_ _5"> </span>expensi<span class="_ _1"></span>ve<span class="_ _9"> </span>to<span class="_ _5"> </span>apply<span class="_ _5"> </span>everywhere</div><div class="t m0 x1 h6 y92 ff1 fs4 fc0 sc0 lsa ws0">for<span class="_ _d"> </span>cheaper<span class="_ _d"> </span>IoT<span class="_ _d"> </span>services<span class="_ _d"> </span>in<span class="_ _a"> </span>wider<span class="_"> </span>areas.<span class="_ _a"> </span>The<span class="_"> </span>technical<span class="_ _a"> </span>dif<span class="_ _1"></span>ficul-</div><div class="t m0 x1 h6 y93 ff1 fs4 fc0 sc0 lsb ws0">ties,<span class="_"> </span>lack<span class="_"> </span>of<span class="_ _16"> </span>adaptability<span class="_"> </span>in<span class="_"> </span>wider<span class="_"> </span>communities,<span class="_ _16"> </span>and<span class="_"> </span>operational</div><div class="t m0 x1 h6 y94 ff1 fs4 fc0 sc0 lsb ws0">complexity<span class="_ _7"></span>,<span class="_ _10"> </span>along<span class="_ _11"> </span>with<span class="_ _10"> </span>higher<span class="_ _11"> </span>costs,<span class="_ _10"> </span>create<span class="_ _10"> </span>a<span class="_ _11"> </span>paradigm<span class="_ _10"> </span>in</div><div class="t m0 x1 h6 y95 ff1 fs4 fc0 sc0 lsa ws0">IoT<span class="_ _c"> </span>for<span class="_ _e"> </span>the<span class="_ _c"> </span>use<span class="_ _e"> </span>of<span class="_ _c"> </span>images<span class="_ _e"> </span>or<span class="_ _c"> </span>video<span class="_ _e"> </span>for<span class="_ _c"> </span>LBS<span class="_ _e"> </span>in<span class="_ _c"> </span>urban<span class="_ _e"> </span>and</div><div class="t m0 x1 h6 y96 ff1 fs4 fc0 sc0 lsb ws0">smart<span class="_ _11"> </span>city<span class="_ _10"> </span>environments.<span class="_ _10"> </span>Thus,<span class="_ _11"> </span>radio-signal-based<span class="_ _11"> </span>mobility</div><div class="t m0 x1 h6 y97 ff1 fs4 fc0 sc0 lsa ws0">prediction<span class="_ _c"> </span>has<span class="_ _e"> </span>become<span class="_ _c"> </span>a<span class="_ _e"> </span>common<span class="_ _c"> </span>way<span class="_ _e"> </span>to<span class="_ _c"> </span>offer<span class="_ _c"> </span>an<span class="_ _c"> </span>LBS<span class="_ _e"> </span>in</div><div class="t m0 x1 h6 y98 ff1 fs4 fc0 sc0 lsa ws0">a<span class="_ _5"> </span>wireless<span class="_ _5"> </span>environment<span class="_ _5"> </span>because<span class="_ _5"> </span>it<span class="_ _5"> </span>can<span class="_ _9"> </span>be<span class="_ _5"> </span>applied<span class="_ _9"> </span>in<span class="_ _5"> </span>a<span class="_ _9"> </span>wider</div><div class="t m0 x1 h6 y99 ff1 fs4 fc0 sc0 lsb ws0">range,<span class="_ _10"> </span>and<span class="_ _10"> </span>is<span class="_ _11"> </span>cost-ef<span class="_ _1"></span>fectiv<span class="_ _1"></span>e<span class="_ _11"> </span>for<span class="_ _10"> </span>the<span class="_ _10"> </span>fitting<span class="_ _10"> </span>of<span class="_ _11"> </span>IoT<span class="_ _10"> </span>business</div><div class="t m0 x1 h6 y9a ff1 fs4 fc0 sc0 lsa ws0">models.<span class="_ _c"> </span>A<span class="_ _e"> </span>radio-signal-based<span class="_ _e"> </span>LBS,<span class="_ _e"> </span>for<span class="_ _e"> </span>example<span class="_ _c"> </span>the<span class="_ _e"> </span>use<span class="_ _e"> </span>of</div><div class="t m0 x1 h6 y9b ff1 fs4 fc0 sc0 lsa ws0">W<span class="_ _1"></span>i-Fi<span class="_ _b"> </span>and<span class="_ _b"> </span>cellular<span class="_ _b"> </span>networks,<span class="_ _a"> </span>is<span class="_ _b"> </span>independent<span class="_ _b"> </span>of<span class="_ _b"> </span>the<span class="_ _b"> </span>brightness</div><div class="t m0 x1 h6 y9c ff1 fs4 fc0 sc0 lsb ws0">and<span class="_ _b"> </span>requires<span class="_ _5"> </span>less<span class="_ _b"> </span>storage<span class="_ _5"> </span>space.<span class="_ _b"> </span>It<span class="_ _5"> </span>is<span class="_ _b"> </span>also<span class="_ _5"> </span>easy<span class="_ _b"> </span>to<span class="_ _5"> </span>capture<span class="_ _b"> </span>the</div><div class="t m0 x1 h6 y9d ff1 fs4 fc0 sc0 lsb ws0">required<span class="_ _b"> </span>data<span class="_ _b"> </span>using<span class="_ _b"> </span>mobile<span class="_ _a"> </span>phones,<span class="_ _b"> </span>sensors,<span class="_ _b"> </span>and<span class="_ _b"> </span>RFID<span class="_ _b"> </span>[5].</div><div class="t m0 x5 h6 y9e ff1 fs4 fc0 sc0 lse ws0">Different<span class="_ _b"> </span>machine<span class="_ _b"> </span>learning<span class="_ _b"> </span>techniques<span class="_ _5"> </span>hav<span class="_ _1"></span>e<span class="_ _5"> </span>been<span class="_ _b"> </span>proposed</div><div class="t m0 x1 h6 y9f ff1 fs4 fc0 sc0 lsb ws0">to<span class="_ _10"> </span>offer<span class="_ _10"> </span>accurate<span class="_ _11"> </span>positioning<span class="_ _11"> </span>services<span class="_ _10"> </span>using<span class="_ _11"> </span>a<span class="_ _10"> </span>radio<span class="_ _11"> </span>signal</div><div class="t m0 x1 h6 ya0 ff1 fs4 fc0 sc0 lsa ws0">data<span class="_ _11"> </span>set,<span class="_ _15"> </span>including<span class="_ _15"> </span>the<span class="_ _15"> </span><span class="ff2 ls2">k</span><span class="lsb">-nearest<span class="_ _15"> </span>neighbors<span class="_ _15"> </span>(K-NNs)<span class="_ _11"> </span>[12],</span></div><div class="t m0 x1 h6 ya1 ff1 fs4 fc0 sc0 lsa ws0">a<span class="_ _13"> </span>hybrid<span class="_ _13"> </span>of<span class="_ _14"> </span>support<span class="_ _14"> </span>vector<span class="_ _13"> </span>machines<span class="_ _13"> </span>(SVMs)<span class="_ _14"> </span>and<span class="_ _13"> </span>deep</div><div class="t m0 x1 h6 ya2 ff1 fs4 fc0 sc0 lsb ws0">neural<span class="_ _18"> </span>networks<span class="_ _18"> </span>(DNNs)<span class="_ _18"> </span>[13],<span class="_ _18"> </span>and<span class="_ _18"> </span>the<span class="_ _18"> </span>artificial<span class="_ _18"> </span>neural</div><div class="t m0 x1 h6 ya3 ff1 fs4 fc0 sc0 lsb ws0">networks<span class="_ _9"> </span>(ANNs)<span class="_ _8"> </span>[14].<span class="_ _8"> </span>Howe<span class="_ _1"></span>ver<span class="_ _1"></span>,<span class="_ _9"> </span>the<span class="_ _8"> </span>shallow-learning<span class="_ _9"> </span>algo-</div><div class="t m0 x1 h6 ya4 ff1 fs4 fc0 sc0 lsa ws0">rithms,<span class="_ _e"> </span>such<span class="_ _e"> </span>as<span class="_ _e"> </span>K-NN,<span class="_ _e"> </span>SVM,<span class="_ _e"> </span>and<span class="_ _e"> </span>n<span class="_ _e"> </span>ANN,<span class="_ _e"> </span>lack<span class="_ _e"> </span>flexibility<span class="_ _7"></span>,</div><div class="t m0 x9 h6 ya5 ff1 fs4 fc0 sc0 lsb ws0">adaptability,<span class="_ _5"> </span>and<span class="_ _5"> </span>learning<span class="_ _5"> </span>capacity<span class="_ _5"> </span>owing<span class="_ _5"> </span>to<span class="_ _5"> </span>the<span class="_ _5"> </span>lower<span class="_ _b"> </span>learn-</div><div class="t m0 x9 h6 ya6 ff1 fs4 fc0 sc0 lsa ws0">ing<span class="_ _10"> </span>capacity<span class="_ _11"> </span>and<span class="_ _10"> </span>are<span class="_ _10"> </span>unable<span class="_ _11"> </span>to<span class="_ _10"> </span>adapt<span class="_ _11"> </span>to<span class="_ _10"> </span>dynamic<span class="_ _10"> </span>changes</div><div class="t m0 x9 h6 ya7 ff1 fs4 fc0 sc0 lsb ws0">in<span class="_ _9"> </span>the<span class="_ _8"> </span>radio<span class="_ _9"> </span>signals<span class="_ _b"> </span>[15].