# iwasobi.zip

• zhjhappy
了解作者
• matlab
开发工具
• 19KB
文件大小
• zip
文件格式
• 0
收藏次数
• 1 积分
下载积分
• 1
下载次数
• 2021-03-28 22:23
上传日期

iwasobi.zip
• iwasobi
• iwasobi.m
11.9KB
• mixtures.mat
14.5KB

function [W,Winit,ISR,signals]= iwasobi(X,AR_order,rmax,eps0) % % implements algorithm WASOBI for blind source separation of % AR sources in a fast way, allowing separation up to 100 sources % in the running time of the order of tens of seconds. % % INPUT: x .... input data matrix d x N % d .... dimension of the data % N .... length of the data % ARmax .. maximum AR order of the separated sources % rmax ... a constant that may help to stabilize the algorithm. % it has the meaning of maximum magnitude of poles of the % AR sources. The choice rmax=1 means that no stabilization % is applied. The choice rmax=0.99 may lead to more stable % results. % eps0 ... machine dependent constant to control condition number % of weight matrices % % OUTPUT: W ...... estimated de-mixing matrix % Winit ........ initial estimate of the matrix obtained by UWAJD % ISR .......... estimated ISR matrix which represents approximate accuracy % of the separation provided that there is no additive % noise in the model. % signals....... separated signals % % Code by Petr Tichavsky, using inputs from Eran Doron % Last update: July 2008 % if nargin<4 eps0=5.0e-7; end if nargin<3 rmax=0.99; end num_of_iterations = 3; [d N]=size(X); Xmean=mean(X,2); X=X-Xmean*ones(1,N); %%%%%%%%% removing the sample mean T=length(X(1,:))-AR_order; C0=corr_est(X,T,AR_order); for k=2:AR_order+1 ik=d*(k-1); C0(:,ik+1:ik+d)=0.5*(C0(:,ik+1:ik+d)+C0(:,ik+1:ik+d)'); end %%%%%%%%% symmetrization [Winit Ms] = uwedge(C0,20); %%% compute initial separation %%% using uniform weights %conver %t1 = cputime-time_start; W=Winit; for in = 1:num_of_iterations [H ARC]=weights(Ms,rmax,eps0); [W Ms]=wedge(C0,H,W,5); end ISR=CRLB4(ARC)/N; %t1 = [t1 cputime-time_start]; signals=W*X+(W*Xmean)*ones(1,N); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% of IWASOBI function G=THinv5(phi,K,M,eps) % %%%% Implements fast (complexity O(M*K^2)) %%%% computation of the following piece of code: % %C=[]; %for im=1:M % A=toeplitz(phi(1:K,im),phi(1:K,im)')+hankel(phi(1:K,im),phi(K:2*K-1,im)')+eps(im)*eye(K); % C=[C inv(A)]; %end % % DEFAULT PARAMETERS: M=2; phi=randn(2*K-1,M); eps=randn(1,2); % SIZE of phi SHOULD BE (2*K-1,M). % SIZE of eps SHOULD BE (1,M). phi(2*K,1:M)=0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% almold=2*phi(1,:)+eps; C0=1./almold; x1=zeros(K,M); x2=x1; x3=x1; x4=x1; x1(1,:)=C0; x2(1,:)=C0; x3(1,:)=-C0.*phi(2,:); x4(1,:)=-2*C0.*phi(2,:); x4old=[]; lalold=2*phi(2,:)./almold; for k=1:K-1 f2o=phi(k+1:-1:2,:)+phi(k+1:2*k,:); alm=sum(f2o.