<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/6258ebb0be9ad24cfaaed857/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6258ebb0be9ad24cfaaed857/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Fundamental Optics</div><div class="t m0 x1 h2 y2 ff1 fs0 fc1 sc0 ls0 ws0">Gaussian Beam Optics</div><div class="t m0 x1 h2 y3 ff1 fs0 fc1 sc0 ls0 ws0">Optical Specifications</div><div class="t m0 x1 h2 y4 ff1 fs0 fc1 sc0 ls0 ws0">Material Properties</div><div class="t m0 x1 h2 y5 ff1 fs0 fc1 sc0 ls0 ws0">Optical Coatings</div><div class="t m1 x2 h3 y6 ff2 fs1 fc1 sc0 ls1 ws1">1.1<span class="_ _0"> </span><span class="ff3 fs2 ls2">1</span></div><div class="t m1 x3 h4 y7 ff4 fs3 fc1 sc0 ls3 ws2">Fundamental Optics</div><div class="t m1 x4 h5 y8 ff5 fs4 fc1 sc0 ls2 ws1">1</div><div class="t m1 x5 h6 y9 ff2 fs1 fc1 sc0 ls1 ws1">Introduction<span class="_ _1"> </span><span class="ff5 ls4">1.2</span></div><div class="t m1 x5 h6 ya ff2 fs1 fc1 sc0 ls5 ws3">Paraxial Formulas<span class="_ _2"> </span><span class="ff5 ls4 ws1">1.3</span></div><div class="t m1 x5 h6 yb ff2 fs1 fc1 sc0 ls5 ws3">Imaging Properties of Lens Systems<span class="_ _3"> </span><span class="ff5 ls4 ws1">1.6</span></div><div class="t m1 x5 h6 yc ff2 fs1 fc1 sc0 ls5 ws3">Lens Combination Formulas<span class="_ _4"> </span><span class="ff5 ls4 ws1">1.8</span></div><div class="t m1 x5 h6 yd ff2 fs1 fc1 sc0 ls5 ws3">Performance Factors<span class="_ _5"> </span><span class="ff5 ls4 ws1">1.11</span></div><div class="t m1 x5 h6 ye ff2 fs1 fc1 sc0 ls5 ws3">Lens Shape<span class="_ _6"> </span><span class="ff5 ls4 ws1">1.17</span></div><div class="t m1 x5 h6 yf ff2 fs1 fc1 sc0 ls5 ws3">Lens Combinations<span class="_ _7"> </span><span class="ff5 ls4 ws1">1.18</span></div><div class="t m1 x5 h6 y10 ff2 fs1 fc1 sc0 ls5 ws3">Diffraction Ef<span class="_ _8"></span>fects<span class="_ _9"> </span><span class="ff5 ls4 ws1">1.20</span></div><div class="t m1 x5 h6 y11 ff2 fs1 fc1 sc0 ls5 ws3">Lens Selection<span class="_ _a"> </span><span class="ff5 ls4 ws1">1.23</span></div><div class="t m1 x5 h6 y12 ff2 fs1 fc1 sc0 ls5 ws3">Spot Size<span class="_ _b"> </span><span class="ff5 ls4 ws1">1.26</span></div><div class="t m1 x5 h6 y13 ff2 fs1 fc1 sc0 ls5 ws3">Aberration Balancing<span class="_ _c"> </span><span class="ff5 ls4 ws1">1.27</span></div><div class="t m1 x5 h6 y14 ff2 fs1 fc1 sc0 ls5 ws3">Definition of T<span class="_ _d"></span>erms<span class="_ _e"> </span><span class="ff5 ls4 ws1">1.29</span></div><div class="t m1 x5 h6 y15 ff2 fs1 fc1 sc0 ls5 ws3">Paraxial Lens Formulas<span class="_ _f"> </span><span class="ff5 ls4 ws1">1.32</span></div><div class="t m1 x5 h6 y16 ff2 fs1 fc1 sc0 ls5 ws3">Principal-Point Locations<span class="_ _10"> </span><span class="ff5 ls4 ws1">1.36</span></div><div class="t m1 x6 h7 y17 ff6 fs5 fc2 sc0 ls6 ws4"><span class="fc3 sc0">Chpt. 1 Final a 7/30/99 2:39 PM Page 1.1</span></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,-141.176471,-347.858808]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6258ebb0be9ad24cfaaed857/bg2.jpg"><div class="t m1 x7 h3 y18 ff2 fs1 fc1 sc0 ls7 ws1">1.2<span class="_ _0"> </span><span class="ff3 fs2 ls2">1<span class="_ _11"> </span></span><span class="ls5 ws3">Visit Us OnLine!