<span class="_ _9"> </span>Moreover<span class="_ _1"></span>,<span class="_ _9"> </span>owing<span class="_ _9"> </span>to<span class="_ _9"> </span>the<span class="_ _8"> </span>growth<span class="_ _9"> </span>of</div><div class="t m0 x9 h6 ya8 ff1 fs4 fc0 sc0 lsa ws0">numerous<span class="_ _a"> </span>sensors<span class="_ _d"> </span>and<span class="_ _a"> </span>the<span class="_ _a"> </span>spreading<span class="_ _d"> </span>of<span class="_ _a"> </span>information<span class="_ _a"> </span>sources<span class="_ _a"> </span>in</div><div class="t m0 x9 h6 ya9 ff1 fs4 fc0 sc0 lsa ws0">IoT<span class="_ _a"> </span>eras,<span class="_ _d"> </span>applying<span class="_ _a"> </span>traditional<span class="_ _a"> </span>methods<span class="_ _a"> </span>for<span class="_ _a"> </span>tracking<span class="_ _a"> </span>and<span class="_ _d"> </span>trajec-</div><div class="t m0 x9 h6 yaa ff1 fs4 fc0 sc0 lsb ws0">tory<span class="_ _a"> </span>prediction<span class="_ _a"> </span>in<span class="_ _a"> </span>the<span class="_ _b"> </span>comple<span class="_ _1"></span>x<span class="_ _b"> </span>wireless<span class="_ _a"> </span>networks<span class="_ _a"> </span>is<span class="_ _a"> </span>becoming</div><div class="t m0 x9 h6 yab ff1 fs4 fc0 sc0 lse ws0">a<span class="_ _b"> </span>challenge.</div><div class="t m0 xa h6 yac ff1 fs4 fc0 sc0 lse ws0">Zhang<span class="_ _3"> </span><span class="ff2">et<span class="_ _18"> </span>al.<span class="_ _3"> </span></span><span class="lsa">[16]<span class="_ _19"> </span>applied<span class="_ _19"> </span>various<span class="_ _18"> </span>machine<span class="_ _3"> </span>learning</span></div><div class="t m0 x9 h6 yad ff1 fs4 fc0 sc0 lse ws0">approaches,<span class="_ _e"> </span>such<span class="_ _c"> </span>as<span class="_ _e"> </span>SVM,<span class="_ _e"> </span>K-NN,<span class="_ _e"> </span>and<span class="_ _e"> </span>local<span class="_ _e"> </span>linear<span class="_ _e"> </span>emend-</div><div class="t m0 x9 h6 yae ff1 fs4 fc0 sc0 lsb ws0">ing<span class="_"> </span>(LLE),<span class="_"> </span>for<span class="_"> </span>comparison<span class="_"> </span>with<span class="_"> </span>the<span class="_"> </span>DNN<span class="_ _16"> </span>algorithm<span class="_"> </span>in<span class="_"> </span>terms<span class="_"> </span>of</div><div class="t m0 x9 h6 yaf ff1 fs4 fc0 sc0 lsa ws0">the<span class="_ _d"> </span>root<span class="_ _d"> </span>mean-square-error<span class="_ _d"> </span>(RMSE),<span class="_ _d"> </span>and<span class="_ _d"> </span>DNN-based<span class="_ _d"> </span>localiza-</div><div class="t m0 x9 h6 yb0 ff1 fs4 fc0 sc0 lsa ws0">tion<span class="_"> </span>was<span class="_"> </span>sho<span class="_ _1"></span>wn<span class="_ _d"> </span>to<span class="_"> </span>outperform<span class="_"> </span>other<span class="_"> </span>methods.<span class="_"> </span>Adege<span class="_"> </span><span class="ff2 lse">et<span class="_"> </span>al.<span class="_"> </span><span class="ff1">[17]</span></span></div><div class="t m0 x9 h6 yb1 ff1 fs4 fc0 sc0 lsa ws0">compared<span class="_ _17"> </span>DNN<span class="_ _17"> </span>with<span class="_ _17"> </span>SVM-Poly<span class="_ _17"> </span>and<span class="_ _17"> </span>K-NN<span class="_ _13"> </span>for<span class="_ _15"> </span>localiza-</div><div class="t m0 x9 h6 yb2 ff1 fs4 fc0 sc0 lsb ws0">tion<span class="_ _e"> </span>in<span class="_ _e"> </span>wireless<span class="_ _e"> </span>en<span class="_ _1"></span>vironments,<span class="_ _e"> </span>and<span class="_ _e"> </span>the<span class="_ _e"> </span>results<span class="_ _e"> </span>indicate<span class="_ _10"> </span>that</div><div class="t m0 x9 h6 yb3 ff1 fs4 fc0 sc0 lsa ws0">DNN<span class="_ _c"> </span>outperforms<span class="_ _8"> </span>other<span class="_ _c"> </span>traditional<span class="_ _c"> </span>approaches<span class="_ _c"> </span>owing<span class="_ _8"> </span>to<span class="_ _c"> </span>its</div><div class="t m0 x9 h6 yb4 ff1 fs4 fc0 sc0 lsb ws0">higher<span class="_ _5"> </span>learning<span class="_ _b"> </span>capacity<span class="_ _5"> </span>from<span class="_ _5"> </span>noisy<span class="_ _5"> </span>signal<span class="_ _5"> </span>distributions<span class="_ _b"> </span>[18].</div><div class="t m0 x9 h6 yb5 ff1 fs4 fc0 sc0 lsa ws0">According<span class="_ _a"> </span>to<span class="_ _b"> </span>[19],<span class="_ _a"> </span>the<span class="_ _a"> </span>traditional<span class="_ _a"> </span>approaches,<span class="_ _a"> </span>such<span class="_ _a"> </span>as<span class="_ _a"> </span>particle</div><div class="t m0 x9 h6 yb6 ff1 fs4 fc0 sc0 lsb ws0">filter<span class="_ _1"></span>,<span class="_"> </span>Kalman<span class="_"> </span>filter<span class="_ _1"></span>,<span class="_"> </span>and<span class="_"> </span>Gaussian<span class="_"> </span>process,<span class="_ _16"> </span>are<span class="_"> </span>characterized<span class="_"> </span>by</div><div class="t m0 x9 h6 yb7 ff1 fs4 fc0 sc0 lsa ws0">poor<span class="_ _a"> </span>learning<span class="_ _a"> </span>to<span class="_ _a"> </span>a<span class="_ _a"> </span>long<span class="_ _a"> </span>time<span class="_ _a"> </span>sequence<span class="_ _a"> </span>data<span class="_ _a"> </span>set.<span class="_ _a"> </span>Thus,<span class="_ _a"> </span>they<span class="_ _d"> </span>are</div><div class="t m0 x9 h6 yb8 ff1 fs4 fc0 sc0 lsb ws0">limited<span class="_ _5"> </span>to<span class="_ _5"> </span>provide<span class="_ _b"> </span>accurate<span class="_ _9"> </span>and<span class="_ _5"> </span>scalable<span class="_ _5"> </span>mobility<span class="_ _5"> </span>predictions</div><div class="t m0 x9 h6 yb9 ff1 fs4 fc0 sc0 ls2 ws0">in<span class="_ _a"> </span>wireless<span class="_ _a"> </span>en<span class="_ _1"></span>vironments<span class="_ _b"> </span>as<span class="_ _a"> </span>data<span class="_ _a"> </span>in<span class="_ _a"> </span>wireless<span class="_ _a"> </span>en<span class="_ _4"></span>vironments<span class="_ _a"> </span>are</div><div class="t m0 x9 h6 yba ff1 fs4 fc0 sc0 lsa ws0">heterogeneous,<span class="_ _9"> </span>changed<span class="_ _9"> </span>continuously<span class="_ _1"></span>,<span class="_ _9"> </span>and<span class="_ _9"> </span>easily<span class="_ _9"> </span>affected<span class="_ _9"> </span>by</div><div class="t m0 x9 h6 ybb ff1 fs4 fc0 sc0 lsa ws0">en<span class="_ _1"></span>vironmental<span class="_ _a"> </span>factors.<span class="_ _a"> </span>Consequently<span class="_ _1"></span>,<span class="_ _a"> </span>these<span class="_ _a"> </span>approaches<span class="_ _b"> </span>unable</div><div class="t m0 x9 h6 ybc ff1 fs4 fc0 sc0 lsa ws0">to<span class="_ _b"> </span>adapt<span class="_ _a"> </span>signal<span class="_ _b"> </span>fluctuations<span class="_ _b"> </span>in<span class="_ _a"> </span>complex<span class="_ _b"> </span>en<span class="_ _1"></span>vironments.<span class="_ _b"> </span>In<span class="_ _a"> </span>gen-</div><div class="t m0 x9 h6 ybd ff1 fs4 fc0 sc0 lsb ws0">eral,<span class="_ _9"> </span>despite<span class="_ _9"> </span>shallo<span class="_ _1"></span>w<span class="_ _9"> </span>learning,<span class="_ _9"> </span>deep<span class="_ _9"> </span>learning<span class="_ _9"> </span>has<span class="_ _9"> </span>varieties<span class="_ _5"> </span>of</div><div class="t m0 x9 h6 ybe ff1 fs4 fc0 sc0 lsa ws0">hidden<span class="_ _5"> </span>layers<span class="_ _9"> </span>(HLs)<span class="_ _5"> </span>and<span class="_ _9"> </span>a<span class="_ _5"> </span>number<span class="_ _9"> </span>of<span class="_ _5"> </span>optimizers<span class="_ _9"> </span>and<span class="_ _5"> </span>activ<span class="_ _1"></span>a-</div><div class="t m0 x9 h6 ybf ff1 fs4 fc0 sc0 lsa ws0">tion<span class="_ _a"> </span>functions.<span class="_ _a"> </span>These<span class="_ _a"> </span>make<span class="_ _a"> </span>the<span class="_ _a"> </span>DNN<span class="_ _a"> </span>have<span class="_ _d"> </span>various<span class="_ _a"> </span>options<span class="_ _a"> </span>for</div><div class="t m0 x9 h6 yc0 ff1 fs4 fc0 sc0 lsa ws0">optimizing<span class="_ _5"> </span>the<span class="_ _9"> </span>system<span class="_ _9"> </span>performances.