• 一拾五
    了解作者
  • matlab
    开发工具
  • 3KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 0
    下载次数
  • 2021-03-26 16:07
    上传日期
JC本构模型预测曲线,参数为实验所求准确参数。
JC2.zip
  • JC2.m
    8KB
内容介绍
clear all;clc figure; x=[6.23E-4 6.24E-4 6.49E-4 7.76E-4 9.63E-4 0.00115 0.00136 0.00169 0.00211 0.00258 0.00315 0.0039 0.00472 0.00558 0.00661 0.00776 0.00894 0.01017 0.01146 0.01279 0.01416 0.01555 0.01694 0.0183 0.01964 0.02111 0.02268 0.02421 0.02585 0.02759 0.02934 0.03107 0.03297 0.03501 0.03696 0.03899 0.04107 0.04316 0.04527 0.0474 0.04949 0.05149 0.05346 0.05542 0.05745 0.0595 0.0614 0.06311 0.06472 0.0661 0.06736 0.06868 0.07004 0.07159 0.07318 0.07476 0.07641 0.07798 0.07943 0.08076 0.08215 0.08354 0.08485 0.08606 0.08741 0.08884 0.09022 0.09173 0.09319 0.0947 0.09617 0.09761 0.09908 0.10057 0.10205 0.10352 0.10496 0.10627 0.1076 0.10898 0.11041 0.11177 0.11303 0.11428 0.11561 0.11694 0.1182 0.1194 0.12065 0.12201 0.1233 0.12469 0.12619 0.12777 0.1293 0.13079 0.1323 0.13366 0.13481 0.13587 0.13694 0.13795 0.13909 0.14031 0.14162 0.14306 0.14445 0.14587 0.14714 0.1484 0.14968 0.15075 0.15184 0.15285 0.15386 0.15486 0.15584 0.15695 0.15813 0.15929 0.16049 0.16179 0.16306 0.16445 0.16576 0.16698 0.16832 0.16977 0.17113 0.17243 0.17379 0.17523 0.17658 0.17788 0.17929 0.18071 0.18213 0.18358 0.18505 0.18645 0.18781 0.18922 0.19064 0.19213 0.19364 0.19516 0.19673 0.1983 0.19986 0.20124 0.20264 0.20395 0.20542 0.20717 0.20897 0.21089 0.2128 0.21464 0.21633 0.21794 0.21954 0.22094 0.22228 0.22369 0.22504 0.22635 0.22764 0.22904 0.23056 0.23208 0.2336 0.23511 0.23668 0.23828 0.23985 0.24146 0.24307 0.24472 0.2464 0.24808 0.2498 0.25147 0.25313 0.25483 0.25647 0.25818 0.25994 0.26155 0.26325 0.26511 0.2668 0.26838 0.27018 0.27211 0.27412 0.27613 0.27795 0.27965 0.28122 0.28262 0.284 0.28533 0.28675 0.2885 0.2905 0.29264 0.29474 0.2967 0.2986 0.30042 0.30209 0.30368 0.30517 0.30675 0.30819 0.30961 0.31107 0.31262 0.31428 0.31593 0.31757 0.31929 0.32099 0.32278 0.32456 0.32637 0.32811 0.32988 0.33166 0.33347 0.33529 0.3371 0.33888 0.34059 0.34237 0.34424 0.34608 0.34789 0.3497 0.35157 0.35351 0.35535 0.3572 0.35903 0.36095 0.3629 0.36481 0.36676 0.36863 0.37052 0.37244 0.37432 0.37605 0.3779 0.37982 0.38162 0.38347 0.38537 0.38731 0.38928 0.39131 0.39333 0.39529 0.39728 0.39923 0.40121 0.40312 0.40507 0.4071 0.4091 0.41117 0.41318 0.4151 0.4171 0.41908 0.42098 0.42307 0.42508 0.42707 0.42914 0.43119 0.43334 0.43538 0.43732 0.43933 0.44147 0.44346 0.44555 0.44766 0.44969 0.45193 0.45396 0.45596 0.45812 0.46029 0.46245 0.46457 0.4667 0.46886 0.47107 0.47319 0.47536 0.47753 0.47969 0.48186 0.48403 0.48622 0.4884 0.49059 0.4928 0.49513 0.49732 0.49956 0.5018 0.50405 0.50637 0.50867 0.51097 0.51327 0.51557 0.51785 0.52014 0.52247 0.52476 0.52715 0.52947 0.53178 0.53404 0.53641 0.53875 0.54124 0.54362 0.54591 0.54842 0.55071 0.55298 