<span class="_ _12"> </span><span class="ff4 ws1">www<span class="_ _d"></span>.mellesgriot.com</span></span></div><div class="t m3 x8 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">Fundamental Optics<span class="_ _13"></span><span class="fc1">Material Properties</span></div><div class="t m3 x8 h2 y1a ff1 fs0 fc1 sc0 ls0 ws0">Optical Specifications</div><div class="t m3 x8 h2 y1b ff1 fs0 fc1 sc0 ls0 ws0">Gaussian Beam Optics</div><div class="t m3 x8 h2 y1c ff1 fs0 fc1 sc0 ls0 ws0">Optical Coatings</div><div class="t m1 x9 h8 y1d ff5 fs6 fc1 sc0 ls8 ws1">THE<span class="_"> </span>OPTICAL</div><div class="t m1 x9 h8 y1e ff5 fs6 fc1 sc0 ls8 ws1">ENGINEERING<span class="_"> </span>PROCESS</div><div class="t m1 xa h9 y1f ff2 fs5 fc1 sc0 ls9 ws5">Determine basic system</div><div class="t m1 xb h9 y20 ff2 fs5 fc1 sc0 ls9 ws5">parameters, such as</div><div class="t m1 xc h9 y21 ff2 fs5 fc1 sc0 ls9 ws5">magnification and </div><div class="t m1 xd h9 y22 ff2 fs5 fc1 sc0 ls9 ws5">object/image distances</div><div class="t m1 xa h9 y23 ff2 fs5 fc1 sc0 ls9 ws5">Using paraxial formulas </div><div class="t m1 xe h9 y24 ff2 fs5 fc1 sc0 ls9 ws5">and known parameters, </div><div class="t m1 xf h9 y25 ff2 fs5 fc1 sc0 ls9 ws5">solve for remaining values</div><div class="t m1 x10 h9 y26 ff2 fs5 fc1 sc0 ls9 ws5">Pick lens components </div><div class="t m1 xb h9 y27 ff2 fs5 fc1 sc0 ls9 ws5">based on paraxially </div><div class="t m1 x11 h9 y28 ff2 fs5 fc1 sc0 ls9 ws5">derived values</div><div class="t m1 x12 h9 y29 ff2 fs5 fc1 sc0 ls9 ws5">Estimate performance </div><div class="t m1 xe h9 y2a ff2 fs5 fc1 sc0 ls9 ws5">characteristics of system</div><div class="t m1 x13 h9 y2b ff2 fs5 fc1 sc0 ls9 ws5">Determine if chosen </div><div class="t m1 x14 h9 y2c ff2 fs5 fc1 sc0 ls9 ws5">component values conflict</div><div class="t m1 x15 h9 y2d ff2 fs5 fc1 sc0 ls9 ws5">with any basic </div><div class="t m1 xc h9 y2e ff2 fs5 fc1 sc0 ls9 ws5">system constraints</div><div class="t m1 x14 h9 y2f ff2 fs5 fc1 sc0 ls9 ws5">Determine if performance</div><div class="t m1 x16 h9 y30 ff2 fs5 fc1 sc0 ls9 ws5">characteristics meet </div><div class="t m1 x10 h9 y31 ff2 fs5 fc1 sc0 ls9 ws5">original design goals</div><div class="t m1 x17 h8 y32 ff5 fs6 fc1 sc0 ls8 ws1">ENGINEERING<span class="_"> </span>SUPPORT</div><div class="t m1 x17 h3 y33 ff2 fs1 fc1 sc0 lsa ws3">Melles Griot maintains a staff of knowledgeable,</div><div class="t m1 x17 h3 y34 