<span class="_ _9"> </span>In<span class="_ _b"> </span>[18]<span class="_ _5"> </span>and<span class="_ _b"> </span>[20],<span class="_ _9"> </span>DNN</div><div class="t m0 x9 h6 yc1 ff1 fs4 fc0 sc0 lsb ws0">is<span class="_ _9"> </span>particularly<span class="_ _8"> </span>appropriate<span class="_ _8"> </span>when<span class="_ _8"> </span>the<span class="_ _8"> </span>data<span class="_ _8"> </span>are<span class="_ _9"> </span>heterogeneous,</div><div class="t m0 x9 h6 yc2 ff1 fs4 fc0 sc0 lsa ws0">hav<span class="_ _1"></span>e<span class="_ _9"> </span>different<span class="_ _5"> </span>formats,<span class="_ _5"> </span>and<span class="_ _9"> </span>exhibit<span class="_ _5"> </span>complex<span class="_ _5"> </span>and<span class="_ _9"> </span>hierarchical</div><div class="t m0 x9 h6 yc3 ff1 fs4 fc0 sc0 lsb ws0">natures.<span class="_ _e"> </span>DNN<span class="_ _10"> </span>is<span class="_ _e"> </span>also<span class="_ _e"> </span>more<span class="_ _10"> </span>preferable<span class="_ _e"> </span>to<span class="_ _10"> </span>offer<span class="_ _c"> </span>more<span class="_ _10"> </span>accu-</div><div class="t m0 x9 h6 yc4 ff1 fs4 fc0 sc0 lsb ws0">rate<span class="_ _e"> </span>results<span class="_ _10"> </span>whenev<span class="_ _1"></span>er<span class="_ _10"> </span>there<span class="_ _10"> </span>will<span class="_ _e"> </span>be<span class="_ _10"> </span>longer<span class="_ _10"> </span>time-series<span class="_ _e"> </span>data</div><div class="t m0 x9 h6 yc5 ff1 fs4 fc0 sc0 lsb ws0">sets.<span class="_ _11"> </span>Thus,<span class="_ _11"> </span>DNN<span class="_ _15"> </span>is<span class="_ _11"> </span>more<span class="_ _11"> </span>appropriate<span class="_ _15"> </span>than<span class="_ _11"> </span>shallow<span class="_ _11"> </span>learn-</div><div class="t m0 x9 h6 yc6 ff1 fs4 fc0 sc0 lsb ws0">ing<span class="_ _e"> </span>as<span class="_ _e"> </span>mobile<span class="_ _e"> </span>data<span class="_ _e"> </span>are<span class="_ _e"> </span>collected<span class="_ _e"> </span>from<span class="_ _10"> </span>v<span class="_ _1"></span>arious<span class="_ _10"> </span>sources<span class="_ _e"> </span>and</div><div class="t m0 x9 h6 yc7 ff1 fs4 fc0 sc0 lsa ws0">complex<span class="_ _a"> </span>in<span class="_ _b"> </span>nature.<span class="_ _b"> </span>Moreov<span class="_ _1"></span>er,<span class="_ _a"> </span>shallow<span class="_ _b"> </span>learning<span class="_ _a"> </span>cannot<span class="_ _b"> </span>handle</div><div class="t m0 x9 h6 yc8 ff1 fs4 fc0 sc0 lsa ws0">high-dimensional<span class="_ _9"> </span>states<span class="_ _9"> </span>of<span class="_ _9"> </span>the<span class="_ _9"> </span>mobile<span class="_ _9"> </span>databases<span class="_ _9"> </span>while<span class="_ _9"> </span>DNN</div><div class="t m0 x9 h6 yc9 ff1 fs4 fc0 sc0 lsa ws0">can.<span class="_ _a"> </span>Consequently<span class="_ _1"></span>,<span class="_ _a"> </span>most<span class="_ _a"> </span>researchers<span class="_ _a"> </span>have<span class="_ _a"> </span>recently<span class="_ _a"> </span>focused<span class="_ _a"> </span>on</div><div class="t m0 x9 h6 yca ff1 fs4 fc0 sc0 lsb ws0">DNN-based<span class="_ _a"> </span>applications<span class="_ _a"> </span>especially<span class="_ _a"> </span>when<span class="_ _a"> </span>the<span class="_ _a"> </span>data<span class="_ _b"> </span>sets<span class="_ _d"> </span>are<span class="_ _b"> </span>too</div><div class="t m0 x9 h6 ycb ff1 fs4 fc0 sc0 lsa ws0">complex<span class="_ _a"> </span>and<span class="_ _b"> </span>dynamic<span class="_ _b"> </span>[14].</div><div class="t m0 xa h6 ycc ff1 fs4 fc0 sc0 lsb ws0">T<span class="_ _7"></span>o<span class="_ _a"> </span>address<span class="_ _b"> </span>these<span class="_ _a"> </span>issues,<span class="_ _a"> </span>we<span class="_ _b"> </span>propose<span class="_ _a"> </span>a<span class="_ _a"> </span>hybrid<span class="_ _a"> </span>of<span class="_ _b"> </span>a<span class="_ _a"> </span>principal</div><div class="t m0 x9 h6 ycd ff1 fs4 fc0 sc0 lsa ws0">component<span class="_ _8"> </span>analysis<span class="_ _8"> </span>(PCA)<span class="_ _9"> </span>and<span class="_ _8"> </span>gated<span class="_ _8"> </span>recurrent<span class="_ _8"> </span>unit<span class="_ _8"> </span>(GR<span class="_ _1"></span>U)-</div><div class="t m0 x9 h6 yce ff1 fs4 fc0 sc0 lsb ws0">based<span class="_ _b"> </span>mobility<span class="_ _b"> </span>prediction<span class="_ _5"> </span>(tracking<span class="_ _b"> </span>and<span class="_ _5"> </span>trajectory<span class="_ _b"> </span>prediction)</div><div class="t m0 x9 h6 ycf ff1 fs4 fc0 sc0 lsb ws0">systems<span class="_ _5"> </span>using<span class="_ _9"> </span>W<span class="_ _1"></span>i-Fi<span class="_ _5"> </span>and<span class="_ _9"> </span>cellular<span class="_ _5"> </span>data<span class="_ _9"> </span>sets<span class="_ _5"> </span>in<span class="_ _9"> </span>an<span class="_ _5"> </span>urban<span class="_ _9"> </span>area.</div><div class="t m0 x9 h6 yd0 ff1 fs4 fc0 sc0 lsa ws0">The<span class="_ _9"> </span>larger<span class="_ _5"> </span>dimension<span class="_ _9"> </span>data<span class="_ _9"> </span>sets<span class="_ _9"> </span>require<span class="_ _9"> </span>higher<span class="_ _9"> </span>computational</div><div class="t m0 x9 h6 yd1 ff1 fs4 fc0 sc0 lsa ws0">time,<span class="_ _c"> </span>consume<span class="_ _8"> </span>l<span class="_ _f"></span>arger<span class="_ _8"> </span>storage<span class="_ _c"> </span>spaces,<span class="_ _c"> </span>and<span class="_ _c"> </span>cause<span class="_ _c"> </span>ov<span class="_ _1"></span>er<span class="_ _c"> </span>fitting</div><div class="t m0 x9 h6 yd2 ff1 fs4 fc0 sc0 lsa ws0">problems<span class="_ _5"> </span>due<span class="_ _5"> </span>to<span class="_ _5"> </span>noise<span class="_ _5"> </span>data.<span class="_ _5"> </span>PCA<span class="_ _5"> </span>and<span class="_ _9"> </span>LD<span class="_ _1"></span>A<span class="_ _5"> </span>are<span class="_ _5"> </span>the<span class="_ _5"> </span>common</div><div class="t m0 x9 h6 yd3 ff1 fs4 fc0 sc0 lsa ws0">linear<span class="_ _e"> </span>projection<span class="_ _10"> </span>approaches<span class="_ _10"> </span>for<span class="_ _10"> </span>feature<span class="_ _10"> </span>reduction<span class="_ _10"> </span>to<span class="_ _10"> </span>unsu-</div><div class="t m0 x9 h6 yd4 ff1 fs4 fc0 sc0 lsa ws0">pervised<span class="_ _8"> </span>and<span class="_ _c"> </span>supervised<span class="_ _c"> </span>data<span class="_ _c"> </span>types,<span class="_ _8"> </span>respectively<span class="_ _a"> </span>[21].<span class="_ _c"> </span>Since</div><div class="t m0 x9 h6 yd5 ff1 fs4 fc0 sc0 lsa ws0">our<span class="_ _5"> </span>data<span class="_ _9"> </span>do<span class="_ _5"> </span>not<span class="_ _5"> </span>have<span class="_ _5"> </span>distinct<span class="_ _5"> </span>classes,<span class="_ _9"> </span>we<span class="_ _5"> </span>use<span class="_ _9"> </span>the<span class="_ _5"> </span>PCA<span class="_ _5"> </span>algo-</div><div class="t m0 x9 h6 yd6 ff1 fs4 fc0 sc0 lsb ws0">rithm<span class="_ _d"> </span>to<span class="_ _d"> </span>integrate<span class="_ _d"> </span>with<span class="_ _a"> </span>the<span class="_ _d"> </span>GR<span class="_ _1"></span>U<span class="_ _d"> </span>network<span class="_ _a"> </span>as<span class="_ _d"> </span>a<span class="_ _d"> </span>hybrid<span class="_ _d"> </span>approach</div><div class="t m0 x9 h6 yd7 ff1 fs4 fc0 sc0 lsa ws0">for<span class="_ _10"> </span>improving<span class="_ _10"> </span>system<span class="_ _10"> </span>performances,<span class="_ _11"> </span>such<span class="_ _10"> </span>as<span class="_ _10"> </span>accuracy<span class="_ _10"> </span>and</div><div class="t m0 x9 h6 yd8 ff1 fs4 fc0 sc0 lsb ws0">performance<span class="_ _b"> </span>rates.</div><div class="t m0 xa h6 yd9 ff1 fs4 fc0 sc0 lsb ws0">A<span class="_ _15"> </span>GR<span class="_ _1"></span>U<span class="_ _15"> </span>network<span class="_ _11"> </span>can<span class="_ _15"> </span>mitigate<span class="_ _15"> </span>complex<span class="_ _11"> </span>problems<span class="_ _15"> </span>using</div><div class="t m0 x9 h6 yda ff1 fs4 fc0 sc0 lsa ws0">its<span class="_ _17"> </span>update<span class="_ _17"> </span>and<span class="_ _13"> </span>reset<span class="_ _15"> </span>gates.