0.55539 0.55795 0.5603 0.56264 0.56502 0.56734 0.56985 0.57232 0.57472 0.5771 0.57959 0.58201 0.58442 0.5869 0.58932 0.59182 0.59433 0.59682 0.59942 0.6019 0.60448 0.60698 0.60953 0.61202 0.61451 0.61705 0.61966 0.62232 0.62497 0.6275 0.63003 0.63268 0.63523 0.63787 0.64057 0.64321 0.64573 0.64833 0.65117 0.65385 0.65649 0.65915 0.66182 0.66449 0.66727 0.67002 0.6727 0.67535 0.67811 0.68088 0.6836 0.68636 0.68906 0.69183 0.69453 0.69724 0.7 0.70281 0.70557 0.70828 0.711 0.71372 0.71655 0.71926 0.72196 0.72481 0.72757 0.73026 0.73307 0.73593 0.73877 0.74154 0.74421 0.74705 0.75007 0.75293 0.75561 0.75852 0.76151 0.76431 0.76725 0.77011 0.77301 0.7758 0.77856 0.78146 0.78421 0.78712 0.79003 0.79291 0.79582 0.79865 0.80151 0.80447]; y=[7.69589 9.59646 11.70741 13.78165 15.78551 17.82755 19.92844 21.96481 25.01914 28.14478 31.45333 35.01667 38.72163 42.35147 45.7442 48.79673 51.4534 53.76073 55.84793 57.76833 59.45087 60.86107 62.08333 63.23787 64.34927 65.3368 66.15007 66.8988 67.51213 68.06787 68.541 68.92993 69.26507 69.53833 69.76973 69.96573 70.0888 70.2258 70.33387 70.31553 70.19953 70.0288 69.85113 69.7712 69.6722 69.54193 69.39273 69.36033 69.36587 69.35687 69.31373 69.28767 69.21827 69.15907 69.18447 69.25653 69.36673 69.44167 69.503 69.56027 69.61507 69.67233 69.615 69.54327 69.4766 69.42253 69.39214 69.35908 69.32825 69.307 69.2889 69.25344 69.18762 69.024 68.944 68.87 68.778 68.641 68.512 68.506 68.54703 68.56274 68.57629 68.58829 68.57945 68.47097 68.46224 68.35906 68.37206 68.29995 68.23459 68.27095 68.30617 68.33878 68.3675 68.39174 68.41105 68.42875 68.45174 68.47983 68.51102 68.54517 68.5812 68.61754 68.6528 68.68599 68.71657 68.74414 68.76813 68.7878 68.80471 68.82199 68.84081 68.86096 68.88233 68.90502 68.92878 68.95541 68.98795 69.02111 69.05043 69.07741 69.1032 69.12858 69.15351 69.17795 69.20196 69.22542 69.24825 69.27291 69.303 69.33761 69.37333 69.40897 69.4447 69.48057 69.5165 69.55255 69.58705 69.61341 69.62958 69.63979 69.64736 69.65437 69.66209 69.67176 69.68449 69.70117 69.72089 69.73768 69.74779 69.75242 69.75396 69.75473 69.75606 69.75929 69.76562 69.77567 69.79013 69.80959 69.83214 69.85478 69.87651 69.89738 69.91736 69.93644 69.95478 69.97099 69.9783 69.97614 69.97512 69.98059 69.99072 70.00357 70.01805 70.03401 70.05079 70.06779 70.08522 70.10081 70.1107 70.11547 70.11829 70.12026 70.12137 70.1216 70.12095 70.11927 70.11805 70.12376 70.13849 70.15835 70.1799 70.20082 70.21967 70.23527 70.24645 70.25238 70.25389 70.25686 70.26516 70.27798 70.29309 70.308 70.32123 70.33167 70.33814 70.34001 70.33675 70.32754 70.31408 70.29962 70.28535 70.27119 70.25707 70.24301 70.22911 70.21536 70.20195 70.18747 70.16541 70.13365 70.09616 70.05641 70.01797 69.98265 69.94986 69.91973 69.8938 69.87327 69.85892 69.84902 69.84037 69.83185 69.82362 69.81571 69.8081 69.80085 69.79409 69.78774 69.78178 69.77612 