ff2 fs1 fc1 sc0 lsa ws3">experienced applications engineers at each of our</div><div class="t m1 x17 h3 y35 ff2 fs1 fc1 sc0 lsa ws3">facilities worldwide. The information given in this</div><div class="t m1 x17 h3 y36 ff2 fs1 fc1 sc0 lsa ws3">chapter is sufficient to enable the user to select the</div><div class="t m1 x17 h3 y37 ff2 fs1 fc1 sc0 lsa ws3">most appropriate catalog lenses for the most</div><div class="t m1 x17 h3 y38 ff2 fs1 fc1 sc0 lsa ws3">commonly encountered applications. However<span class="_ _d"></span>, when</div><div class="t m1 x17 h3 y39 ff2 fs1 fc1 sc0 lsa ws3">additional optical engineering support is required,</div><div class="t m1 x17 h3 y3a ff2 fs1 fc1 sc0 lsa ws3">our applications engineers are available to provide</div><div class="t m1 x17 h3 y3b ff2 fs1 fc1 sc0 lsa ws3">assistance. Do not hesitate to contact us for help in</div><div class="t m1 x17 h3 y3c ff2 fs1 fc1 sc0 lsa ws3">product selection or to obtain more detailed</div><div class="t m1 x17 h3 y3d ff2 fs1 fc1 sc0 lsa ws3">specifications on Melles Griot products.</div><div class="t m1 x17 ha y3e ff7 fs1 fc1 sc0 lsb ws6">Even though se<span class="_ _8"></span>veral thousand dif<span class="_ _8"></span>ferent optical components</div><div class="t m1 x7 ha y3f ff7 fs1 fc1 sc0 lsc ws7">are listed in this ca<span class="_ _8"></span>talog, perf<span class="_ _d"></span>orming a few simple calculations will</div><div class="t m1 x7 ha y40 ff7 fs1 fc1 sc0 lsd ws8">usually determine the appr<span class="_ _d"></span>opriate optics f<span class="_ _d"></span>or an application or<span class="_ _14"></span>, a<span class="_ _8"></span>t</div><div class="t m1 x7 ha y41 ff7 fs1 fc1 sc0 lsd ws9">the very least, narr<span class="_ _d"></span>ow the list of choices<span class="_ _d"></span>.</div><div class="t m1 x17 ha y42 ff7 fs1 fc1 sc0 lse wsa">The pr<span class="_ _8"></span>ocess of solving virtually an<span class="_ _d"></span>y optical engineering prob<span class="_ _8"></span>lem</div><div class="t m1 x7 ha y43 ff7 fs1 fc1 sc0 lsd wsb">can be br<span class="_ _8"></span>ok<span class="_ _8"></span>en down into tw<span class="_ _d"></span>o main steps<span class="_ _8"></span>. First, paraxial calcula-</div><div class="t m1 x7 ha y44 ff7 fs1 fc1 sc0 lsd wsc">tions (first order) are made to determine critical parameters such</div><div class="t m1 x7 ha y45 ff7 fs1 fc1 sc0 lsf wsd">as magnifica<span class="_ _d"></span>tion, focal length(s), clear a<span class="_ _8"></span>perture (diameter), and</div><div class="t m1 x7 ha y46 ff7 fs1 fc1 sc0 ls10 wse">object and image position. These par<span class="_ _8"></span>axial calculations ar<span class="_ _8"></span>e co<span class="_ _8"></span>vered</div><div class="t m1 x7 ha y47 ff7 fs1 fc1 sc0 lsd ws9">in the next section of this cha<span class="_ _8"></span>pter<span class="_ _d"></span>.