<span class="_ _17"> </span>Its<span class="_ _13"> </span>performance<span class="_ _15"> </span>was<span class="_ _17"> </span>checked</div><div class="t m0 x9 h6 ydb ff1 fs4 fc0 sc0 lsa ws0">for<span class="_ _15"> </span>dif<span class="_ _1"></span>ferent<span class="_ _15"> </span>applications,<span class="_ _15"> </span>such<span class="_ _15"> </span>as<span class="_ _15"> </span>speech<span class="_ _15"> </span>recognition<span class="_ _b"> </span>[22]</div><div class="t m0 x9 h6 ydc ff1 fs4 fc0 sc0 lsb ws0">and<span class="_ _e"> </span>activity<span class="_ _e"> </span>recognition<span class="_ _e"> </span>in<span class="_ _10"> </span>wireless<span class="_ _e"> </span>networks<span class="_ _b"> </span>[23].<span class="_ _e"> </span>In<span class="_ _10"> </span>each</div><div class="t m0 x9 h6 ydd ff1 fs4 fc0 sc0 lsb ws0">application,<span class="_ _9"> </span>GR<span class="_ _1"></span>U<span class="_ _9"> </span>can<span class="_ _8"> </span>of<span class="_ _1"></span>fer<span class="_ _8"> </span>state-of-the-art<span class="_ _9"> </span>results.<span class="_ _9"> </span>Howe<span class="_ _1"></span>ver<span class="_ _1"></span>,</div><div class="t m0 x9 h6 yde ff1 fs4 fc0 sc0 lsa ws0">despite<span class="_ _a"> </span>the<span class="_ _a"> </span>tremendous<span class="_ _b"> </span>numbers<span class="_ _a"> </span>of<span class="_ _a"> </span>wireless<span class="_ _a"> </span>products<span class="_ _b"> </span>and<span class="_ _a"> </span>IoT</div><div class="t m0 xf h9 y6a ff6 fs7 fc0 sc0 ls2 ws0">Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on June 07,2020 at 15:16:03 UTC from IEEE Xplore. Restrictions apply. </div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/625058e674bc5c01055e33f8/bg3.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls1 ws0">ADEGE<span class="_ _0"> </span><span class="ff2 lsf">et<span class="_ _0"> </span>al.<span class="ff1">:<span class="_ _d"> </span>MOBILITY<span class="_ _0"> </span>PREDICTIONS<span class="_ _0"> </span>FOR<span class="_ _0"> </span>IoT<span class="_ _0"> </span>DEVICES<span class="_ _0"> </span>USING<span class="_ _0"> </span>GRU<span class="_ _16"> </span>NETWORK<span class="_ _1a"> </span></span></span>507</div><div class="t m0 x1 h6 y6b ff1 fs4 fc0 sc0 lsb ws0">de<span class="_ _4"></span>vices,<span class="_ _9"> </span>a<span class="_ _9"> </span>hybrid<span class="_ _8"> </span>PCA-GR<span class="_ _1"></span>U<span class="_ _8"> </span>algorithm<span class="_ _9"> </span>for<span class="_ _9"> </span>tracking<span class="_ _8"> </span>and<span class="_ _9"> </span>tra-</div><div class="t m0 x1 h6 y6c ff1 fs4 fc0 sc0 lsb ws0">jectory<span class="_ _d"> </span>predictions<span class="_ _a"> </span>using<span class="_ _a"> </span>a<span class="_ _d"> </span>hybrid<span class="_ _a"> </span>of<span class="_ _d"> </span>Wi-Fi<span class="_ _d"> </span>signal<span class="_ _d"> </span>from<span class="_ _a"> </span>access</div><div class="t m0 x1 h6 y6d ff1 fs4 fc0 sc0 lsa ws0">points<span class="_ _b"> </span>(APs),<span class="_ _b"> </span>and<span class="_ _b"> </span>cellular<span class="_ _b"> </span>data<span class="_ _b"> </span>from<span class="_ _b"> </span>unmanned<span class="_ _b"> </span>aerial<span class="_ _b"> </span>vehicle</div><div class="t m0 x1 h6 y6e ff1 fs4 fc0 sc0 lsb ws0">base<span class="_ _a"> </span>stations<span class="_ _b"> </span>(U<span class="_ _1"></span>A<span class="_ _1b"></span>V<span class="_ _7"></span>-BSs)<span class="_ _a"> </span>technologies<span class="_ _b"> </span>to<span class="_ _a"> </span>provide<span class="_ _a"> </span>scalable<span class="_ _b"> </span>and</div><div class="t m0 x1 h6 y6f ff1 fs4 fc0 sc0 lsb ws0">optimum<span class="_ _b"> </span>mobility<span class="_ _b"> </span>prediction<span class="_ _b"> </span>services<span class="_ _a"> </span>were<span class="_ _b"> </span>not<span class="_ _b"> </span>in<span class="_ _1"></span>vestigated.</div><div class="t m0 x5 h6 y70 ff1 fs4 fc0 sc0 ls2 ws0">Kim<span class="_ _b"> </span><span class="ff2 lse">et<span class="_ _b"> </span>al.<span class="_ _a"> </span></span><span class="lsa">[24]<span class="_ _b"> </span>showed<span class="_ _a"> </span>that<span class="_ _b"> </span>a<span class="_ _b"> </span>fully<span class="_ _b"> </span>connected<span class="_ _b"> </span>DNN<span class="_ _b"> </span>incurs</span></div><div class="t m0 x1 h6 y71 ff1 fs4 fc0 sc0 lsa ws0">v<span class="_ _4"></span>anishing<span class="_ _15"> </span>and<span class="_ _15"> </span>exploding<span class="_ _15"> </span>problems<span class="_ _15"> </span>because<span class="_ _15"> </span>such<span class="_ _15"> </span>types<span class="_ _17"> </span>of</div><div class="t m0 x1 h6 y72 ff1 fs4 fc0 sc0 lsa ws0">networks<span class="_ _d"> </span>i<span class="_ _f"></span>n<span class="_ _a"> </span>longer<span class="_ _a"> </span>time-series<span class="_ _a"> </span>data<span class="_ _a"> </span>are<span class="_ _a"> </span>easily<span class="_ _d"> </span>deflected<span class="_ _a"> </span>when-</div><div class="t m0 x1 h6 y73 ff1 fs4 fc0 sc0 lsa ws0">e<span class="_ _4"></span>ver<span class="_ _c"> </span>more<span class="_ _e"> </span>than<span class="_ _e"> </span>one<span class="_ _c"> </span>local<span class="_ _e"> </span>minima<span class="_ _e"> </span>or<span class="_ _e"> </span>local<span class="_ _e"> </span>maxima<span class="_ _e"> </span>occurs.</div><div class="t m0 x1 h6 y74 ff1 fs4 fc0 sc0 lsa ws0">The<span class="_ _5"> </span>modeling<span class="_ _9"> </span>of<span class="_ _9"> </span>IoT<span class="_ _5"> </span>device-users<span class="_ _5"> </span>when<span class="_ _9"> </span>in<span class="_ _9"> </span>motion<span class="_ _5"> </span>is<span class="_ _9"> </span>overly</div><div class="t m0 x1 h6 y75 ff1 fs4 fc0 sc0 lse ws0">challenging<span class="_ _9"> </span>because<span class="_ _8"> </span>data<span class="_ _9"> </span>and<span class="_ _9"> </span>locations<span class="_ _8"> </span>are<span class="_ _9"> </span>changed<span class="_ _8"> </span>through</div><div class="t m0 x1 h6 y76 ff1 fs4 fc0 sc0 lsa ws0">time<span class="_ _a"> </span>more<span class="_ _a"> </span>frequently<span class="_ _1"></span>.<span class="_ _a"> </span>In<span class="_ _a"> </span>[22]<span class="_ _a"> </span>and<span class="_ _b"> </span>[25],<span class="_ _a"> </span>GR<span class="_ _1"></span>U<span class="_ _a"> </span>has<span class="_ _a"> </span>updated<span class="_ _a"> </span>and</div><div class="t m0 x1 h6 y77 ff1 fs4 fc0 sc0 lsa ws0">reset<span class="_ _5"> </span>gates,<span class="_ _5"> </span>and<span class="_ _5"> </span>as<span class="_ _5"> </span>a<span class="_ _5"> </span>result,<span class="_ _5"> </span>it<span class="_ _5"> </span>has<span class="_ _5"> </span>a<span class="_ _9"> </span>higher<span class="_ _5"> </span>capacity<span class="_ _5"> </span>to<span class="_ _5"> </span>adapt</div><div class="t m0 x1 h6 y78 ff1 fs4 fc0 sc0 lsa ws0">to<span class="_ _5"> </span>data<span class="_ _5"> </span>fluctuations<span class="_ _9"> </span>and<span class="_ _5"> </span>provide<span class="_ _5"> </span>efficient<span class="_ _5"> </span>generalization.<span class="_ _5"> </span>It<span class="_ _5"> </span>is</div><div class="t m0 x1 h6 y79 ff1 fs4 fc0 sc0 lsa ws0">characterized<span class="_ _c"> </span>by<span class="_ _e"> </span>high<span class="_ _e"> </span>learning<span class="_ _c"> </span>capability<span class="_ _1"></span>,<span class="_ _c"> </span>captures<span class="_ _e"> </span>complex</div><div class="t m0 x1 h6 y7a ff1 fs4 fc0 sc0 lsa ws0">data,<span class="_ _d"> </span>and<span class="_ _d"> </span>easily<span class="_ _a"> </span>adapts<span class="_ _d"> </span>to<span class="_ _d"> </span>dynamic<span class="_ _a"> </span>and<span class="_ _d"> </span>temporal<span class="_ _d"> </span>data<span class="_ _a"> </span>changes.