Interesting things about CO2.zip

  • EvanKiwi
    了解作者
  • PDF
    开发工具
  • 66KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 0
    下载次数
  • 2021-03-23 02:15
    上传日期
Paper that analyzes mean free path length of IR emissions near the earth surface. Diving deeper into the greenhouse hypothesis (which incidentally remains essentially unproven).
Interesting things about CO2.zip
  • Carbon_dioxide_free_path_length.pdf
    67.9KB
  • Climate_fraud.txt
    6KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6266fc444c65f41259478d36/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6266fc444c65f41259478d36/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Determi<span class="_ _0"></span>nat<span class="_ _1"></span>ion <span class="_"> </span>of<span class="_ _1"></span> <span class="_"> </span>Mean<span class="_ _1"></span> <span class="_"> </span>F<span class="_ _1"></span>ree <span class="_ _2"> </span>P<span class="_ _1"></span>ath <span class="_ _2"> </span>of <span class="_ _2"> </span>Quantu<span class="_ _1"></span>m/<span class="_ _0"></span>W<span class="_ _1"></span>a<span class="_ _0"></span>ves<span class="_ _1"></span> <span class="_ _2"> </span>and <span class="_ _2"> </span>Total <span class="_"> </span>E<span class="_ _1"></span>missivity<span class="_ _1"></span> <span class="_"> </span>of<span class="_ _1"></span> <span class="_"> </span>t<span class="_ _1"></span>he<span class="_ _0"></span> </div><div class="t m0 x1 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">Carbon Dio<span class="_ _0"></span>x<span class="_ _1"></span>i<span class="_ _0"></span>de C<span class="_ _1"></span>onsidering the Molecul<span class="_ _1"></span>ar Cr<span class="_ _0"></span>oss<span class="_ _1"></span> Se<span class="_ _0"></span>ct<span class="_ _1"></span>ion. </div><div class="t m0 x1 h3 y3 ff2 fs1 fc0 sc0 ls0 ws0">By <span class="_ _0"></span>Nasif Nahle </div><div class="t m0 x1 h3 y4 ff2 fs1 fc0 sc0 ls0 ws0">Uni<span class="_ _0"></span>versity<span class="_ _0"></span> Profe<span class="_ _1"></span>ss<span class="_ _0"></span>or, S<span class="_ _0"></span>cien<span class="_ _1"></span>t<span class="_ _0"></span>i<span class="_ _0"></span>f<span class="_ _1"></span>ic Res<span class="_ _0"></span>earch Dir<span class="_ _0"></span>ector at B<span class="_ _0"></span>iology <span class="_ _0"></span>Cab<span class="_ _1"></span>i<span class="_ _0"></span>net <span class="_ _0"></span>Divisi<span class="_ _0"></span>o<span class="_ _1"></span>n M<span class="_ _0"></span>e<span class="_ _1"></span>x<span class="_ _0"></span>i<span class="_ _0"></span>co. </div><div class="t m0 x1 h2 y5 ff1 fs0 fc0 sc0 ls0 ws0">Abs<span class="_ _1"></span>tra<span class="_ _0"></span>ct<span class="ff2">: </span></div><div class="t m0 x1 h3 y6 ff2 fs1 fc0 sc0 ls0 ws0">Through <span class="_ _1"></span>the <span class="_ _1"></span>applicati<span class="_ _0"></span>on <span class="_ _1"></span>of<span class="_ _1"></span> <span class="_ _1"></span>astro<span class="_ _0"></span>physi<span class="_ _0"></span>cal<span class="_ _1"></span> <span class="_ _1"></span>for<span class="_ _0"></span>m<span class="_ _1"></span>ulas<span