beyesi.rar

  • 盼帅
    了解作者
  • matlab
    开发工具
  • 8KB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 0
    下载次数
  • 2020-09-25 11:06
    上传日期
很好用的贝叶斯分类代码,亲测可用,有需要的可以下载。
beyesi.rar
  • code
  • test.txt
    8.5KB
  • Homework4_Bayes.m
    1.4KB
  • train.txt
    8.4KB
内容介绍
-0.763698 -3.448438 0 1.763668 -2.330878 1 0.549524 6.180992 0 1.018734 4.148406 1 -0.374638 -2.427788 0 1.230412 0.187759 1 -1.659159 -2.037948 0 0.763877 1.941173 1 -0.310229 3.213779 0 1.949785 2.877206 1 -0.619943 2.282555 0 1.611336 -1.294756 1 -1.024591 -3.447864 0 1.688055 5.366033 1 0.504999 2.459292 0 2.221365 2.746309 1 0.040473 -2.988527 0 1.702675 6.347115 1 -0.254730 -4.919531 0 0.302805 3.392053 1 -0.547736 0.881843 0 1.401291 5.322344 1 1.676594 -2.458743 0 1.476653 -0.590551 1 1.173003 -4.183658 0 0.284171 4.997691 1 -0.189061 -0.533859 0 2.885678 3.802995 1 0.086573 3.603353 0 -0.166645 3.101685 1 1.512560 5.027536 0 2.422127 1.505182 1 1.793271 -1.693432 0 1.705191 6.949976 1 1.102621 1.407759 0 1.635749 0.137572 1 -0.325847 1.541926 0 2.647656 -2.238981 1 -0.582815 1.652959 0 1.696468 4.959490 1 0.751587 4.929384 0 1.773162 2.115505 1 -0.863734 2.885944 0 1.128419 -0.041013 1 -1.070876 0.708276 0 3.125760 -2.302900 1 -0.355237 -4.315671 0 2.991619 1.431334 1 0.955880 1.222391 0 2.686437 1.577629 1 0.159282 -3.527106 0 2.531254 0.095217 1 0.244942 3.411496 0 2.726437 1.475280 1 1.124750 5.890625 0 2.694254 2.479412 1 0.234628 -5.052636 0 2.394101 -0.792774 1 -1.138562 0.565512 0 2.631624 0.042744 1 0.842094 0.074375 0 1.290897 0.798325 1 0.476342 -0.756487 0 2.029347 5.644706 1 -0.088390 -2.568345 0 2.550377 -2.580862 1 -0.413036 2.631291 0 1.274517 7.506400 1 -0.544583 0.159757 0 2.000764 0.229652 1 -0.024007 -0.471920 0 1.812489 2.120626 1 -0.800514 -0.085617 0 3.241424 2.820884 1 -0.512190 1.848070 0 2.472488 3.291462 1 -1.486675 -4.343767 0 3.094472 -0.680243 1 -0.518642 -2.883700 0 2.622670 3.507749 1 -0.693229 0.763213 0 3.009234 -2.953583 1 0.577652 4.767328 0 1.905503 5.940427 1 1.454967 5.036854 0 2.115153 5.009459 1 1.035485 0.920626 0 1.371843 2.808782 1 1.046823 -2.241930 0 2.387572 2.458843 1 0.676211 -5.367505 0 5.074273 0.265426 1 0.546595 -1.836735 0 2.097586 0.782829 1 0.749989 3.800827 0 1.954405 3.481929 1 -0.729839 -2.518054 0 2.858256 2.595878 1 0.833202 1.699691 0 0.436381 5.154859 1 -1.198550 -1.139769 0 3.128228 -3.811555 1 0.618773 -5.076660 0 1.152428 2.110327 1 -0.832413 2.051175 0 2.567507 -4.598229 1 -0.970495 3.891996 0 2.276597 0.369191 1 -0.453511 -0.824051 0 1.932975 -0.302304 1 -1.302708 0.777170 0 1.282722 2.608814 1 0.015975 -2.087755 0 2.417312 2.340691 1 1.110659 2.878348 0 3.124560 2.623487 1 -0.249374 5.091373 0 2.682643 0.474390 1 0.495702 3.944558 0 3.396092 -0.021054 1 0.162037 -1.747010 0 0.611411 6.737113 1 1.211821 -1.210850 0 2.019262 5.535758 1 -0.158316 -0.198046 0 0.649647 4.409207 1 0.292971 -0.366535 0 2.114636 4.155420 1 2.467714 2.929677 0 2.541632 -1.000473 1 1.146234 4.688236 0 1.232334 7.485294 1 -0.933843 -0.772141 0 3.282825 -1.867480 1 1.119792 5.680227 0 1.525144 0.344059 1 -0.924227 -1.449565 0 2.623431 2.505420 1 0.009907 -0.465157 0 1.652303 2.168601 1 0.289367 2.320317 0 1.241676 -1.590763 1 0.870003 2.120167 0 1.262835 5.989930 1 -0.397262 -1.197343 0 0.548964 5.917571 1 0.537858 -3.576639 0 3.520754 4.393435 1 1.769737 -0.734857 0 -0.447237 6.196801 1 -1.905485 -1.007549 0 0.709954 5.715532 1 -1.076748 -0.116707 0 0.015426 1.403841 1 1.194941 -2.404088 0 0.657053 9.089450 1 -0.293948 -0.200719 0 -0.791839 12.621953 1 -0.038178 1.203121 0 2.602186 -0.091081 1 0.923935 -1.993520 0 2.040443 -0.184188 1 2.223061 0.166043 0 0.969082 6.188545 1 -1.301895 1.288888 0 0.699024 0.473524 1 -0.908991 -5.899152 0 0.682021 4.180162 1 -0.077500 0.935362 0 1.721545 1.871168 1 0.000510 2.425950 0 -0.022093 7.108804 1 0.106855 -4.670276 0 2.406730 -4.347425 1 -0.312465 -0.878313 0 1.910174 2.339548 1 1.219647 -1.607212 0 1.657738 3.095786 1 -0.909561 -1.083135 0 2.652226 -4.133144 1 0.203977 -0.966505 0 2.345745 0.910869 1 0.989747 -3.150339 0 1.655314 4.148505 1 0.375200 1.974630 0 2.030786 -1.830277 1 -0.622126 0.614842 0 1.866652 1.191845 1 0.120555 -1.588260 0 1.373963 3.315261 1 -0.317396 0.834510 0 3.111440 -1.222139 1 -0.599684 -4.425554 0 3.202166 4.635848 1 1.353154 -1.588334 0 2.072382 3.953447 1 -0.197668 -3.401708 0 0.973252 1.671767 1 -0.578002 -1.170684 0 0.827030 4.481602 1 -0.755970 -2.487049 0 2.251004 4.725036 1 0.121199 5.021793 0 1.735378 2.945744 1 -1.495841 -2.269803 0 1.186809 4.611337 1 -1.646159 -0.812535 0 2.132017 3.507435 1 0.192897 1.621802 0 0.815348 5.662578 1 -1.289770 -0.843643 0 2.340421 -2.406795 1 -0.399849 -0.151509 0 0.407907 2.199276 1 0.775403 4.133216 0 -0.453763 4.355567 1 0.922150 -1.966892 0 1.791879 -2.407976 1 1.544536 6.159950 0 1.018070 -0.743923 1 -1.009562 0.344310 0 3.531119 0.693162 1 0.856706 -2.014046 0 3.372670 0.923118 1 0.325287 3.195325 0 1.387882 5.374555 1 1.252439 4.595638 0 1.033263 4.284064 1 0.220159 4.618170 0 1.783605 -0.023002 1 0.815197 -0.163231 0 1.683918 2.265172 1 1.139422 5.641481 0 3.385317 -2.167423 1 -0.411711 0.020514 0 1.651705 4.833576 1 -0.461065 -4.555807 0 3.205511 -4.180278 1 -1.329049 -3.893980 0 3.237243 2.546607 1 -0.087500 2.184081 0 4.519724 -0.317788 1 0.355446 5.018613 0 1.620550 4.609340 1 -0.743139 -4.191885 0 1.524731 0.884381 1 0.072031 -0.326371 0 3.675725 0.028005 1 -0.356403 -2.311450 0 1.261631 2.796094 1 -0.431692 4.217084 0 0.184497 0.135523 1 0.779328 -1.453075 0 2.086728 3.119705 1 0.816325 4.415067 0 2.500258 2.408446 1 1.148304 -0.261737 0 1.637019 0.254040 1 -1.084960 0.481864 0 1.649308 5.902291 1 -0.136122 -3.767581 0 0.637090 -1.237463 1 0.655092 4.645381 0 3.722804 -1.776659 1 -1.293461 -7.574985 0 2.201372 0.454311 1 