</div><div class="t m1 x17 ha y48 ff7 fs1 fc1 sc0 ls11 wsf">Second, actual components are chosen based on these paraxial</div><div class="t m1 x7 ha y49 ff7 fs1 fc1 sc0 ls12 ws10">values<span class="_ _d"></span>, and their actual perf<span class="_ _8"></span>ormance is evalua<span class="_ _8"></span>ted with special</div><div class="t m1 x7 ha y4a ff7 fs1 fc1 sc0 ls13 ws11">a<span class="_ _8"></span>ttention paid to the effects of a<span class="_ _d"></span>berra<span class="_ _8"></span>tions<span class="_ _d"></span>. A truly rigor<span class="_ _8"></span>ous</div><div class="t m1 x7 ha y4b ff7 fs1 fc1 sc0 ls14 ws12">perf<span class="_ _8"></span>ormance analysis f<span class="_ _8"></span>or all b<span class="_ _8"></span>ut the simplest optical systems</div><div class="t m1 x7 ha y4c ff7 fs1 fc1 sc0 ls15 ws13">generall<span class="_ _8"></span>y requires computer ra<span class="_ _d"></span>y tracing, but simple gener<span class="_ _8"></span>aliza-</div><div class="t m1 x7 ha y4d ff7 fs1 fc1 sc0 ls16 ws14">tions can be used, especially w<span class="_ _8"></span>hen the lens selection pr<span class="_ _8"></span>ocess is</div><div class="t m1 x7 ha y4e ff7 fs1 fc1 sc0 ls2 ws9">confined to a limited range of component sha<span class="_ _8"></span>pes<span class="_ _d"></span>.</div><div class="t m1 x17 ha y4f ff7 fs1 fc1 sc0 ls2 ws15">In practice<span class="_ _d"></span>, the second step may r<span class="_ _8"></span>ev<span class="_ _8"></span>eal conflicts with design</div><div class="t m1 x7 ha y50 ff7 fs1 fc1 sc0 lsb ws16">constraints<span class="_ _d"></span>, such as component siz<span class="_ _15"></span>e<span class="_ _d"></span>, cost, or product a<span class="_ _d"></span>v<span class="_ _8"></span>aila<span class="_ _8"></span>bility<span class="_ _14"></span>.</div><div class="t m1 x7 ha y51 ff7 fs1 fc1 sc0 ls2 ws9">System parameters ma<span class="_ _d"></span>y therefor<span class="_ _8"></span>e requir<span class="_ _8"></span>e modification.</div><div class="t m1 x17 ha y52 ff7 fs1 fc1 sc0 ls16 ws14">Because some of the terms used in this chapter ma<span class="_ _8"></span>y not be</div><div class="t m1 x7 ha y53 ff7 fs1 fc1 sc0 ls2 ws17">familiar to all readers<span class="_ _d"></span>, a glossary of ter<span class="_ _15"></span>ms is pr<span class="_ _8"></span>o<span class="_ _8"></span>vided beginning</div><div class="t m1 x7 ha y54 ff7 fs1 fc1 sc0 ls2 ws9">on <span class="fc4">p<span class="ls17">a</span>ge 1.29.