class="_ _0"></span>, <span class="_ _3"></span>the <span class="_ _1"></span>m<span class="_ _1"></span>ean<span class="_ _0"></span> <span class="_ _3"></span>fre<span class="_ _0"></span>e<span class="_ _1"></span> pa<span class="_ _1"></span>th <span class="_ _1"></span>len<span class="_ _0"></span>gth <span class="_ _3"></span>of<span class="_ _1"></span> a<span class="_ _1"></span> Qu<span class="_ _1"></span>ant<span class="_ _0"></span>um<span class="_ _1"></span>/w<span class="_ _0"></span>av<span class="_ _0"></span>e<span class="_ _1"></span> <span class="_ _1"></span>str<span class="_ _0"></span>ea<span class="_ _0"></span>m </div><div class="t m0 x1 h3 y7 ff2 fs1 fc0 sc0 ls0 ws0">lea<span class="_ _1"></span>v<span class="_ _0"></span>i<span class="_ _0"></span>ng <span class="_ _1"></span>the surf<span class="_ _0"></span>ac<span class="_ _0"></span>e<span class="_ _1"></span> <span class="_ _0"></span>o<span class="_ _1"></span>f the Eart<span class="_ _0"></span>h to the outer spac<span class="_ _0"></span>e before i<span class="_ _0"></span>t has<span class="_ _1"></span> co<span class="_ _0"></span>llided wi<span class="_ _0"></span>th a<span class="_ _1"></span> <span class="_ _0"></span>m<span class="_ _1"></span>olec<span class="_ _0"></span>ule of <span class="_ _0"></span>carbon<span class="_ _1"></span> di<span class="_ _0"></span>o<span class="_ _1"></span>x<span class="_ _0"></span>i<span class="_ _0"></span>de </div><div class="t m0 x1 h3 y8 ff2 fs1 fc0 sc0 ls0 ws0">and <span class="_ _4"></span>i<span class="_ _0"></span>t<span class="_ _0"></span>s <span class="_ _3"></span>total<span class="_ _1"></span> <span class="_ _3"></span>em<span class="_ _1"></span>issi<span class="_ _0"></span>vity<span class="_ _0"></span> <span class="_ _3"></span>a<span class="_ _1"></span>re <span class="_ _1"></span>calculated. <span class="_ _1"></span>The<span class="_ _1"></span> <span class="_ _3"></span>outp<span class="_ _0"></span>u<span class="_ _1"></span>t<span class="_ _0"></span> <span class="_ _3"></span>of <span class="_ _5"></span>t<span class="_ _0"></span>hi<span class="_ _0"></span>s <span class="_ _3"></span>algorit<span class="_ _0"></span>hm<span class="_ _1"></span> <span class="_ _4"></span>i<span class="_ _0"></span>ndicat<span class="_ _0"></span>e<span class="_ _1"></span>s <span class="_ _1"></span>a <span class="_ _5"></span>v<span class="_ _0"></span>alue <span class="_ _1"></span>o<span class="_ _1"></span>f <span class="_ _3"></span>about <span class="_ _1"></span>33<span class="_ _1"></span> <span class="_ _1"></span>me<span class="_ _1"></span>t<span class="_ _0"></span>ers. </div><div class="t m0 x1 h3 y9 ff2 fs1 fc0 sc0 ls0 ws0">Also <span class="_ _1"></span>c<span class="_ _1"></span>alculated <span class="_ _3"></span>is <span class="_ _4"></span>the <span class="_ _4"></span>ti<span class="_ _0"></span>me<span class="_ _1"></span> <span class="_ _3"></span>taken <span class="_ _3"></span>b<span class="_ _1"></span>y <span class="_ _3"></span>a <span class="_ _4"></span>Quantu<span class="_ _0"></span>m<span class="_ _1"></span>/wav<span class="_ _0"></span>e <span class="_ _3"></span>to <span class="_ _3"></span>e<span class="_ _3"></span>x<span class="_ _0"></span>it <span class="_ _3"></span>the<span class="_ _1"></span> <span class="_ _3"></span>a<span class="_ _1"></span>t<span class="_ _0"></span>mosphere <span class="_ _1"></span>a<span class="_ _1"></span>fter <span class="_ _3"></span>it <span class="_ _1"></span>h<span class="_ _1"></span>as<span class="_ _1"></span> <span class="_ _3"></span>colli<span class="_ _0"></span>d<span class="_ _1"></span>ed <span class="_ _3"></span>with <span class="_ _3"></span>a<span class="_ _1"></span> </div><div class="t m0 x1 h3 ya ff2 fs1 fc0 sc0 ls0 ws0">molecule <span class="_ _0"></span>of <span class="_ _0"></span>ca<span class="_ _1"></span>rbo<span class="_ _0"></span>n<span class="_ _1"></span> <span class="_ _0"></span>d<span class="_ _1"></span>i<span class="_ _0"></span>o<span class="_ _1"></span>x<span class="_ _6"></span>i<span class="_ _0"></span>de<span class="_ _1"></span> &#8212; <span class="_ _0"></span>whi<span class="_ _0"></span>c<span class="_ _1"></span>h is<span class="_ _0"></span> 5 m<span class="_ _1"></span>il<span class="_ _6"></span>l<span class="_ _1"></span>is<span class="_ _0"></span>econds<span class="_ _1"></span> (<span class="_ _6"></span>m<span class="_ _1"></span>s)<span class="_ _0"></span>. </div><div class="t m0 x1 h2 yb ff1 fs0 fc0 sc0 ls0 ws0">Introduc<span class="_ _1"></span>tion<span class="fs1">: <span class="_ _6"></span> </span></div><div class="t m0 x1 h3 yc ff2 fs1 fc0 sc0 ls0 ws0">Carbon di<span class="_ _0"></span>o<span class="_ _1"></span>x<span class="_ _0"></span>i<span class="_ _0"></span>de<span class="_ _1"></span> (CO</div><div class="t m0 x2 h4 yd ff2 fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3 h3 yc ff2 fs1 fc0 sc0 ls0 ws0">) i<span class="_ _0"></span>s <span class="_ _1"></span>vi<span class="_ _0"></span>tall<span class="_ _1"></span>y<span class="_ _0"></span> important molecu<span class="_ _6"></span>le <span class="_ _1"></span>for life o<span class="_ _0"></span>n<span class="_ _1"></span> Eart<span class="_ _0"></span>h<span class="_ _1"></span>.<span class="_ _0"></span> Ca<span class="_ _1"></span>r<span class="_ _6"></span>b<span class="_ _1"></span>on di<span class="_ _6"></span>o<span class="_ _1"></span>xi<span class="_ _6"></span>de<span class="_ _1"></span> molecules are ta<span class="_ _6"></span>ke<span class="_ _1"></span>n in </div><div class="t m0 x1 h3 ye ff2 fs1 fc0 sc0 ls0 ws0">from the<span class="_ _1"></span> atmosph<span class="_ _0"></span>e<span class="_ _1"></span>r<span class="_ _6"></span>e<span class="_ _1"></span> b<span class="_ _1"></span>y<span class="_ _0"></span> <span class="_ _1"></span>photosynt<span class="_ _6"></span>he<span class="_ _1"></span>ti<span class="_ _6"></span>c<span class="_ _1"></span> o<span class="_ _1"></span>r<span class="_ _0"></span>gan<span class="_ _1"></span>i<span class="_ _0"></span>sms <span class="_ _1"></span>w<span class="_ _0"></span>hich emp<span class="_ _1"></span>l<span class="_ _0"></span>o<span class="_ _1"></span>y<span class="_ _0"></span> <span class="_ _1"></span>t<span class="_ _0"></span>hem <span class="_ _1"></span>to