*x4(1:k,:),1)+phi(1,:)+eps+phi(2*k+1,:); a0=zeros(1,M); if k<K-1 a0=phi(k+2,:); end gam1=sum(f2o.*x1(1:k,:),1); gam3=sum(f2o.*x3(1:k,:),1)+a0+phi(k,:); x4(k+1,:)=ones(1,M); b1m=sum(([phi(2:k+1,:); a0]+[zeros(1,M); phi(1:k,:)]).*x4(1:k+1,:)); b2m=sum(([a0; phi(k+1:-1:2,:)]+phi(k+2:2*k+2,:)).*x4(1:k+1,:)); latemp=b2m./alm; b2m=latemp-lalold; lalold=latemp; bom=alm./almold; ok=ones(k+1,1); x2(1:k+1,:)=x4(1:k+1,:).*(ok*(1./alm)); x1(1:k+1,:)=[x1(1:k,:); zeros(1,M)]-(ok*gam1).*x2(1:k+1,:); x3(1:k+1,:)=[x3(1:k,:); zeros(1,M)]-(ok*gam3).*x2(1:k+1,:); x4temp=x4(1:k,:); x4(1:k+1,:)=[zeros(1,M); x4(1:k,:)]+[x4(2:k,:); ones(1,M); zeros(1,M)]... -(ok*bom).*[x4old; ones(1,M); zeros(1,M)]... -(ok*b2m).*x4(1:k+1,:)-(ok*b1m).*x1(1:k+1,:)-(ok*x4(1,:)).*x3(1:k+1,:); x4old=x4temp; almold=alm; end MK=M*K; G=zeros(K,MK); G(:,1:K:MK)=x1; clast=zeros(K,M); f1=[phi(2:K,:); zeros(1,M)]+[zeros(1,M); phi(1:K-1,:)]; f2=[zeros(1,M); phi(K:-1:2,:)]+[phi(K+1:2*K-1,:); zeros(1,M)]; for k=2:K ck=G(:,k-1:K:MK); G(:,k:K:MK)=[ck(2:K,:); zeros(1,M)]+[zeros(1,M); ck(1:K-1,:)]... -clast-(ok*sum(f1.*ck)).*x1-(ok*sum(f2.*ck)).*x2-(ok*ck(1,:)).*x3... -(ok*ck(K,:)).*x4; clast=ck; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% of THinv5 function [AR,sigmy]=armodel(R,rmax) % % to compute AR coefficients of the sources given covariance functions % but if the zeros have magnitude > rmax, the zeros are pushed back. % [M,d]=size(R); AR = zeros(M,d); for id=1:d AR(:,id)=[1; -toeplitz(R(1:M-1,id),R(1:M-1,id)')\R(2:M,id)]; v=roots(AR(:,id)); %%% mimicks the matlab function "polystab" % v1(1,id)=max(abs(v)); vs=0.5*(sign(abs(v)-1)+1); v=(1-vs).*v+vs./conj(v); vmax=max(abs(v)); % v2(1,id)=max(abs(v)); if vmax>rmax v=v*rmax/vmax; end AR(:,id)=real(poly(v)'); %%% reconstructs back the covariance function end Rs=ar2r(AR); sigmy=R(1,:)./Rs(1,:); % [v1; v2] end %%%%%%%%%%%%%%%%%%%%%%% of armodel function [ r ] = ar2r( a ) %%%%% %%%%% Computes covariance function of AR processes from %%%%% the autoregressive coefficients using an inverse Schur algorithm %%%%% and an inverse Levinson algorithm (for one column it is equivalent to %%%%% "rlevinson.m" in matlab) % if (size(a,1)==1) a=a'; % chci to jako sloupce end [p m] = size(a); % pocet vektoru koef.AR modelu alfa = a; K=zeros(p,m); p = p-1; for n=p:-1:1 K(n,:) = -a(n+1,:); for k=1:n-1 alfa(k+1,:) = (a(k+1,:)+K(n,:).*a(n-k+1,:))./(1-K(n,:).^2); end a=alfa; end % r = zeros(p+1,m); r(1,:) = 1./prod(1-K.^2); f = r; b=f; for k=1:p for n=k:-1:1 K_n = K(n,:); f(n,:)=f(n+1,:)+K_n.*b(k-n+1,:); b(k-n+1,:)=-K_n.*f(n+1,:)+(1-K_n.^2).