</div><div class="t m0 x1 h6 y7b ff1 fs4 fc0 sc0 lsb ws0">Adapting<span class="_ _9"> </span>nonlinear<span class="_ _9"> </span>data<span class="_ _8"> </span>with<span class="_ _9"> </span>a<span class="_ _8"> </span>high<span class="_ _9"> </span>learning<span class="_ _9"> </span>rate<span class="_ _8"> </span>in<span class="_ _9"> </span>a<span class="_ _9"> </span>time</div><div class="t m0 x1 h6 y7c ff1 fs4 fc0 sc0 lsb ws0">series,<span class="_ _5"> </span>significantly<span class="_ _9"> </span>large<span class="_ _5"> </span>and<span class="_ _9"> </span>complex<span class="_ _5"> </span>data<span class="_ _9"> </span>sets<span class="_ _9"> </span>are<span class="_ _5"> </span>also<span class="_ _9"> </span>the</div><div class="t m0 x1 h6 y7d ff1 fs4 fc0 sc0 lsa ws0">fundamental<span class="_ _c"> </span>properties<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _e"> </span>GR<span class="_ _1"></span>U<span class="_ _c"> </span>network.<span class="_ _c"> </span>Our<span class="_ _c"> </span>proposed</div><div class="t m0 x1 h6 y7e ff1 fs4 fc0 sc0 lsa ws0">technique<span class="_ _a"> </span>handles<span class="_ _d"> </span>multiple<span class="_ _a"> </span>IoT<span class="_ _a"> </span>devices<span class="_ _d"> </span>or<span class="_ _a"> </span>objects<span class="_ _a"> </span>when<span class="_ _d"> </span>offer-</div><div class="t m0 x1 h6 y7f ff1 fs4 fc0 sc0 lsb ws0">ing<span class="_ _d"> </span>tracking<span class="_ _a"> </span>and<span class="_ _a"> </span>trajectory<span class="_ _d"> </span>services<span class="_ _a"> </span>in<span class="_ _d"> </span>a<span class="_ _a"> </span>wireless<span class="_ _d"> </span>environment.</div><div class="t m0 x1 h6 y80 ff1 fs4 fc0 sc0 lsb ws0">W<span class="_ _7"></span>e<span class="_ _11"> </span>compared<span class="_ _11"> </span>the<span class="_ _10"> </span>GRU<span class="_ _10"> </span>network<span class="_ _10"> </span>with<span class="_ _11"> </span>the<span class="_ _11"> </span>long<span class="_ _11"> </span>short-term</div><div class="t m0 x1 h6 y81 ff1 fs4 fc0 sc0 lsa ws0">memory<span class="_ _d"> </span>(LSTM)<span class="_ _d"> </span>and<span class="_ _d"> </span>multilayer<span class="_ _a"> </span>perceptron<span class="_ _d"> </span>(MLP)<span class="_ _d"> </span>algorithms</div><div class="t m0 x1 h6 y82 ff1 fs4 fc0 sc0 lsa ws0">to<span class="_ _9"> </span>ev<span class="_ _1"></span>aluate<span class="_ _8"> </span>its<span class="_ _9"> </span>performance.<span class="_ _8"> </span>W<span class="_ _7"></span>e<span class="_ _9"> </span>choose<span class="_ _8"> </span>MLP<span class="_ _9"> </span>and<span class="_ _8"> </span>LSTM<span class="_ _8"> </span>to</div><div class="t m0 x1 h6 y83 ff1 fs4 fc0 sc0 lsb ws0">e<span class="_ _4"></span>v<span class="_ _4"></span>aluate<span class="_"> </span>the<span class="_"> </span>GR<span class="_ _1"></span>U’<span class="_ _1"></span>s<span class="_"> </span>performances<span class="_"> </span>as<span class="_"> </span>these<span class="_"> </span>exist<span class="_"> </span>in<span class="_"> </span>similar<span class="_"> </span>type,</div><div class="t m0 x1 h6 y84 ff1 fs4 fc0 sc0 lsb ws0">which<span class="_ _e"> </span>are<span class="_ _e"> </span>supervised<span class="_ _10"> </span>deep<span class="_ _e"> </span>learning<span class="_ _10"> </span>types.<span class="_ _e"> </span>Moreove<span class="_ _4"></span>r<span class="_ _1"></span>,<span class="_ _10"> </span>these</div><div class="t m0 x1 h6 y85 ff1 fs4 fc0 sc0 lsa ws0">are<span class="_ _a"> </span>the<span class="_ _a"> </span>state-of-the-art<span class="_ _a"> </span>technologies<span class="_ _a"> </span>that<span class="_ _b"> </span>dif<span class="_ _1"></span>fer<span class="_ _a"> </span>in<span class="_ _b"> </span>performance</div><div class="t m0 x1 h6 y86 ff1 fs4 fc0 sc0 lsb ws0">due<span class="_ _b"> </span>to<span class="_ _a"> </span>data<span class="_ _b"> </span>natures<span class="_ _a"> </span>and<span class="_ _b"> </span>their<span class="_ _b"> </span>internal<span class="_ _a"> </span>structures.<span class="_ _b"> </span>Additionally<span class="_ _7"></span>,</div><div class="t m0 x1 h6 y87 ff1 fs4 fc0 sc0 lsa ws0">MLP<span class="_ _1b"></span>,<span class="_ _e"> </span>LSTM,<span class="_ _e"> </span>and<span class="_ _c"> </span>GRU<span class="_ _8"> </span>are<span class="_ _e"> </span>the<span class="_ _e"> </span>common<span class="_ _c"> </span>recent<span class="_ _e"> </span>algorithms</div><div class="t m0 x1 h6 y88 ff1 fs4 fc0 sc0 lsb ws0">for<span class="_ _e"> </span>time-series<span class="_ _e"> </span>data<span class="_ _e"> </span>set<span class="_ _e"> </span>ev<span class="_ _1"></span>aluations,<span class="_ _e"> </span>s<span class="_ _f"></span>uch<span class="_ _e"> </span>as<span class="_ _e"> </span>using<span class="_ _e"> </span>network</div><div class="t m0 x1 h6 y89 ff1 fs4 fc0 sc0 lsb ws0">signals<span class="_ _b"> </span>[15],<span class="_ _b"> </span>[26].<span class="_ _a"> </span>Our<span class="_ _b"> </span>proposed<span class="_ _b"> </span>method<span class="_ _a"> </span>makes<span class="_ _b"> </span>the<span class="_ _a"> </span>following</div><div class="t m0 x1 h6 y8a ff1 fs4 fc0 sc0 ls2 ws0">contributions.</div><div class="t m0 x5 h6 y8b ff1 fs4 fc0 sc0 lsb ws0">1)<span class="_ _15"> </span>W<span class="_ _7"></span>e<span class="_ _c"> </span>integrate<span class="_ _c"> </span>W<span class="_ _1"></span>i-Fi<span class="_ _e"> </span>signals,<span class="_ _c"> </span>channel<span class="_ _c"> </span>IDs,<span class="_ _c"> </span>and<span class="_ _e"> </span>cellular</div><div class="t m0 x10 h6 y8c ff1 fs4 fc0 sc0 lsb ws0">data<span class="_ _b"> </span>to<span class="_ _a"> </span>fill<span class="_ _b"> </span>in<span class="_ _b"> </span>the<span class="_ _b"> </span>gaps<span class="_ _a"> </span>when<span class="_ _b"> </span>there<span class="_ _b"> </span>are<span class="_ _a"> </span>signal<span class="_ _b"> </span>alterations</div><div class="t m0 x10 h6 y8d ff1 fs4 fc0 sc0 lsa ws0">or<span class="_ _b"> </span>fluctuations.</div><div class="t m0 x5 h6 y8e ff1 fs4 fc0 sc0 lsa ws0">2)<span class="_ _15"> </span>W<span class="_ _7"></span>e<span class="_"> </span>use<span class="_"> </span>the<span class="_"> </span>deep<span class="_"> </span>learning<span class="_ _d"> </span>algorithm<span class="_"> </span>to<span class="_"> </span>dev<span class="_ _1"></span>elop<span class="_ _d"> </span>a<span class="_"> </span>scalable</div><div class="t m0 x10 h6 y8f ff1 fs4 fc0 sc0 lsb ws0">and<span class="_"> </span>accurate<span class="_ _d"> </span>mobility<span class="_ _d"> </span>prediction<span class="_"> </span>models<span class="_ _d"> </span>for<span class="_"> </span>massive<span class="_"> </span>IoT</div><div class="t m0 x10 h6 y90 ff1 fs4 fc0 sc0 lsa ws0">de<span class="_ _4"></span>vices<span class="_ _b"> </span>in<span class="_ _b"> </span>cost-ef<span class="_ _1"></span>fective<span class="_ _a"> </span>techniques<span class="_ _b"> </span>and<span class="_ _b"> </span>technologies.</div><div class="t m0 x5 h6 y91 ff1 fs4 fc0 sc0 lsb ws0">3)<span class="_ _15"> </span>W<span class="_ _7"></span>e<span class="_ _9"> </span>design<span class="_ _5"> </span>a<span class="_ _9"> </span>nov<span class="_ _1"></span>el<span class="_ _9"> </span>positioning<span class="_ _9"> </span>model<span class="_ _5"> </span>to<span class="_ _9"> </span>provide<span class="_ _5"> </span>state-</div><div class="t m0 x10 h6 y92 ff1 fs4 fc0 sc0 lsa ws0">of-the-art<span class="_ _9"> </span>positioning<span class="_ _8"> </span>performances<span class="_ _9"> </span>of<span class="_ _8"> </span>the<span class="_ _9"> </span>IoT<span class="_ _8"> </span>devices</div><div class="t m0 x10 h6 y93 ff1 fs4 fc0 sc0 lsa ws0">through<span class="_ _13"> </span>integrations<span class="_ _17"> </span>of<span class="_ _13"> </span>various<span class="_ _13"> </span>algorithms,<span class="_ _17"> </span>such<span class="_ _13"> </span>as</div><div class="t m0 x10 h6 y94 ff1 fs4 fc0 sc0 lsb ws0">feedforward<span class="_ _c"> </span>neural<span class="_ _e"> </span>network<span class="_ _c"> </span>(FFNN),<span class="_ _e"> </span>PCA,<span class="_ _e"> </span>and<span class="_ _c"> </span>GRU</div><div class="t m0 x10 h6 y95 ff1 fs4 fc0 sc0 lsb ws0">network.