69.77082 69.76595 69.76145 69.75624 69.74989 69.74409 69.73989 69.73644 69.73299 69.72952 69.72612 69.72284 69.7196 69.7152 69.7094 69.70409 69.70022 69.69684 69.69331 69.68963 69.68587 69.68206 69.67818 69.67429 69.67034 69.66631 69.66221 69.65802 69.65367 69.64924 69.64478 69.64028 69.63457 69.62731 69.62133 69.61803 69.61482 69.61003 69.60449 69.59897 69.59345 69.58786 69.5821 69.57619 69.57008 69.56372 69.55705 69.55012 69.54299 69.53573 69.52834 69.52065 69.51252 69.505 69.49846 69.49121 69.4821 69.47189 69.46122 69.45013 69.43855 69.42652 69.41399 69.40212 69.39131 69.37977 69.36647 69.35231 69.33786 69.32309 69.30802 69.29271 69.27722 69.26164 69.24597 69.23021 69.21438 69.19861 69.18285 69.16709 69.15131 69.13549 69.11977 69.10428 69.08795 69.07032 69.05321 69.0378 69.02337 69.00931 68.99569 68.98243 68.9695 68.95696 68.94486 68.93321 68.92206 68.91129 68.9008 68.89069 68.88102 68.87166 68.86262 68.85388 68.84542 68.8372 68.82923 68.82152 68.81384 68.80622 68.79865 68.7911 68.78358 68.77606 68.76844 68.76073 68.75296 68.74517 68.73737 68.72951 68.72147 68.71322 68.7049 68.69652 68.68797 68.67916 68.67008 68.66078 68.65128 68.64167 68.63193 68.62204 68.61199 68.6018 68.59152 68.58113 68.57061 68.56008 68.54948 68.53886 68.5283 68.51778 68.50731 68.49688 68.48652 68.4763 68.46625 68.45643 68.44679 68.43735 68.42812 68.4191 68.41029 68.40165 68.3932 68.38494 68.37698 68.36939 68.36205 68.35494 68.34807 68.34142 68.335 68.32887 68.323 68.31737 68.31197 68.30688 68.30209 68.29766 68.29358 68.28986 68.28659 68.28379 68.28152 68.27975 68.27846 68.27771 68.27746 68.27765 68.2781
评论
    相关推荐
    • 黄永刚晶体塑性模型.zip
      构建晶体塑性模型,晶粒之间的动力学关系,可以预测晶体取向、晶粒形态、织
    • 子空间模型辨识方法综述.rar
      子空间辨识法的文章,详细介绍了子空间辨识法的步骤和用法以及三种算法的区别。
    • 神经网络模型及其MATLAB仿真.zip
      用Matlab对人工神经网络的分析及应用,并附有代码
    • ARMA相关模型及其应用.rar
      时间序列分析是数理统计中的一个重要分支,用随机过程理论和数理统 计方法研究随机数据序列的规律。时间序列分析提供了一套具有科学依据的 ...和复杂特性,从而达到预测其发展趋势并进行必要的控制的目的。
    • 不同本构.rar
      传统桥梁结构中,适用于钢管混凝土桁梁结构受力分析。
    • 本构模型matlab代码-BIOMD0000000314:BIOMD0000000314
      本构模型matlab代码BIOMD0000000314:Raia2010_IL13_L1236 安装 下载此存储库,并使用distutils安装 python setup.py install 或者,使用pip安装 pip install git+https://github.com/biomodels/BIOMD0000000314.git...
    • 本构模型matlab代码-BIOMD0000000313:BIOMD0000000313
      本构模型matlab代码BIOMD0000000313:Raia2010_IL13_MedB1 安装 下载此存储库,并使用distutils安装 python setup.py install 或者,使用pip安装 pip install git+https://github.com/biomodels/BIOMD0000000313.git...
    • AlloType:预测调节类型的方法
      AlloType-预测调节类型的粗粒模型 安装指南 首先检查您是否拥有CMake版本3.1.0或更高版本。 检查是否已编译Boost和Eigen3。 对于Ubuntu,可以通过执行以下命令来安装基本组件: sudo apt-get install cmake ...
    • GM(1,1)的严格微分拟合法及应用.rar
      GM(1,1)模型的严格微分拟合法及应用,彻 底 根 除了现 有灰 色微 分拟 合 法 存在 的固 有误 差 , 拓 广 了 的应 用 范围 , 一且计 算方 法 简单 , 计算工 作量 小 于 灰 色微 分拟 合 法
    • GaussDB_100_1.0.1-DATABASE-REDHAT-64bit.tar.gz
      guassdb100在redhat上安装包,单机部署的包,安装步骤请看我的文中介绍,经过大量实验搭建总结出来的文档