</span></div><div class="t m1 x17 ha y55 ff7 fs1 fc1 sc0 ls2 ws18">Finally<span class="_ _14"></span>, it should be noted that the discussion in this cha<span class="_ _8"></span>pter</div><div class="t m1 x7 ha y56 ff7 fs1 fc1 sc0 ls18 ws19">rela<span class="_ _8"></span>tes only to systems with unif<span class="_ _d"></span>orm illumination; optical systems</div><div class="t m1 x7 ha y57 ff7 fs1 fc1 sc0 ls19 ws1a">f<span class="ls1a">or Gaussian beams a<span class="ls1b">r</span>e c<span class="ls1c">o<span class="ls1d">v</span></span>e<span class="ls1e">r</span>ed in <span class="fc4">Ch<span class="ls1f">a</span>pter 2, <span class="ff8">Gaussian Beam</span></span></span></div><div class="t m1 x7 ha y58 ff8 fs1 fc4 sc0 ls2 ws1">Optics<span class="ff7">.</span></div><div class="t m1 x7 hb y59 ff4 fs7 fc1 sc0 ls20 ws1">Intr<span class="_ _8"></span>oduction</div><div class="t m1 x6 h7 y17 ff6 fs5 fc2 sc0 ls6 ws1b"><span class="fc3 sc0">Chpt. 1 Final a 7/30/99 2:39 PM Page 1.2</span></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><div class="d m2"></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,-141.176471,-347.858808]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6258ebb0be9ad24cfaaed857/bg3.jpg"><div class="t m1 x18 h3 y18 ff2 fs1 fc1 sc0 ls5 ws3">Visit Us Online!<span class="_ _12"> </span><span class="ff4 ws1">www<span class="_ _d"></span>.mellesgriot.com<span class="_ _16"> </span><span class="ff3 fs2 ls2">1<span class="_ _0"> </span></span><span class="ff2 ls1">1.3</span></span></div><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Fundamental Optics</div><div class="t m0 x1 h2 y2 ff1 fs0 fc1 sc0 ls0 ws0">Gaussian Beam Optics</div><div class="t m0 x1 h2 y3 ff1 fs0 fc1 sc0 ls0 ws0">Optical Specifications</div><div class="t m0 x1 h2 y4 ff1 fs0 fc1 sc0 ls0 ws0">Material Properties</div><div class="t m0 x1 h2 y5 ff1 fs0 fc1 sc0 ls0 ws0">Optical Coatings</div><div class="t m1 x19 hb y59 ff4 fs7 fc1 sc0 ls21 ws1c">Paraxial Formulas</div><div class="t m1 x1a h8 y5a ff5 fs6 fc1 sc0 ls22 ws1d">SIGN CONVENTIONS</div><div class="t m1 x1a h3 y5b ff2 fs1 fc1 sc0 ls23 ws3">The validity of the paraxial lens formulas is dependent on adherence to the following sign conventions: </div><div class="t m1 x1b h8 y5c ff5 fs6 fc1 sc0 ls22 ws1d">For lenses:<span class="_ _17"> </span><span class="ff2 fs1 ls23 ws3">(refer to figure 1.1)</span></div><div class="t m1 x1b h3 y5d ff2 fs1 fc1 sc0 ls23 ws1">s<span class="_ _0"> </span>is <span class="_ _d"></span><span class="ff9 ls2">1<span class="_ _18"> </span><span class="ff2 ls23 ws3">for object to left of H</span></span></div><div class="t m1 x1c h3 y5e ff2 fs1 fc1 sc0 ls23 ws3">(the first principal point)</div><div class="t m1 x1b h3 y5f ff2 fs1 fc1 sc0 ls23 ws1">s<span class="_ _0"> </span>is <span class="_ _d"></span><span class="ff9">5 <span class="ff2 ws3">for object to right of H</span></span></div><div class="t m1 x1b hc y60 ff2 fs1 fc1 sc0 ls2 ws1">s<span class="ffa">″<span class="_ _17"> </span></span><span class="ls24">is <span class="_ _8"></span><span class="ff9 ls2">1<span class="_ _18"> </span><span class="ff2 ls23 ws3">for image to right of H</span><span class="ffa">″</span></span></span></div><div