build more <span class="_ _1"></span>co<span class="_ _0"></span>m<span class="_ _1"></span>pl<span class="_ _0"></span>e<span class="_ _3"></span>x<span class="_ _6"></span> substances </div><div class="t m0 x1 h3 yf ff2 fs1 fc0 sc0 ls0 ws0">that are us<span class="_ _0"></span>ed for s<span class="_ _0"></span>toring th<span class="_ _6"></span>e<span class="_ _1"></span> energy <span class="_ _6"></span>tran<span class="_ _1"></span>sferr<span class="_ _6"></span>ed<span class="_ _1"></span> fro<span class="_ _6"></span>m<span class="_ _1"></span> the qu<span class="_ _0"></span>antum/waves <span class="_ _0"></span>to th<span class="_ _0"></span>e <span class="_ _0"></span>m<span class="_ _1"></span>olec<span class="_ _0"></span>ules of chlor<span class="_ _0"></span>ophyll. </div><div class="t m0 x1 h3 y10 ff2 fs1 fc0 sc0 ls0 ws0">The <span class="_ _4"></span>current <span class="_ _4"></span>assess<span class="_ _6"></span>m<span class="_ _1"></span>en<span class="_ _1"></span>t <span class="_ _1"></span>dem<span class="_ _1"></span>ons<span class="_ _0"></span>trates <span class="_ _4"></span>that <span class="_ _4"></span>CO</div><div class="t m0 x4 h4 y11 ff2 fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x5 h3 y10 ff2 fs1 fc0 sc0 ls0 ws0"> <span class="_ _5"></span>i<span class="_ _6"></span>s <span class="_ _5"></span>so <span class="_ _5"></span>well<span class="_ _1"></span> <span class="_ _3"></span>d<span class="_ _1"></span>is<span class="_ _0"></span>perse<span class="_ _0"></span>d<span class="_ _1"></span> <span class="_ _4"></span>thro<span class="_ _0"></span>ughout <span class="_ _4"></span>the <span class="_ _4"></span>bulk <span class="_ _5"></span>volu<span class="_ _0"></span>m<span class="_ _1"></span>e <span class="_ _3"></span>of<span class="_ _1"></span> <span class="_ _4"></span>t<span class="_ _0"></span>h<span class="_ _1"></span>e </div><div class="t m0 x1 h3 y12 ff2 fs1 fc0 sc0 ls0 ws0">at<span class="_ _0"></span>m<span class="_ _1"></span>osp<span class="_ _0"></span>here that<span class="_ _0"></span> i<span class="_ _0"></span>ts<span class="_ _1"></span> <span class="_ _0"></span>e<span class="_ _1"></span>ffici<span class="_ _6"></span>e<span class="_ _1"></span>ncy <span class="_ _0"></span>fo<span class="_ _1"></span>r <span class="_ _0"></span>capturi<span class="_ _6"></span>n<span class="_ _1"></span>g<span class="_ _1"></span> <span class="_ _6"></span>q<span class="_ _1"></span>uantu<span class="_ _6"></span>m<span class="_ _1"></span>/w<span class="_ _0"></span>av<span class="_ _0"></span>e<span class="_ _1"></span>s e<span class="_ _0"></span>m<span class="_ _1"></span>itt<span class="_ _6"></span>e<span class="_ _1"></span>d from <span class="_ _0"></span>the surfac<span class="_ _0"></span>e<span class="_ _1"></span> <span class="_ _0"></span>i<span class="_ _0"></span>s e<span class="_ _1"></span>x<span class="_ _6"></span>tremel<span class="_ _1"></span>y <span class="_ _0"></span>low. <span class="_ _0"></span> </div><div class="t m0 x1 h3 y13 ff2 fs1 fc0 sc0 ls0 ws0">The <span class="_ _7"> </span>o<span class="_ _1"></span>bje<span class="_ _6"></span>c<span class="_ _3"></span>t<span class="_ _0"></span>ives <span class="_ _7"> </span>of<span class="_ _1"></span> <span class="_ _7"> </span>this <span class="_ _7"> </span>didactic <span class="_ _7"> </span>a<span class="_ _1"></span>rti<span class="_ _6"></span>c<span class="_ _1"></span>le <span class="_ _2"> </span>are <span class="_ _7"> </span>to <span class="_ _2"> </span>de<span class="_ _6"></span>m<span class="_ _1"></span>onstrat<span class="_ _6"></span>e<span class="_ _1"></span> <span class="_ _2"> </span>t<span class="_ _6"></span>h<span class="_ _1"></span>at <span class="_ _7"> </span>the<span class="_ _1"></span> <span class="_ _7"> </span>m<span class="_ _1"></span>ean <span class="_"> </span>f<span class="_ _1"></span>ree <span class="_ _7"> </span>path <span class="_ _2"> </span>le<span class="_ _0"></span>ngth <span class="_ _7"> </span>o<span class="_ _1"></span>f <span class="_ _7"> </span>the </div><div class="t m0 x1 h3 y14 ff2 fs1 fc0 sc0 ls0 ws0">Quantu<span class="_ _6"></span>m<span class="_ _1"></span>/wav<span class="_ _0"></span>e<span class="_ _1"></span> <span class="_ _8"> </span>str<span class="_ _0"></span>eam <span class="_ _8"></span>do<span class="_ _0"></span>es <span class="_ _8"> </span>not <span class="_ _8"> </span>si<span class="_ _6"></span>g<span class="_ _1"></span>nifi<span class="_ _6"></span>c<span class="_ _3"></span>antly<span class="_ _0"></span> <span class="_ _8"> </span>cha<span class="_ _0"></span>n<span class="_ _1"></span>ge<span class="_ _0"></span> <span class="_ _8"> </span>the <span class="_ _8"> </span>tota<span class="_ _0"></span>l <span class="_ _8"> </span>em<span class="_ _1"></span>i<span class="_ _6"></span>s<span class="_ _1"></span>si<span class="_ _0"></span>vity<span class="_ _6"></span> <span class="_ _8"> </span>o<span class="_ _1"></span>f <span class="_ _8"> </span>the <span class="_ _8"></span>CO</div><div class="t m0 x6 h4 y15 ff2 fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7 h3 y14 ff2 fs1 fc0 sc0 ls0 ws0"> <span class="_ _8"> </span>and <span class="_ _9"> </span>t<span class="_ _0"></span>hat <span class="_ _8"> </span>th<span class="_ _0"></span>e<span class="_ _1"></span> <span class="_ _8"> </span>ti<span class="_ _6"></span>me<span class="_ _1"></span> </div><div class="t m0 x1 h3 y16 ff2 fs1 fc0 sc0 ls0 ws0">taken <span class="_ _4"></span>by <span class="_ _3"></span>a<span class="_ _1"></span> <span class="_ _3"></span>Quantum<span class="_ _1"></span>/<span class="_ _6"></span>wave <span class="_ _4"></span>to <span class="_ _3"></span>e<span class="_ _1"></span>xit<span class="_ _6"></span> <span class="_ _5"></span>the <span class="_ _4"></span>a<span class="_ _1"></span>t<span class="_ _6"></span>m<span class="_ _1"></span>osphere<span class="_ _0"></span> <span class="_ _5"></span>t<span class="_ _0"></span>o<span class="_ _1"></span> <span class="_ _4"></span>spa<span class="_ _6"></span>c<span class="_ _1"></span>e, <span class="_ _5"></span>wi<span class="_ _6"></span>tho<span class="_ _1"></span>ut <span class="_ _3"></span>coll<span class="_ _1"></span>idi<span class="_ _6"></span>n<span class="_ _1"></span>g <span class="_ _4"></span>wi<span