</div><div class="t m0 x5 h6 y96 ff1 fs4 fc0 sc0 lsa ws0">4)<span class="_ _15"> </span>W<span class="_ _7"></span>e<span class="_ _c"> </span>adapt<span class="_ _c"> </span>the<span class="_ _c"> </span>deep<span class="_ _c"> </span>learning<span class="_ _e"> </span>algorithm<span class="_ _c"> </span>for<span class="_ _c"> </span>mobile<span class="_ _c"> </span>big</div><div class="t m0 x10 h6 y97 ff1 fs4 fc0 sc0 lsa ws0">data<span class="_ _b"> </span>(MBD)<span class="_ _5"> </span>collected<span class="_ _b"> </span>from<span class="_ _b"> </span>a<span class="_ _5"> </span>real<span class="_ _b"> </span>environment,<span class="_ _b"> </span>experi-</div><div class="t m0 x10 h6 y98 ff1 fs4 fc0 sc0 lsb ws0">mentally<span class="_ _7"></span>.</div><div class="t m0 x5 h6 y99 ff1 fs4 fc0 sc0 lsb ws0">The<span class="_ _c"> </span>remainder<span class="_ _c"> </span>of<span class="_ _e"> </span>this<span class="_ _c"> </span>article<span class="_ _e"> </span>is<span class="_ _c"> </span>organized<span class="_ _c"> </span>as<span class="_ _c"> </span>follows.<span class="_ _8"> </span>In</div><div class="t m0 x1 h6 y9a ff1 fs4 fc0 sc0 lsb ws0">Section<span class="_ _11"> </span>II,<span class="_ _11"> </span>we<span class="_ _11"> </span>discuss<span class="_ _11"> </span>related<span class="_ _11"> </span>works.<span class="_ _11"> </span>Section<span class="_ _11"> </span>III<span class="_ _11"> </span>presents</div><div class="t m0 x1 h6 y9b ff1 fs4 fc0 sc0 lsa ws0">the<span class="_ _18"> </span>details<span class="_ _18"> </span>of<span class="_ _18"> </span>the<span class="_ _18"> </span>proposed<span class="_ _18"> </span>technique.<span class="_ _18"> </span>The<span class="_ _18"> </span>experimen-</div><div class="t m0 x1 h6 y9c ff1 fs4 fc0 sc0 lsb ws0">tal<span class="_ _11"> </span>setup<span class="_ _15"> </span>of<span class="_ _15"> </span>the<span class="_ _15"> </span>data<span class="_ _11"> </span>collection<span class="_ _15"> </span>processes<span class="_ _15"> </span>is<span class="_ _11"> </span>discussed<span class="_ _15"> </span>in</div><div class="t m0 x1 h6 y9d ff1 fs4 fc0 sc0 lsa ws0">Section<span class="_"> </span>IV<span class="_ _1b"></span>.<span class="_ _16"> </span>The<span class="_ _16"> </span>experimental<span class="_ _16"> </span>results<span class="_"> </span>and<span class="_ _16"> </span>discussions<span class="_"> </span>are<span class="_ _16"> </span>sho<span class="_ _1"></span>wn</div><div class="t m0 x1 h6 y9e ff1 fs4 fc0 sc0 lsb ws0">in<span class="_ _5"> </span>Section<span class="_ _5"> </span>V<span class="_ _1b"></span>.<span class="_ _b"> </span>Finally<span class="_ _1"></span>,<span class="_ _5"> </span>some<span class="_ _5"> </span>concluding<span class="_ _5"> </span>remarks<span class="_ _5"> </span>and<span class="_ _5"> </span>possible</div><div class="t m0 x1 h6 y9f ff1 fs4 fc0 sc0 ls2 ws0">future<span class="_ _b"> </span>works<span class="_ _a"> </span>are<span class="_ _b"> </span>giv<span class="_ _4"></span>en<span class="_ _b"> </span>in<span class="_ _b"> </span>Section<span class="_ _a"> </span>VI.</div><div class="t m0 x11 h6 ydf ff1 fs4 fc0 sc0 ls8 ws0">II.<span class="_ _c"> </span>R</div><div class="t m0 x12 h6 ye0 ff1 fs5 fc0 sc0 ls10 ws0">ELA<span class="_ _7"></span>TED<span class="_"> </span><span class="fs4 ls2">W<span class="_ _f"></span></span><span class="ls11">ORKS</span></div><div class="t m0 x5 h6 ye1 ff1 fs4 fc0 sc0 ls2 ws0">The<span class="_"> </span>mobility<span class="_ _d"> </span>predictions<span class="_"> </span>in<span class="_ _d"> </span>wireless<span class="_"> </span>networks<span class="_"> </span>are<span class="_ _d"> </span>very<span class="_"> </span>chal-</div><div class="t m0 x1 h6 ye2 ff1 fs4 fc0 sc0 lsb ws0">lenging<span class="_ _b"> </span>since<span class="_ _a"> </span>the<span class="_ _b"> </span>place<span class="_ _b"> </span>and<span class="_ _b"> </span>time<span class="_ _b"> </span>are<span class="_ _a"> </span>changed<span class="_ _b"> </span>recklessly<span class="_ _b"> </span>[27].</div><div class="t m0 x9 h6 ye3 ff1 fs4 fc0 sc0 lsa ws0">The<span class="_ _a"> </span>speed<span class="_ _a"> </span>and<span class="_ _b"> </span>directions<span class="_ _a"> </span>of<span class="_ _a"> </span>the<span class="_ _a"> </span>motion<span class="_ _b"> </span>of<span class="_ _a"> </span>the<span class="_ _a"> </span>IoT<span class="_ _a"> </span>device<span class="_ _a"> </span>and</div><div class="t m0 x9 h6 ye4 ff1 fs4 fc0 sc0 lsb ws0">the<span class="_ _c"> </span>dynamical<span class="_ _e"> </span>oscillations<span class="_ _c"> </span>of<span class="_ _e"> </span>wireless<span class="_ _e"> </span>network<span class="_ _c"> </span>traffic<span class="_ _8"> </span>bring</div><div class="t m0 x9 h6 ye5 ff1 fs4 fc0 sc0 lsa ws0">on<span class="_ _a"> </span>the<span class="_ _b"> </span>challenge<span class="_ _b"> </span>of<span class="_ _a"> </span>designing<span class="_ _b"> </span>a<span class="_ _a"> </span>robust<span class="_ _a"> </span>model.<span class="_ _b"> </span>Deep-learning-</div><div class="t m0 x9 h6 ye6 ff1 fs4 fc0 sc0 lsb ws0">based<span class="_ _9"> </span>positioning<span class="_ _8"> </span>in<span class="_ _8"> </span>wireless<span class="_ _8"> </span>network<span class="_ _9"> </span>used<span class="_ _8"> </span>to<span class="_ _9"> </span>minimize<span class="_ _8"> </span>the</div><div class="t m0 x9 h6 ye7 ff1 fs4 fc0 sc0 lsb ws0">hardware<span class="_ _e"> </span>complexity<span class="_ _10"> </span>as<span class="_ _10"> </span>it<span class="_ _10"> </span>is<span class="_ _10"> </span>used<span class="_ _11"> </span>to<span class="_ _e"> </span>shift<span class="_ _10"> </span>hardware-based</div><div class="t m0 x9 h6 ye8 ff1 fs4 fc0 sc0 lsa ws0">to<span class="_ _5"> </span>application-based<span class="_ _5"> </span>positioning<span class="_ _5"> </span>approach<span class="_ _b"> </span>[18].<span class="_ _5"> </span>For<span class="_ _5"> </span>example,</div><div class="t m0 x9 h6 ye9 ff1 fs4 fc0 sc0 lsb ws0">a<span class="_"> </span>tracking<span class="_"> </span>system<span class="_"> </span>for<span class="_"> </span>wireless<span class="_ _d"> </span>network<span class="_"> </span>users<span class="_"> </span>is<span class="_"> </span>now<span class="_"> </span>commonly</div><div class="t m0 x9 h6 yea ff1 fs4 fc0 sc0 lsb ws0">using<span class="_"> </span>mobile-based<span class="_"> </span>applications<span class="_ _d"> </span>using<span class="_"> </span>radio<span class="_"> </span>signals<span class="_ _d"> </span>emitted<span class="_"> </span>by</div><div class="t m0 x9 h6 yeb ff1 fs4 fc0 sc0 lsa ws0">mobile<span class="_ _a"> </span>de<span class="_ _1"></span>vices,<span class="_ _a"> </span>APs<span class="_ _a"> </span>or<span class="_ _a"> </span>BSs.<span class="_ _a"> </span>The<span class="_ _a"> </span>scheme<span class="_ _a"> </span>in<span class="_ _b"> </span>[7]<span class="_ _a"> </span>used<span class="_ _a"> </span>a<span class="_ _a"> </span>hybrid</div><div class="t m0 x9 h6 yec ff1 fs4 fc0 sc0 lsa ws0">of<span class="_ _e"> </span>W<span class="_ _1"></span>i-Fi<span class="_ _e"> </span>and<span class="_ _e"> </span>GPS<span class="_ _e"> </span>data<span class="_ _e"> </span>collected<span class="_ _e"> </span>from<span class="_ _e"> </span>the<span class="_ _e"> </span>sensor<span class="_ _e"> </span>network</div><div class="t m0 x9 h6 yed ff1 fs4 fc0 sc0 lsa ws0">and<span class="_ _d"> </span>applied<span class="_ _d"> </span>a<span class="_ _d"> </span>crowdsourcing<span class="_ _d"> </span>technique<span class="_ _d"> </span>for<span class="_ _d"> </span>online<span class="_ _d"> </span>localization.