<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6264aa994f8811599e61aa6a/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6264aa994f8811599e61aa6a/bg1.jpg"><div class="c x0 y1 w2 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">沈阳理工大学硕士研究生入学考试自命题考试大纲</div><div class="t m0 x2 h4 y3 ff1 fs1 fc0 sc0 ls0 ws0">科目代码:<span class="ff2 sc1">820<span class="_ _0"> </span></span>科目名称:物理化学二</div><div class="t m0 x2 h4 y4 ff1 fs1 fc0 sc0 ls0 ws0">适用专业:<span class="ff2 sc1">082600<span class="_ _1"> </span></span>兵器科学与技术、<span class="ff2 sc1">085500<span class="_ _1"> </span></span>机械(装备工程学院)</div><div class="t m0 x2 h4 y5 ff1 fs1 fc0 sc0 ls0 ws0">一、考试基本内容</div><div class="t m0 x3 h5 y6 ff1 fs2 fc0 sc1 ls0 ws0">(一)<span class="_ _2"></span>气体的<span class="_ _1"> </span><span class="ff3">PVT<span class="_ _1"> </span></span>关系:理想<span class="_ _2"></span>气体状<span class="_ _2"></span>态方程<span class="_ _2"></span>,分压<span class="_ _2"></span>定律和<span class="_ _2"></span>分体积<span class="_ _2"></span>定律,<span class="_ _2"></span>真</div><div class="t m0 x2 h5 y7 ff1 fs2 fc0 sc1 ls0 ws0">实气体的液化及临界参数,真实气体的范德华方程和维利方程。</div><div class="t m0 x3 h5 y8 ff1 fs2 fc0 sc1 ls0 ws0">(二<span class="_ _2"></span>)<span class="_ _2"></span>热<span class="_ _2"></span>力学<span class="_ _2"></span>第<span class="_ _2"></span>一<span class="_ _2"></span>定律<span class="_ _2"></span>:<span class="_ _2"></span>热<span class="_ _2"></span>,功<span class="_ _2"></span>,<span class="_ _2"></span>内<span class="_ _2"></span>能,<span class="_ _2"></span>恒<span class="_ _2"></span>容<span class="_ _2"></span>热<span class="_ _2"></span>、恒<span class="_ _2"></span>压<span class="_ _2"></span>热<span class="_ _2"></span>及焓<span class="_ _2"></span>,<span class="_ _2"></span>可<span class="_ _2"></span>逆过<span class="_ _2"></span>程</div><div class="t m0 x2 h5 y9 ff1 fs2 fc0 sc1 ls0 ws0">与膨胀功,化学反应的热效应,热力学第一定律,状态函数和过程函数。</div><div class="t m0 x3 h5 ya ff1 fs2 fc0 sc1 ls0 ws0">(三<span class="_ _2"></span>)<span class="_ _2"></span>热<span class="_ _2"></span>力学<span class="_ _2"></span>第<span class="_ _2"></span>二<span class="_ _2"></span>定律<span class="_ _2"></span>:<span class="_ _2"></span>自<span class="_ _2"></span>发过<span class="_ _2"></span>程<span class="_ _2"></span>的<span class="_ _2"></span>方向<span class="_ _2"></span>与<span class="_ _2"></span>限<span class="_ _2"></span>度<span class="_ _2"></span>,热<span class="_ _2"></span>力<span class="_ _2"></span>学<span class="_ _2"></span>第二<span class="_ _2"></span>定<span class="_ _2"></span>律<span class="_ _2"></span>,卡<span class="_ _2"></span>诺</div><div class="t m0 x2 h5 yb ff1 fs2 fc0 sc1 ls0 ws0">循<span class="_ _3"></span>环<span class="_ _3"></span>,<span class="_ _3"></span>熵<span class="_ _3"></span>及<span class="_ _3"></span>熵<span class="_ _3"></span>变<span class="_ _3"></span>,<span class="_ _3"></span>亥<span class="_ _3"></span>姆<span class="_ _3"></span>霍<span class="_ _3"></span>兹<span class="_ _3"></span>函<span class="_ _3"></span>数<span class="_ _3"></span>与<span class="_ _3"></span>吉<span class="_ _3"></span>布<span class="_ _3"></span>斯<span class="_ _3"></span>函<span class="_ _3"></span>数<span class="_ _3"></span>,<span class="_ _3"></span>热<span class="_ _3"></span>力<span class="_ _3"></span>学<span class="_ _3"></span>函<span class="_ _3"></span>数<span class="_ _3"></span>间<span class="_ _3"></span>的<span class="_ _3"></span>关<span class="_ _3"></span>系<span class="_ _3"></span>式<span class="_ _4"> </span>,</div><div class="t m0 x2 h5 yc ff3 fs2 fc0 sc1 ls0 ws0">Maxwell<span class="_ _5"> </span><span class="ff1">关系式,一些重要热力学关系式推导。</span></div><div class="t m0 x3 h5 yd ff1 fs2 fc0 sc1 ls0 ws0">(四<span class="_ _2"></span>)<span class="_ _2"></span>化<span class="_ _2"></span>学平<span class="_ _2"></span>衡<span class="_ _2"></span>:<span class="_ _2"></span>平衡<span class="_ _2"></span>常<span class="_ _2"></span>数<span class="_ _2"></span>,化<span class="_ _2"></span>学<span class="_ _2"></span>反<span class="_ _2"></span>应等<span class="_ _2"></span>温<span class="_ _2"></span>方<span class="_ _2"></span>程<span class="_ _2"></span>式,<span class="_ _2"></span>多<span class="_ _2"></span>相<span class="_ _2"></span>反应<span class="_ _2"></span>平<span class="_ _2"></span>衡<span class="_ _2"></span>分解<span class="_ _2"></span>压<span class="_ _4"> </span>,</div><div class="t m0 x2 h5 ye ff1 fs2 fc0 sc1 ls0 ws0">标准<span class="_ _2"></span>生<span class="_ _2"></span>成<span class="_ _2"></span>吉布<span class="_ _2"></span>斯<span class="_ _2"></span>函<span class="_ _2"></span>数,<span class="_ _2"></span>吉<span class="_ _2"></span>布<span class="_ _2"></span>斯函<span class="_ _2"></span>数<span class="_ _2"></span>变<span class="_ _2"></span>化与<span class="_ _2"></span>温<span class="_ _2"></span>度<span class="_ _2"></span>的<span class="_ _2"></span>关系<span class="_ _2"></span>,<span class="_ _2"></span>平<span class="_ _2"></span>衡常<span class="_ _2"></span>数<span class="_ _2"></span>与<span class="_ _2"></span>温度<span class="_ _2"></span>的<span class="_ _2"></span>关<span class="_ _2"></span>系</div><div class="t m0 x2 h5 yf ff1 fs2 fc0 sc1 ls0 ws0">热力学第三定律,影响化学平衡的因素,几个反应同时平衡。</div><div class="t m0 x3 h5 y10 ff1 fs2 fc0 sc1 ls0 ws0">(<span class="_ _6"></span>五<span class="_ _6"></span>)<span class="_ _6"></span>多<span class="_ _6"></span>组<span class="_ _6"></span>分<span class="_ _6"></span>系<span class="_ _6"></span>统<span class="_ _6"></span>热<span class="_ _6"></span>力<span class="_ _6"></span>学<span class="_ _6"></span>与<span class="_ _6"></span>相<span class="_ _6"></span>平<span class="_ _6"></span>衡<span class="_ _6"></span>:<span class="_ _6"></span>偏<span class="_ _6"></span>摩<span class="_ _6"></span>尔<span class="_ _6"></span>量<span class="_ _6"></span>,<span