class="_ _0"></span>th <span class="_ _4"></span>a<span class="_ _1"></span> <span class="_ _3"></span>m<span class="_ _1"></span>ol<span class="_ _0"></span>ecule <span class="_ _3"></span>of <span class="_ _4"></span>C<span class="_ _1"></span>O</div><div class="t m0 x8 h4 y17 ff2 fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x9 h3 y16 ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _0"></span> <span class="_ _5"></span>i<span class="_ _0"></span>s </div><div class="t m0 x1 h3 y18 ff2 fs1 fc0 sc0 ls0 ws0">e<span class="_ _1"></span>x<span class="_ _6"></span>trem<span class="_ _1"></span>ely<span class="_ _0"></span> low. </div><div class="t m0 x1 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">Methodology </div><div class="t m0 x1 h3 y1a ff2 fs1 fc0 sc0 ls0 ws0">I<span class="_ _0"></span> <span class="_ _3"></span>h<span class="_ _1"></span>ave <span class="_ _4"></span>i<span class="_ _6"></span>n<span class="_ _1"></span>troduced <span class="_ _3"></span>the <span class="_ _1"></span>m<span class="_ _1"></span>olecu<span class="_ _6"></span>la<span class="_ _1"></span>r <span class="_ _3"></span>cross <span class="_ _3"></span>secti<span class="_ _6"></span>o<span class="_ _1"></span>n <span class="_ _3"></span>of <span class="_ _3"></span>the <span class="_ _4"></span>carb<span class="_ _0"></span>o<span class="_ _1"></span>n <span class="_ _1"></span>dioxi<span class="_ _6"></span>d<span class="_ _1"></span>e <span class="_ _4"></span><span class="ff3">&#963;</span></div><div class="t m0 xa h5 y1b ff1 fs2 fc0 sc0 ls0 ws0">CO</div><div class="t m0 xb h6 y1c ff1 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 xc h5 y1b ff1 fs2 fc0 sc0 ls0 ws0">mol</div><div class="t m0 xd h7 y1a ff2 fs1 fc0 sc0 ls0 ws0">,<span class="_ _0"></span> <span class="_ _5"></span>i<span class="_ _0"></span>n <span class="_ _4"></span>whic<span class="_ _0"></span>h<span class="_ _1"></span> <span class="_ _1"></span>ca<span class="_ _1"></span>se <span class="_ _3"></span>a <span class="_ _3"></span>value <span class="_ _3"></span>for <span class="_ _1"></span><span class="ff1">n</span>, </div><div class="t m0 x1 h3 y1d ff2 fs1 fc0 sc0 ls0 ws0">calculat<span class="_ _6"></span>e<span class="_ _1"></span>d<span class="_ _1"></span> <span class="_ _8"> </span>fr<span class="_ _0"></span>om <span class="_ _8"> </span>the <span class="_ _a"></span>molar <span class="_ _a"> </span>den<span class="_ _1"></span>si<span class="_ _0"></span>ty <span class="_ _a"></span>o<span class="_ _1"></span>f <span class="_ _8"> </span>the <span class="_ _a"> </span>ca<span class="_ _1"></span>r<span class="_ _6"></span>b<span class="_ _1"></span>on <span class="_ _8"> </span>dio<span class="_ _1"></span>x<span class="_ _6"></span>ide <span class="_ _a"> </span>an<span class="_ _1"></span>d <span class="_ _8"> </span>t<span class="_ _6"></span>h<span class="_ _1"></span>e<span class="_ _1"></span> <span class="_ _a"> </span>number <span class="_ _a"></span>of <span class="_ _a"> </span>m<span class="_ _1"></span>olecu<span class="_ _0"></span>les <span class="_ _a"> </span>pe<span class="_ _1"></span>r <span class="_ _a"></span>m<span class="_ _1"></span>ol <span class="_ _5"></span>o<span class="_ _1"></span>f <span class="_ _9"> </span>t<span class="_ _6"></span>h<span class="_ _1"></span>e </div><div class="t m0 x1 h3 y1e ff2 fs1 fc0 sc0 ls0 ws0">substan<span class="_ _0"></span>ce was <span class="_ _0"></span>demanded to <span class="_ _6"></span>m<span class="_ _1"></span>ak<span class="_ _0"></span>e<span class="_ _1"></span> t<span class="_ _6"></span>h<span class="_ _1"></span>e <span class="_ _0"></span>mo<span class="_ _1"></span>st <span class="_ _0"></span>accurat<span class="_ _6"></span>e<span class="_ _1"></span> so<span class="_ _0"></span>l<span class="_ _1"></span>uti<span class="_ _0"></span>on<span class="_ _1"></span>.<span class="_ _0"></span> </div><div class="t m0 x1 h8 y1f ff4 fs4 fc0 sc0 ls0 ws0">&#945;<span class="ff5"> = (</span>&#949;<span class="ff5">/<span class="_ _1"></span></span>&#949;b<span class="ff5">)<span class="_ _0"></span> = <span class="ff4">&#949;</span> </span></div><div class="t m0 x1 h3 y20 ff2 fs1 fc0 sc0 ls0 ws0"> </div><div class="t m0 x1 h2 y21 ff1 fs0 fc0 sc0 ls0 ws0">Ana<span class="_ _1"></span>l<span class="_ _6"></span>y<span class="_ _1"></span>sis </div><div class="t m0 x1 h3 y22 ff2 fs1 fc0 sc0 ls0 ws0">Preli<span class="_ _6"></span>m<span class="_ _3"></span>inary<span class="_ _0"></span> Data:<span class="_ _0"></span> </div><div class="t m0 x1 h3 y23 ff2 fs1 fc0 sc0 ls0 ws0">The densi<span class="_ _6"></span>ty of the gas <span class="_ _0"></span>ca<span class="_ _1"></span>rbo<span class="_ _0"></span>n dio<span class="_ _1"></span>x<span class="_ _6"></span>ide i<span class="_ _6"></span>n <span class="_ _1"></span>the<span class="_ _1"></span> <span class="_ _0"></span>a<span class="_ _1"></span>t<span class="_ _6"></span>mo<span class="_ _1"></span>s<span class="_ _6"></span>p<span class="_ _1"></span>her<span class="_ _0"></span>e i<span class="_ _0"></span>s obtained by <span class="_ _0"></span>the followi<span class="_ _6"></span>ng<span class="_ _1"></span> for<span class="_ _0"></span>m<span class="_ _1"></span>ul<span class="_ _0"></span>a<span class="_ _1"></span>:<span class="_ _0"></span> </div><div class="t m0 x1 h9 y24 ff3 fs1 fc0 sc0 ls0 ws0">&#961;</div><div class="t m0 xe h5 y25 ff1 fs2 fc0 sc0 ls0 ws0">CO</div><div class="t m0 xf h6 y26 ff1 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10 h7 y24 ff2 fs1 fc0 sc0 ls0 ws0"> = (<span class="_ _0"></span>1<span class="_ _1"></span>2.<span class="_ _0"></span>187<span class="_ _1"></span> *<span class="_ _6"></span> <span class="ff1">Molar m<span class="_ _0"></span>as<span class="_ _1"></span>s<span class="ff2"> <span class="_ _0"></span>of<span class="_ _1"></span> <span class="_ _6"></span>C<span class="_ _1"></span>O</span></span></div><div class="t m0 x11 h4 y25 ff2 fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x12 h7 y24 ff2 fs1 fc0 sc0 ls0 ws0"> <span class="_ _0"></span>* <span class="ff1">volumetri<span class="_ _0"></span>c fraction of<span class="_ _0"></span> CO</span></div><div class="t m0 x13 h5 y25 ff1 fs2 fc0 sc0 ls0 ws0">2</div><div class="t m0 x14 h7 y24 ff2 fs1 fc0 sc0 ls0 ws0">) &#247; <span class="_ _6"></span>(276.69 <span