</div><div class="t m0 x9 h6 yee ff1 fs4 fc0 sc0 lsa ws0">Their<span class="_ _c"> </span>system<span class="_ _c"> </span>performance<span class="_ _c"> </span>was<span class="_ _c"> </span>relativ<span class="_ _1"></span>ely<span class="_ _e"> </span>better<span class="_ _c"> </span>in<span class="_ _c"> </span>accuracy</div><div class="t m0 x9 h6 yef ff1 fs4 fc0 sc0 lsa ws0">and<span class="_ _e"> </span>power<span class="_ _e"> </span>consumption<span class="_ _e"> </span>than<span class="_ _10"> </span>using<span class="_ _e"> </span>GPS<span class="_ _10"> </span>only<span class="_ _1"></span>.<span class="_ _e"> </span>The<span class="_ _10"> </span>system</div><div class="t m0 x9 h6 yf0 ff1 fs4 fc0 sc0 lsa ws0">performance<span class="_ _b"> </span>shows<span class="_ _b"> </span>that<span class="_ _b"> </span>92%<span class="_ _b"> </span>of<span class="_ _5"> </span>the<span class="_ _b"> </span>localization<span class="_ _5"> </span>performance</div><div class="t m0 x9 h6 yf1 ff1 fs4 fc0 sc0 lsa ws0">cov<span class="_ _1"></span>ers<span class="_ _a"> </span>an<span class="_ _d"> </span>error<span class="_ _d"> </span>of<span class="_ _d"> </span>less<span class="_ _d"> </span>than<span class="_ _a"> </span>15<span class="_ _d"> </span>m.<span class="_ _d"> </span>Howe<span class="_ _1"></span>ver<span class="_ _1"></span>,<span class="_ _d"> </span>they<span class="_ _d"> </span>ev<span class="_ _1"></span>aluated<span class="_ _d"> </span>the</div><div class="t m0 x9 h6 yf2 ff1 fs4 fc0 sc0 lsa ws0">system<span class="_ _5"> </span>performances<span class="_ _5"> </span>at<span class="_ _9"> </span>the<span class="_ _5"> </span>steady<span class="_ _9"> </span>states<span class="_ _5"> </span>rather<span class="_ _5"> </span>than<span class="_ _9"> </span>moving</div><div class="t m0 x9 h6 yf3 ff1 fs4 fc0 sc0 lsa ws0">objects.<span class="_ _b"> </span>F<span class="_ _1"></span>arazi<span class="_ _b"> </span>and<span class="_ _b"> </span>Behnke<span class="_ _b"> </span>[28]<span class="_ _b"> </span>applied<span class="_ _a"> </span>the<span class="_ _b"> </span>LSTM<span class="_ _b"> </span>algorithm</div><div class="t m0 x9 h6 yf4 ff1 fs4 fc0 sc0 lsa ws0">for<span class="_ _5"> </span>detection,<span class="_ _5"> </span>tracking,<span class="_ _5"> </span>and<span class="_ _5"> </span>identification<span class="_ _5"> </span>of<span class="_ _b"> </span>the<span class="_ _5"> </span>visual<span class="_ _5"> </span>robot.</div><div class="t m0 x9 h6 yf5 ff1 fs4 fc0 sc0 lsb ws0">They<span class="_ _a"> </span>ev<span class="_ _1"></span>aluated<span class="_ _b"> </span>the<span class="_ _a"> </span>proposed<span class="_ _b"> </span>system<span class="_ _b"> </span>through<span class="_ _a"> </span>classification<span class="_ _b"> </span>by</div><div class="t m0 x9 h6 yf6 ff1 fs4 fc0 sc0 lsa ws0">taking<span class="_ _9"> </span>the<span class="_ _9"> </span>detected<span class="_ _8"> </span>object<span class="_ _9"> </span>as<span class="_ _9"> </span>a<span class="_ _8"> </span>system<span class="_ _9"> </span>ev<span class="_ _1"></span>aluation<span class="_ _9"> </span>technique.</div><div class="t m0 x9 h6 yf7 ff1 fs4 fc0 sc0 lsa ws0">When<span class="_ _9"> </span>the<span class="_ _9"> </span>detected<span class="_ _5"> </span>objects<span class="_ _9"> </span>are<span class="_ _9"> </span>increased<span class="_ _9"> </span>from<span class="_ _9"> </span>3<span class="_ _9"> </span>to<span class="_ _9"> </span>10,<span class="_ _9"> </span>their</div><div class="t m0 x9 h6 yf8 ff1 fs4 fc0 sc0 lsa ws0">proposed<span class="_ _11"> </span>technique’<span class="_ _7"></span>s<span class="_ _11"> </span>performances<span class="_ _11"> </span>decline<span class="_ _11"> </span>from<span class="_ _11"> </span>96.2%<span class="_ _10"> </span>to</div><div class="t m0 x9 h6 yf9 ff1 fs4 fc0 sc0 lsa ws0">66.5%.<span class="_ _b"> </span>Thus,<span class="_ _a"> </span>the<span class="_ _b"> </span>proposed<span class="_ _b"> </span>technique<span class="_ _b"> </span>has<span class="_ _b"> </span>a<span class="_ _a"> </span>scalable<span class="_ _b"> </span>problem.</div><div class="t m0 x9 h6 yfa ff1 fs4 fc0 sc0 lsb ws0">It<span class="_ _a"> </span>is<span class="_ _a"> </span>also<span class="_ _a"> </span>a<span class="_ _b"> </span>vision-based<span class="_ _a"> </span>approach,<span class="_ _a"> </span>which<span class="_ _a"> </span>is<span class="_ _a"> </span>not<span class="_ _b"> </span>cost<span class="_ _a"> </span>ef<span class="_ _1"></span>fective,</div><div class="t m0 x9 h6 yfb ff1 fs4 fc0 sc0 lsa ws0">and<span class="_ _b"> </span>it<span class="_ _b"> </span>has<span class="_ _b"> </span>NLoS<span class="_ _a"> </span>problems.</div><div class="t m0 xa h6 yfc ff1 fs4 fc0 sc0 lsb ws0">In<span class="_ _b"> </span>[29],<span class="_ _a"> </span>the<span class="_ _b"> </span>indoor-based<span class="_ _a"> </span>tracking<span class="_ _b"> </span>and<span class="_ _b"> </span>trajectory<span class="_ _b"> </span>prediction</div><div class="t m0 x9 h6 yfd ff1 fs4 fc0 sc0 lsb ws0">using<span class="_ _15"> </span>CNN<span class="_ _15"> </span>for<span class="_ _17"> </span>feature<span class="_ _15"> </span>extraction<span class="_ _15"> </span>and<span class="_ _15"> </span>LSTM<span class="_ _17"> </span>for<span class="_ _15"> </span>motion</div><div class="t m0 x9 h6 yfe ff1 fs4 fc0 sc0 lsa ws0">predictions<span class="_ _19"> </span>was<span class="_ _18"> </span>discussed.<span class="_ _19"> </span>The<span class="_ _18"> </span>authors<span class="_ _19"> </span>used<span class="_ _19"> </span>additional</div><div class="t m0 x9 h6 yff ff1 fs4 fc0 sc0 lsa ws0">de<span class="_ _4"></span>vices,<span class="_ _a"> </span>such<span class="_ _a"> </span>as<span class="_ _d"> </span>barometer<span class="_ _a"> </span>and<span class="_ _a"> </span>magnetometer,<span class="_ _d"> </span>which<span class="_ _a"> </span>increase</div><div class="t m0 x9 h6 y100 ff1 fs4 fc0 sc0 lsb ws0">expenses.<span class="_ _5"> </span>The<span class="_ _5"> </span>visual-based<span class="_ _9"> </span>tracking<span class="_ _5"> </span>is<span class="_ _9"> </span>also<span class="_ _5"> </span>highly<span class="_ _9"> </span>suspected</div><div class="t m0 x9 h6 y101 ff1 fs4 fc0 sc0 lsa ws0">in<span class="_ _8"> </span>the<span class="_ _8"> </span>LoS<span class="_ _8"> </span>problem,<span class="_ _8"> </span>and<span class="_ _c"> </span>it<span class="_ _8"> </span>is<span class="_ _8"> </span>computationally<span class="_ _8"> </span>complex<span class="_ _b"> </span>[4].</div><div class="t m0 x9 h6 y102 ff1 fs4 fc0 sc0 lsb ws0">Their<span class="_ _9"> </span>system<span class="_ _8"> </span>performance<span class="_ _8"> </span>shows<span class="_ _9"> </span>a<span class="_ _8"> </span>precision<span class="_ _8"> </span>of<span class="_ _8"> </span>93%<span class="_ _8"> </span>to<span class="_ _9"> </span>the</div><div class="t m0 x9 h6 y103 ff1 fs4 fc0 sc0 lsb ws0">localization<span class="_ _b"> </span>error<span class="_ _5"> </span>threshold<span class="_ _b"> </span>of<span class="_ _5"> </span>20<span class="_ _b"> </span>m.<span class="_ _b"> </span>The<span class="_ _5"> </span>computational<span class="_ _b"> </span>time</div><div class="t m0 x9 h6 y104 ff1 fs4 fc0 sc0 lsa ws0">of<span class="_ _b"> </span>CNN-LSTM<span class="_ _5"> </span>was<span class="_ _b"> </span>1.6<span class="_ _b"> </span>s,<span class="_ _5"> </span>which<span class="_ _b"> </span>is<span class="_ _5"> </span>slower<span class="_ _b"> </span>due<span class="_ _b"> </span>to<span class="_ _5"> </span>the<span class="_ _b"> </span>longer</div><div class="t m0 x9 h6 y105 ff1 fs4 fc0 sc0 lsa ws0">processing<span class="_"> </span>of<span class="_ _d"> </span>the<span class="_ _d"> </span>CNN<span class="_"> </span>and<span class="_ _d"> </span>LSTM<span class="_ _d"> </span>algorithms.