class="_ _6"></span>化<span class="_ _6"></span>学<span class="_ _6"></span>势<span class="_ _6"></span>,<span class="_ _3"></span><span class="ff3">Clapeyron<span class="_ _7"> </span></span>和</div><div class="t m0 x2 h5 y11 ff3 fs2 fc0 sc1 ls0 ws0">Clapeyron—Clausius<span class="_ _5"> </span><span class="ff1">方程<span class="_ _2"></span>,理想溶<span class="_ _2"></span>液<span class="_ _2"></span>及理想稀溶液<span class="_ _6"></span>,稀溶液的基本定<span class="_ _2"></span>律,稀</span></div><div class="t m0 x2 h5 y12 ff1 fs2 fc0 sc1 ls0 ws0">溶液<span class="_ _2"></span>的<span class="_ _2"></span>依<span class="_ _2"></span>数性<span class="_ _2"></span>,<span class="_ _2"></span>分<span class="_ _2"></span>配定<span class="_ _2"></span>律<span class="_ _2"></span>,<span class="_ _2"></span>活度<span class="_ _2"></span>和<span class="_ _2"></span>逸<span class="_ _2"></span>度,<span class="_ _8"></span>相律<span class="_ _2"></span>,<span class="_ _2"></span>单<span class="_ _2"></span>组<span class="_ _2"></span>分<span class="_ _2"></span>系统<span class="_ _2"></span>和<span class="_ _2"></span>二<span class="_ _2"></span>组分<span class="_ _2"></span>系<span class="_ _2"></span>统<span class="_ _2"></span>典型</div><div class="t m0 x2 h5 y13 ff1 fs2 fc0 sc1 ls0 ws0">相图,杠杆规则,相图分析。</div><div class="t m0 x3 h5 y14 ff1 fs2 fc0 sc1 ls0 ws0">(六<span class="_ _2"></span>)<span class="_ _2"></span>电<span class="_ _2"></span>化学<span class="_ _2"></span>:<span class="_ _6"></span>电<span class="_ _2"></span>解质<span class="_ _2"></span>溶<span class="_ _2"></span>液<span class="_ _6"></span>,离<span class="_ _2"></span>子<span class="_ _2"></span>迁移<span class="_ _2"></span>数<span class="_ _6"></span>,表<span class="_ _2"></span>征<span class="_ _2"></span>电<span class="_ _2"></span>解质<span class="_ _2"></span>溶<span class="_ _2"></span>液<span class="_ _2"></span>导电<span class="_ _2"></span>能<span class="_ _2"></span>力<span class="_ _2"></span>的<span class="_ _2"></span>物</div><div class="t m0 x2 h5 y15 ff1 fs2 fc0 sc1 ls0 ws0">理量,活度<span class="_ _2"></span>和离子平均活<span class="_ _2"></span>度系数<span class="_ _6"></span>,离子氛<span class="_ _2"></span>,<span class="ff3">Debye—Hueckel<span class="_ _5"> </span></span>极<span class="_ _2"></span>限公式<span class="_ _2"></span>,原电</div><div class="t m0 x2 h5 y16 ff1 fs2 fc0 sc1 ls0 ws0">池,电极,电极电势,电极极化和超电势,原电池热力学,电动势测定的应用。</div><div class="t m0 x3 h5 y17 ff1 fs2 fc0 sc1 ls0 ws0">(<span class="_ _8"></span>七<span class="_ _8"></span>)<span class="_ _6"></span>表<span class="_ _8"></span>面<span class="_ _8"></span>现<span class="_ _8"></span>象<span class="_ _8"></span>:<span class="_ _6"></span>表<span class="_ _8"></span>面<span class="_ _8"></span>张<span class="_ _8"></span>力<span class="_ _8"></span>、<span class="_ _8"></span>表<span class="_ _6"></span>面<span class="_ _9"> </span><span class="ff3">Gibbs<span class="_ _a"> </span></span>函<span class="_ _8"></span>数<span class="_ _8"></span>,<span class="_ _8"></span>弯<span class="_ _8"></span>曲<span class="_ _6"></span>液<span class="_ _8"></span>面<span class="_ _8"></span>的<span class="_ _8"></span>附<span class="_ _8"></span>加<span class="_ _6"></span>压<span class="_ _8"></span>力<span class="_ _3"></span>,</div><div class="t m0 x2 h5 y18 ff3 fs2 fc0 sc1 ls0 ws0">Laplace<span class="_ _5"> </span><span class="ff1">公<span class="_ _6"></span>式<span class="_ _2"></span>和<span class="_ _5"> </span></span>Kelvin<span class="_ _1"> </span><span class="ff1">公<span class="_ _2"></span>式<span class="_ _2"></span>,<span class="_ _2"></span>铺<span class="_ _2"></span>展<span class="_ _2"></span>和<span class="_ _2"></span>铺<span class="_ _2"></span>展<span class="_ _2"></span>系<span class="_ _2"></span>数<span class="_ _6"></span>,<span class="_ _2"></span>润湿<span class="_ _6"></span>、接<span class="_ _2"></span>触<span class="_ _2"></span>角<span class="_ _2"></span>和<span class="_ _1"> </span></span>Young<span class="_ _1"> </span><span class="ff1">方<span class="_ _2"></span>程<span class="_ _2"></span>,</span></div><div class="t m0 x2 h5 y19 ff1 fs2 fc0 sc1 ls0 ws0">吉布<span class="_ _2"></span>斯<span class="_ _2"></span>吸<span class="_ _2"></span>附等<span class="_ _2"></span>温<span class="_ _2"></span>方<span class="_ _2"></span>程式<span class="_ _2"></span>,<span class="_ _2"></span>表<span class="_ _2"></span>面活<span class="_ _2"></span>性<span class="_ _2"></span>物<span class="_ _2"></span>质和<span class="_ _2"></span>表<span class="_ _2"></span>面<span class="_ _2"></span>膜<span class="_ _2"></span>,物<span class="_ _2"></span>理<span class="_ _2"></span>吸<span class="_ _2"></span>附和<span class="_ _2"></span>化<span class="_ _2"></span>学<span class="_ _2"></span>吸附<span class="_ _2"></span>,<span class="_ _2"></span>气<span class="_ _2"></span>体</div><div class="t m0 x2 h5 y1a ff1 fs2 fc0 sc1 ls0 ws0">在固<span class="_ _2"></span>体<span class="_ _2"></span>表<span class="_ _2"></span>面上<span class="_ _2"></span>的<span class="_ _2"></span>吸<span class="_ _2"></span>附,<span class="_ _2"></span>吸<span class="_ _2"></span>附<span class="_ _2"></span>等温<span class="_ _2"></span>方<span class="_ _2"></span>程<span class="_ _2"></span>式,<span class="_ _2"></span>分<span class="_ _2"></span>散<span class="_ _2"></span>体<span class="_ _2"></span>系,<span class="_ _2"></span>溶<span class="_ _2"></span>胶<span class="_ _2"></span>的制<span class="_ _2"></span>备<span class="_ _2"></span>,<span class="_ _2"></span>胶体<span class="_ _2"></span>的<span class="_ _2"></span>稳<span class="_ _2"></span>定</div><div class="t m0 x2 h5 y1b ff1 fs2 fc0 sc1 ls0 ws0">与破坏,胶体的动电性质,胶体的光化学性质。</div><div class="t m0 x3 h5 y1c ff1 fs2 fc0 sc1 ls0 ws0">(八)化学动力学基础</div></div></div><div class="pi" data-data='{"ctm":[1.611850,0.000000,0.000000,1.611850,0.000000,0.000000]}'></div></div>
</body>
</html>