class="ff1">K</span>) = <span class="_ _0"></span>756 <span class="ff1">m<span class="_ _6"></span>g<span class="_ _1"></span>/m<span class="_ _6"></span>^3<span class="_ _1"></span><span class="ff2">. </span></span></div><div class="t m0 x15 h4 y27 ff2 fs2 fc0 sc0 ls0 ws0">7 </div><div class="t m0 x1 h3 y28 ff2 fs1 fc0 sc0 ls0 ws0">Where <span class="_ _3"></span>1<span class="_ _1"></span>2.187 <span class="_ _4"></span>is <span class="_ _5"></span>the<span class="_ _1"></span> <span class="_ _3"></span>m<span class="_ _1"></span>olar<span class="_ _0"></span> <span class="_ _5"></span>mass <span class="_ _5"></span>of <span class="_ _5"></span>ele<span class="_ _0"></span>m<span class="_ _1"></span>ent<span class="_ _0"></span>al <span class="_ _4"></span>c<span class="_ _1"></span>arb<span class="_ _0"></span>on, <span class="_ _3"></span>m<span class="_ _1"></span>olar <span class="_ _5"></span>mass <span class="_ _4"></span>of <span class="_ _4"></span>c<span class="_ _1"></span>arbon <span class="_ _5"></span>dioxi<span class="_ _6"></span>de<span class="_ _1"></span> <span class="_ _5"></span>i<span class="_ _0"></span>s <span class="_ _5"></span>4<span class="_ _1"></span>4.0<span class="_ _0"></span>1<span class="_ _1"></span>,<span class="_ _0"></span> <span class="_ _5"></span>and <span class="_ _5"></span>the </div><div class="t m0 x1 h3 y29 ff2 fs1 fc0 sc0 ls0 ws0">v<span class="_ _0"></span>o<span class="_ _1"></span>lumetric fr<span class="_ _6"></span>ac<span class="_ _1"></span>ti<span class="_ _6"></span>o<span class="_ _1"></span>n of <span class="_ _0"></span>CO2 is <span class="_ _0"></span>390 ppmV <span class="_ _6"></span>a<span class="_ _1"></span>nd<span class="_ _1"></span> <span class="_ _0"></span>276.6<span class="_ _0"></span>9<span class="_ _1"></span> K <span class="_ _6"></span>is for temper<span class="_ _6"></span>a<span class="_ _1"></span>ture.<span class="_ _0"></span> </div><div class="t m0 x1 h3 y2a ff2 fs1 fc0 sc0 ls0 ws0">To<span class="_ _1"></span> <span class="_ _3"></span>intro<span class="_ _0"></span>duce <span class="_ _3"></span>this <span class="_ _3"></span>value<span class="_ _1"></span> <span class="_ _3"></span>into <span class="_ _3"></span>the <span class="_ _4"></span>formula <span class="_ _3"></span>that <span class="_ _4"></span>I<span class="_ _6"></span> <span class="_ _4"></span>will <span class="_ _4"></span>de<span class="_ _1"></span>s<span class="_ _6"></span>c<span class="_ _3"></span>ri<span class="_ _6"></span>be<span class="_ _1"></span> <span class="_ _3"></span>below, <span class="_ _4"></span>I<span class="_ _6"></span> <span class="_ _4"></span>m<span class="_ _1"></span>ade <span class="_ _3"></span>use <span class="_ _4"></span>of <span class="_ _3"></span>the <span class="_ _4"></span>followi<span class="_ _0"></span>n<span class="_ _1"></span>g <span class="_ _4"></span>i<span class="_ _6"></span>mpo<span class="_ _1"></span>rtant </div><div class="t m0 x1 h3 y2b ff2 fs1 fc0 sc0 ls0 ws0">magnitu<span class="_ _0"></span>des: </div></div><div class="pi" data-data='{"ctm":[1.611639,0.000000,0.000000,1.611639,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