<span class="_"> </span>In<span class="_ _b"> </span>[19],<span class="_ _d"> </span>the<span class="_"> </span>tra-</div><div class="t m0 x9 h6 y106 ff1 fs4 fc0 sc0 lsa ws0">jectory<span class="_"> </span>of<span class="_ _16"> </span>the<span class="_ _16"> </span>relativ<span class="_ _1"></span>e<span class="_"> </span>motion<span class="_"> </span>of<span class="_ _16"> </span>pedestrians<span class="_"> </span>has<span class="_ _16"> </span>been<span class="_ _16"> </span>computed</div><div class="t m0 x9 h6 y107 ff1 fs4 fc0 sc0 lsb ws0">using<span class="_"> </span>the<span class="_ _d"> </span>LSTM<span class="_ _d"> </span>network.<span class="_"> </span>The<span class="_ _d"> </span>authors<span class="_"> </span>used<span class="_ _d"> </span>2-D<span class="_ _d"> </span>laser<span class="_"> </span>data<span class="_ _d"> </span>sets</div><div class="t m0 x9 h6 y108 ff1 fs4 fc0 sc0 lsa ws0">to<span class="_"> </span>e<span class="_ _1"></span>valuate<span class="_ _16"> </span>their<span class="_"> </span>system<span class="_ _16"> </span>performance<span class="_"> </span>in<span class="_"> </span>an<span class="_ _16"> </span>indoor<span class="_"> </span>en<span class="_ _1"></span>vironment.</div><div class="t m0 x9 h6 y109 ff1 fs4 fc0 sc0 lsa ws0">Their<span class="_ _9"> </span>proposed<span class="_ _8"> </span>system<span class="_ _8"> </span>performance<span class="_ _8"> </span>varies<span class="_ _9"> </span>through<span class="_ _9"> </span>numbers</div><div class="t m0 x9 h6 y10a ff1 fs4 fc0 sc0 lsa ws0">of<span class="_ _8"> </span>observed<span class="_ _c"> </span>objects<span class="_ _8"> </span>and<span class="_ _c"> </span>periods<span class="_ _c"> </span>of<span class="_ _c"> </span>observations.<span class="_ _8"> </span>The<span class="_ _8"> </span>accu-</div><div class="t m0 x9 h6 y10b ff1 fs4 fc0 sc0 lsa ws0">racy<span class="_ _a"> </span>ranged<span class="_ _a"> </span>from<span class="_ _b"> </span>0.26<span class="_ _a"> </span>up<span class="_ _a"> </span>to<span class="_ _b"> </span>2.46<span class="_ _a"> </span>m<span class="_ _a"> </span>for<span class="_ _b"> </span>3.2–10.0-s<span class="_ _a"> </span>periods<span class="_ _a"> </span>of</div><div class="t m0 x9 h6 y10c ff1 fs4 fc0 sc0 lsb ws0">observ<span class="_ _4"></span>ation.</div><div class="t m0 xa h6 y10d ff1 fs4 fc0 sc0 lsb ws0">In<span class="_ _5"> </span>[8],<span class="_ _5"> </span>[12],<span class="_ _5"> </span>and<span class="_ _5"> </span>[14],<span class="_ _9"> </span>the<span class="_ _5"> </span>schemes<span class="_ _5"> </span>proposed<span class="_ _5"> </span>the<span class="_ _5"> </span>weighted</div><div class="t m0 x9 h6 y10e ff1 fs4 fc0 sc0 lsb ws0">KNN<span class="_ _a"> </span>(WKNN),<span class="_ _a"> </span>the<span class="_ _b"> </span>KNN,<span class="_ _a"> </span>and<span class="_ _a"> </span>ANN<span class="_ _a"> </span>algorithms,<span class="_ _a"> </span>respectively<span class="_ _7"></span>,</div><div class="t m0 x9 h6 y10f ff1 fs4 fc0 sc0 lsa ws0">for<span class="_ _a"> </span>tracking<span class="_ _b"> </span>services.<span class="_ _b"> </span>Ho<span class="_ _1"></span>wev<span class="_ _4"></span>er<span class="_ _1"></span>,<span class="_ _b"> </span>these<span class="_ _a"> </span>kinds<span class="_ _b"> </span>of<span class="_ _b"> </span>approaches<span class="_ _a"> </span>are</div><div class="t m0 x9 h6 y110 ff1 fs4 fc0 sc0 lsa ws0">inadequate<span class="_ _d"> </span>to<span class="_ _a"> </span>offer<span class="_ _d"> </span>accurate<span class="_ _d"> </span>and<span class="_ _a"> </span>scalable<span class="_ _a"> </span>LBS<span class="_ _d"> </span>in<span class="_ _a"> </span>dynamic<span class="_ _d"> </span>and</div><div class="t m0 x9 h6 y111 ff1 fs4 fc0 sc0 lsb ws0">flexible<span class="_ _9"> </span>wireless<span class="_ _c"> </span>en<span class="_ _1"></span>vironments<span class="_ _c"> </span>since<span class="_ _8"> </span>they<span class="_ _8"> </span>hav<span class="_ _1"></span>e<span class="_ _c"> </span>lo<span class="_ _4"></span>w<span class="_ _8"> </span>learning</div><div class="t m0 x9 h6 y112 ff1 fs4 fc0 sc0 lsb ws0">capacity<span class="_ _9"> </span>compared<span class="_ _8"> </span>with<span class="_ _8"> </span>the<span class="_ _8"> </span>state-of-the-art<span class="_ _8"> </span>algorithms,<span class="_ _9"> </span>such</div><div class="t m0 x9 h6 y113 ff1 fs4 fc0 sc0 lsa ws0">as<span class="_ _5"> </span>LSTM<span class="_ _5"> </span>and<span class="_ _9"> </span>GR<span class="_ _1"></span>U<span class="_ _b"> </span>[16],<span class="_ _b"> </span>[17].<span class="_ _5"> </span>In<span class="_ _b"> </span>[30],<span class="_ _9"> </span>the<span class="_ _5"> </span>LSTM<span class="_ _5"> </span>algorithm</div><div class="t m0 x9 h6 y114 ff1 fs4 fc0 sc0 lsa ws0">was<span class="_"> </span>applied<span class="_ _a"> </span>for<span class="_"> </span>mobility<span class="_ _a"> </span>predictions<span class="_"> </span>through<span class="_ _a"> </span>fi<span class="_ _1"></span>ve<span class="_ _d"> </span>sequences<span class="_ _d"> </span>of</div><div class="t m0 x9 h6 y115 ff1 fs4 fc0 sc0 lsb ws0">inputs.<span class="_ _5"> </span>The<span class="_ _5"> </span>authors<span class="_ _5"> </span>obtained<span class="_ _5"> </span>the<span class="_ _9"> </span>minimum<span class="_ _5"> </span>errors<span class="_ _5"> </span>of<span class="_ _5"> </span>11.5<span class="_ _5"> </span>m.</div><div class="t m0 x9 h6 y116 ff1 fs4 fc0 sc0 lsa ws0">The<span class="_ _d"> </span>precision<span class="_ _d"> </span>of<span class="_ _a"> </span>their<span class="_ _d"> </span>system<span class="_ _d"> </span>performance<span class="_ _d"> </span>was<span class="_ _d"> </span>unable<span class="_ _a"> </span>to<span class="_ _d"> </span>of<span class="_ _1"></span>f<span class="_ _f"></span>er</div><div class="t m0 x9 h6 y117 ff1 fs4 fc0 sc0 lsa ws0">more<span class="_ _9"> </span>than<span class="_ _8"> </span>90%<span class="_ _9"> </span>of<span class="_ _8"> </span>classification<span class="_ _9"> </span>accuracy<span class="_ _7"></span>.<span class="_ _8"> </span>In<span class="_ _b"> </span>[1],<span class="_ _9"> </span>the<span class="_ _8"> </span>trajec-</div><div class="t m0 x9 h6 y118 ff1 fs4 fc0 sc0 lsa ws0">tory<span class="_ _a"> </span>prediction<span class="_ _a"> </span>for<span class="_ _a"> </span>the<span class="_ _a"> </span>IoT<span class="_ _d"> </span>localization<span class="_ _a"> </span>was<span class="_ _a"> </span>enhanced,<span class="_ _a"> </span>and<span class="_ _a"> </span>the</div><div class="t m0 x9 h6 y119 ff1 fs4 fc0 sc0 lsa ws0">system<span class="_ _d"> </span>performance<span class="_ _d"> </span>has<span class="_ _d"> </span>been<span class="_ _a"> </span>changed<span class="_ _d"> </span>from<span class="_ _d"> </span>1-<span class="_ _d"> </span>to<span class="_ _a"> </span>4.6-m<span class="_ _d"> </span>errors</div><div class="t m0 x9 h6 y11a ff1 fs4 fc0 sc0 lsa ws0">for<span class="_ _b"> </span>cell<span class="_ _a"> </span>radios<span class="_ _b"> </span>of<span class="_ _b"> </span>1<span class="_ _a"> </span>and<span class="_ _b"> </span>5<span class="_ _b"> </span>m,<span class="_ _a"> </span>respectiv<span class="_ _1"></span>ely<span class="_ _1"></span>.<span class="_ _b"> </span>The<span class="_ _b"> </span>authors<span class="_ _a"> </span>imple-</div><div class="t m0 x9 h6 y11b ff1 fs4 fc0 sc0 lsa ws0">mented<span class="_ _b"> </span>the<span class="_ _b"> </span>proposed<span class="_ _b"> </span>technique<span class="_ _b"> </span>in<span class="_ _5"> </span>indoor<span class="_ _b"> </span>en<span class="_ _1"></span>vironments<span class="_ _b"> </span>using</div><div class="t m0 x9 h6 y11c ff1 fs4 fc0 sc0 lsb ws0">only<span class="_ _b"> </span>nine<span class="_ _b"> </span>APs.</div><div class="t m0 xf h9 y6a ff6 fs7 fc0 sc0 ls2 ws0">Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on June 07,2020 at 15:16:03 UTC from IEEE Xplore. Restrictions apply. </div><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m1"></div></a></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>