1.926740 3.229509 0 1.452313 0.601855 1 0.233252 1.274612 0 2.401812 -0.612304 1 -0.545022 -2.986143 0 2.834395 2.046702 1 1.032812 -1.305817 0 0.951703 0.859631 1 0.377137 1.954638 0 2.225263 1.733574 1 0.109255 -2.694501 0 1.517630 1.333063 1 -0.680188 -1.092313 0 3.650715 -0.866203 1 -1.765392 -9.803096 0 2.158926 7.152258 1 -0.963568 -6.825689 0 0.875315 1.917097 1 -0.645633 -1.090321 0 1.888937 4.547155 1 0.452528 3.381913 0 2.449051 1.325293 1 0.614498 -3.636793 0 4.100583 -1.052171 1 -0.785301 0.617244 0 2.039567 -3.633700 1 0.828176 2.243318 0 2.571573 3.958426 1 0.667417 -0.795595 0 3.200726 0.584809 1 -0.125501 -0.356454 0 2.508772 -0.108191 1 -0.951229 4.352445 0 1.130238 3.207953 1 0.892040 -2.623901 0 1.838935 1.777217 1 -0.129722 0.954851 0 1.342175 8.032354 1 -1.013485 -0.911678 0 2.706752 -2.313277 1 0.252287 1.041040 0 3.540317 -1.946067 1 0.523585 0.538593 0 1.978058 2.640750 1 -1.461630 -1.304180 0 3.054762 5.649183 1 1.866406 1.651437 0 1.303242 3.589096 1 -2.149052 -7.361671 0 2.159301 4.805522 1 -1.635237 -3.791930 0 1.823530 4.260888 1 1.224019 2.081443 0 3.630259 1.583773 1 0.325174 0.970878 0 2.293964 5.117137 1 -0.428913 0.886821 0 2.767713 7.307927 1 0.011596 5.687657 0 1.658813 2.767605 1 0.731318 -3.496279 0 1.366597 1.934799 1 -0.868023 0.513739 0 2.394703 1.829609 1 0.928160 1.437322 0 1.181561 2.161520 1 0.697317 0.681656 0 0.638270 -2.799702 1 -0.045150 -1.999883 0 1.697883 1.958874 1 0.191211 -0.213399 0 3.599174 0.053670 1 -0.628763 0.826158 0 1.607679 1.372487 1 -0.856613 -0.135472 0 2.220828 0.923511 1 -0.388713 -4.832771 0 1.406278 6.238626 1 1.028508 3.581114 0 -0.050393 5.023312 1 -0.239720 0.208729 0 2.000427 1.772543 1 -0.451623 4.228916 0 3.693660 -2.450281 1 -0.979267 -4.315439 0 1.668472 0.740115 1 -1.133447 -3.497047 0 0.849855 3.213270 1 0.022121 -4.678889 0 1.009328 3.639230 1 1.040239 1.238301 0 2.364190 2.448581 1 1.231484 4.078611 0 1.579669 7.130893 1 0.560179 -0.649601 0 2.983622 4.329169 1 -0.309039 -1.889914 0 1.724235 -1.167885 1 -0.367604 -1.380040 0 -0.085524 9.856303 1 0.365633 -0.071832 0 1.560529 -0.329211 1 0.937439 3.768623 0 2.711924 8.18
评论
    相关推荐
    • 贝叶斯代码.zip
      贝叶斯算法代码的验证,转自CSDN,对它的算法进行了验证
    • 样本连续的朴素贝叶斯代码.zip
      样本基于正态分布的朴素贝叶斯分类器,实测可用,内含数据
    • 朴素贝叶斯代码
      基于Python贝叶斯代码,含训练集、测试集,简单易懂的分类和预测器
    • 机器学习-朴素贝叶斯代码
      机器学习中的朴素贝叶斯分类器,基于Python代码实现,其中有文本分类垃圾邮件过滤以及使用贝叶斯分类器从个人广告中获取区域倾向等实例,在Pycharm中测试通过
    • 贝叶斯网络代码
      包含GaussianNB、马尔科夫模型、文本分类、中文分词的代码且数据和示例。
    • 朴素贝叶斯代码学习代码
      这是我写的朴素贝叶斯算法的代码,样例数据不够,仅用来学习参考算法的实现过程。对应我的博客:【从零开始的机器学习2】——朴素贝叶斯和邮件分类
    • 朴素贝叶斯实战代码
      朴素贝叶斯实战代码,含注释,分为两个模块,第一模型实现,第二进行文本分类。事实上利用的是词袋模型的朴素贝叶斯,也就是多项式事件模型。利用python3进行编程实现。
    • 最基本的朴素贝叶斯代码(压缩包中含有数据)
      朴素贝叶斯算法的代码,将已有的数据进行分类,数据形式:第一列为类别,第二列到最后一列为特征属性,代码的运行结果可以给出准确率和分类结果,个人原创,可供学习也可以直接使用进行分类!
    • 朴素贝叶斯实现代码
      朴素贝叶斯实现代码,适合用于文本分类.共有7个类
    • 贝叶斯实现代码
      贝叶斯算法的C++实现代码,源代码下载。