*b(k-n+1,:); end b(k+1,:)=f(1,:); r(k+1,:) = f(1,:); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% of ar2r %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function R_est=corr_est(x,T,q) % NumOfSources = size(x,1); R_est = zeros(NumOfSources,(q+1)*NumOfSources); for index=1:q+1 R_est(:,NumOfSources*(index-1) + (1:NumOfSources)) = 1/T*(x(:,1:T)*x(:,index:T+index-1)'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% of corr_est % %xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx function [H ARC]=weights(Ms,rmax,eps0) % [d,Ld]=size(Ms); L=floor(Ld/d); d2=d*(d-1)/2; R=zeros(L,d); for index=1:L id=(index-1)*d; R(index,:)=diag(Ms(:,id+1:id+d)).'; %%% columns of R will contain %%% covariance function of the separated components end % [ARC,sigmy]=armodel(R,rmax); %%% compute AR models of estimated components % AR3=zeros(2*L-1,d2); ll = 1; for i=2:d for k=1:i-1 AR3(:,ll) = conv(ARC(:,i),ARC(:,k)); ll = ll+1; % AR3=[AR3 conv(AR(:,i),AR(:,k))]; end end phi=ar2r(AR3); %%%%%%%%%% functions phi to evaluate CVinv H=THinv5(phi,L,d2,eps0*phi(1,:)); %%%% to compute inversions of CV %%%% It has dimension zeros(M,M*d2). im=1; for i=2:d for k=1:i-1 fact=1/(sigmy(1,i)*sigmy(1,k)); imm=(im-1)*L; H(:,imm+1:imm+L)=H(:,imm+1:imm+L)*fact; im=im+1; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% of weights function ISR = CRLB4(ARC) % % CRLB4(ARC) generates the CRLB for gain matrix elements (in term % of ISR) for blind separation of K Gaussian autoregressive sources % whose AR coefficients (of the length M, where M-1 is the AR order) % are stored as columns in matrix ARC. [M K]=size(ARC); Rs=ar2r(ARC); sum_Rs_s=zeros(K,K); for s=0:M-1 for t=0:M-1 sum_Rs_s=sum_Rs_s+(ARC(s+1,:).*ARC(t+1,:))'*Rs(abs(s-t)+1,:); end end denom=sum_Rs_s'.*sum_Rs_s+eye(K)-1; ISR=sum_Rs_s'./denom.*(ones(K,1)*Rs(1,:))./(Rs(1,:)'*ones(1,K)); ISR(eye(K)==1)=0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% of CRLB4 function [W_est Ms crit]

相关推荐
• 视频会议系统.rar
一套商用的视频会议程序(cool)。
• 视频捕获-mpeg4压缩-网络传送源码(VC 6.0).rar
视频捕获-mpeg4压缩-网络传送源码(VC 6.0).rar
• VOIP_SRC_ALL.rar
搞VOIP的一些原代码，包括MGCP,SIP,RTP/TRCP,SRTP(加密RTP)...等源码，参考价值无限！！这可是我所有的收藏阿，我都献给大家了:=)
• mpeg.zip
MPEG-2和MP3编解码
• live.2008.01.04.tar.rar
网络直播源代码，支持RTSP、RTP,支持的格式包括MPEG-1/2/4，MP3，H264等，功能强大，流媒体开发必须。
• handvu-beta3.tar.gz
结合摄像头使用，用于手部位置跟踪，精准度非常高，另可以识别六种手势。其手位跟踪模块可作为手势识别软件的一个组成部分，内含非常详细的说明文档。编译该代码，需要 OpenCV 0.97 或更高版本的支持。在Windows下的编译顺序为cubicles工程、handvu工程，之后根据视频数据来源要求编译其他代码。建议使用 Visual Studio 2003 ，如果需要编译 DirectX 相关模块，则请安装 DirectX SDK 9.0 或更高版本。
• encore50src.zip
mpeg4/divx编码程序，多谢qing_lee
• 语音识别.rar
老师布置的一个project，里面有题目和源程序，能够识别十个数字。
• rtsp-1.0.1.tar.gz
RTSP的实现代码，并附有RTSP、RTP、RTCP等协议的文档！
• mpge4.rar
一组关于流媒体、Mpeg4的技术文档，可供做流媒体的朋友参考。