class="t m1 x1c h3 y61 ff2 fs1 fc1 sc0 ls24 ws1e">(the second principal point)</div><div class="t m1 x1b hc y62 ff2 fs1 fc1 sc0 ls2 ws1">s<span class="ffa">″<span class="_ _17"> </span></span><span class="ls24">is <span class="_ _8"></span><span class="ff9">5 <span class="_ _8"></span><span class="ff2 ws3">for image to left of H<span class="ffa ls2 ws1">″</span></span></span></span></div><div class="t m1 x1b h3 y63 ff2 fs1 fc1 sc0 ls24 ws1">m<span class="_ _12"> </span>is <span class="_ _8"></span><span class="ff9 ls2">1<span class="_ _19"> </span><span class="ff2 ls23 ws3">for an inverted image</span></span></div><div class="t m1 x1b h3 y64 ff2 fs1 fc1 sc0 ls23 ws1">m<span class="_ _12"> </span>is <span class="_ _8"></span><span class="ff9">5 <span class="_ _8"></span><span class="ff2 ws3">for an upright image </span></span></div><div class="t m1 x1d h8 y5c ff5 fs6 fc1 sc0 ls22 ws1d">For mirrors: </div><div class="t m1 x1d h3 y65 ff2 fs1 fc1 sc0 ls23 ws1">f<span class="_ _0"> </span>is <span class="_ _d"></span><span class="ff9 ls2">1<span class="_ _18"> </span><span class="ff2 ls23 ws3">for convex (diverging) mirrors</span></span></div><div class="t m1 x1d h3 y66 ff2 fs1 fc1 sc0 ls23 ws1">f<span class="_ _0"> </span>is <span class="_ _d"></span><span class="ff9">5 <span class="ff2 ws3">for concave (converging) mirrors</span></span></div><div class="t m1 x1d h3 y67 ff2 fs1 fc1 sc0 ls23 ws1">s<span class="_ _0"> </span>is <span class="_ _d"></span><span class="ff9 ls2">1<span class="_ _18"> </span><span class="ff2 ls23 ws3">for object to left of H</span></span></div><div class="t m1 x1d h3 y68 ff2 fs1 fc1 sc0 ls23 ws1">s<span class="_ _0"> </span>is <span class="_ _d"></span><span class="ff9">5 <span class="ff2 ws3">for object to right of H</span></span></div><div class="t m1 x1d hc y69 ff2 fs1 fc1 sc0 ls2 ws1">s<span class="ffa">″<span class="_ _17"> </span></span><span class="ls24">is <span class="_ _8"></span><span class="ff9">5 <span class="_ _8"></span><span class="ff2 ws3">for image to right of H<span class="ffa ls2 ws1">″</span></span></span></span></div><div class="t m1 x1d hc y6a ff2 fs1 fc1 sc0 ls2 ws1">s<span class="ffa">″<span class="_ _17"> </span></span><span class="ls24">is <span class="_ _8"></span><span class="ff9 ls2">1<span class="_ _19"> </span><span class="ff2 ls23 ws3">for image to left of H</span><span class="ffa">″</span></span></span></div><div class="t m1 x1d h3 y6b ff2 fs1 fc1 sc0 ls24 ws1">m<span class="_ _12"> </span>is <span class="_ _8"></span><span class="ff9 ls2">1<span class="_ _19"> </span><span class="ff2 ls23 ws3">for an inverted image</span></span></div><div class="t m1 x1d h3 y6c ff2 fs1 fc1 sc0 ls23 ws1">m<span class="_ _12"> </span>is <span class="_ _8"></span><span class="ff9">5 <span class="_ _8"></span><span class="ff2 ws3">for an upright image </span></span></div><div class="t m1 x1a h3 y6d ff2 fs1 fc1 sc0 ls23 ws3">When using the thin-lens approximation, simply refer to the left and right of the lens.