 # level set.zip

• 弈秋61278
了解作者
• matlab
开发工具
• 74KB
文件大小
• zip
文件格式
• 0
收藏次数
• 10 积分
下载积分
• 0
下载次数
• 2021-03-16 19:39
上传日期 level set.zip
• level set
• 051202.jpg
67.9KB
• gourd.bmp
5.7KB
• demo_1.m
3.3KB
• drlse_edge.m
3.5KB
• twocells.bmp
16KB
• demo_2.m
3.2KB

function phi = drlse_edge(phi_0, g, lambda,mu, alfa, epsilon, timestep, iter, potentialFunction) % This Matlab code implements an edge-based active contour model as an % application of the Distance Regularized Level Set Evolution (DRLSE) formulation in Li et al's paper: % % C. Li, C. Xu, C. Gui, M. D. Fox, "Distance Regularized Level Set Evolution and Its Application to Image Segmentation", % IEEE Trans. Image Processing, vol. 19 (12), pp.3243-3254, 2010. % % Input: % phi_0: level set function to be updated by level set evolution % g: edge indicator function % mu: weight of distance regularization term % timestep: time step % lambda: weight of the weighted length term % alfa: weight of the weighted area term % epsilon: width of Dirac Delta function % iter: number of iterations % potentialFunction: choice of potential function in distance regularization term. % As mentioned in the above paper, two choices are provided: potentialFunction='single-well' or % potentialFunction='double-well', which correspond to the potential functions p1 (single-well) % and p2 (double-well), respectively.% % Output: % phi: updated level set function after level set evolution % % Author: Chunming Li, all rights reserved % E-mail: lchunming@gmail.com % li_chunming@hotmail.com % URL: http://www.engr.uconn.edu/~cmli/ phi=phi_0; [vx, vy]=gradient(g); for k=1:iter phi=NeumannBoundCond(phi); [phi_x,phi_y]=gradient(phi); s=sqrt(phi_x.^2 + phi_y.^2); smallNumber=1e-10; Nx=phi_x./(s+smallNumber); % add a small positive number to avoid division by zero Ny=phi_y./(s+smallNumber); curvature=div(Nx,Ny); if strcmp(potentialFunction,'single-well') distRegTerm = 4*del2(phi)-curvature; % compute distance regularization term in equation (13) with the single-well potential p1. elseif strcmp(potentialFunction,'double-well'); distRegTerm=distReg_p2(phi); % compute the distance regularization term in eqaution (13) with the double-well potential p2. else disp('Error: Wrong choice of potential function. Please input the string "single-well" or "double-well" in the drlse_edge function.'); end diracPhi=Dirac(phi,epsilon); areaTerm=diracPhi.*g; % balloon/pressure force edgeTerm=diracPhi.*(vx.*Nx+vy.*Ny) + diracPhi.*g.*curvature; phi=phi + timestep*(mu*distRegTerm + lambda*edgeTerm + alfa*areaTerm); end function f = distReg_p2(phi) % compute the distance regularization term with the double-well potential p2 in eqaution (16) [phi_x,phi_y]=gradient(phi); s=sqrt(phi_x.^2 + phi_y.^2); a=(s>=0) & (s<=1); b=(s>1); ps=a.*sin(2*pi*s)/(2*pi)+b.*(s-1); % compute first order derivative of the double-well potential p2 in eqaution (16) dps=((ps~=0).*ps+(ps==0))./((s~=0).*s+(s==0)); % compute d_p(s)=p'(s)/s in equation (10). As s-->0, we have d_p(s)-->1 according to equation (18) f = div(dps.*phi_x - phi_x, dps.*phi_y - phi_y) + 4*del2(phi); function f = div(nx,ny) [nxx,junk]=gradient(nx); [junk,nyy]=gradient(ny); f=nxx+nyy; function f = Dirac(x, sigma) f=(1/2/sigma)*(1+cos(pi*x/sigma)); b = (x<=sigma) & (x>=-sigma); f = f.*b; function g = NeumannBoundCond(f) % Make a function satisfy Neumann boundary condition [nrow,ncol] = size(f); g = f; g([1 nrow],[1 ncol]) = g([3 nrow-2],[3 ncol-2]); g([1 nrow],2:end-1) = g([3 nrow-2],2:end-1); g(2:end-1,[1 ncol]) = g(2:end-1,[3 ncol-2]);   相关推荐