</div><div class="c x19 y6e w2 hd"><div class="t m1 x1e he y6f ff2 fs8 fc1 sc0 ls2 ws1">s</div><div class="t m1 x1f he y70 ff2 fs8 fc1 sc0 ls2 ws1">f</div><div class="t m1 x20 h9 y71 ff2 fs5 fc1 sc0 ls2 ws1">F</div><div class="t m1 x21 he y70 ff2 fs8 fc1 sc0 ls2 ws1">f</div><div class="t m1 x22 he y72 ff2 fs8 fc1 sc0 ls2 ws1">front focal point</div><div class="t m1 x23 he y73 ff2 fs8 fc1 sc0 ls2 ws1">rear focal point</div><div class="t m1 x24 he y74 ff2 fs8 fc1 sc0 ls2 ws1">principal points</div><div class="t m1 x25 hf y75 ffb fs8 fc1 sc0 ls2 ws1">f</div><div class="t m1 x18 he y76 ff2 fs8 fc1 sc0 ls2 ws1">object</div><div class="t m1 x26 h9 y77 ff2 fs5 fc1 sc0 ls2 ws1">H</div><div class="t m1 x27 hf y78 ffb fs8 fc1 sc0 ls2 ws1">v</div><div class="t m1 x28 he y79 ff2 fs8 fc1 sc0 ls2 ws1">image</div><div class="t m1 x29 he y7a ff2 fs8 fc1 sc0 ls2 ws1">H</div><div class="t m1 x2a h10 y7b ffa fs8 fc1 sc0 ls2 ws1">″</div><div class="t m1 x2b h10 y7c ff2 fs8 fc1 sc0 ls2 ws1">F<span class="ffa">″</span></div><div class="t m1 x2c h10 y7d ff2 fs8 fc1 sc0 ls2 ws1">s<span class="ffa">″</span></div><div class="t m1 x2d he y7e ff2 fs8 fc1 sc0 ls2 ws1">h</div><div class="t m1 x2e he y7f ff2 fs8 fc1 sc0 ls2 ws1">h</div><div class="t m1 x2f h10 y80 ffa fs8 fc1 sc0 ls2 ws1">″</div></div><div class="t m1 x30 h9 y81 ffb fs5 fc1 sc0 ls2 ws1">f<span class="_ _1a"> </span><span class="ff2 ls9 ws5">=<span class="_ _1a"> </span>lens diameter</span></div><div class="t m1 x30 h11 y82 ff2 fs5 fc1 sc0 ls25 ws1">m=<span class="_ _18"> </span>s<span class="_ _1b"></span><span class="ffa ls2">″<span class="ff2 ls26 ws5">/s = h</span>″<span class="ff2 ls9 ws5">/h = magnification or</span></span></div><div class="t m1 x31 h9 y83 ff2 fs5 fc1 sc0 ls9 ws5">conjugate ratio, said to be infinite if</div><div class="t m1 x31 h11 y84 ff2 fs5 fc1 sc0 ls9 ws5">either s<span class="ffa ls2 ws1">″<span class="_"> </span></span>or s is infinite</div><div class="t m1 x30 h9 y85 ffb fs5 fc1 sc0 ls2 ws1">v<span class="_ _1c"> </span><span class="ff2 ls26 ws5">=<span class="_ _1a"> </span>arcsin (</span>f<span class="ff2 ls26">/2s)</span></div><div class="t m1 x30 h9 y86 ff2 fs5 fc1 sc0 ls26 ws1f">h<span class="_ _1a"> </span>=<span class="_ _1d"> </span>object height</div><div class="t m1 x30 h11 y87 ff2 fs5 fc1 sc0 ls2 ws1">h<span class="ffa">″<span class="_ _1e"> </span></span><span class="ls9 ws5">=<span class="_ _1a"> </span>image height</span></div><div class="t m1 x32 h9 y88 ff2 fs5 fc1 sc0 ls9 ws5">s<span class="_ _0"> </span>=<span class="_ _1d"> </span>object distance, positive for object (whether real </div><div class="t m1 x33 h9 y89 ff2 fs5 fc1 sc0 ls9 ws5">or virtual) to the left of principal point H</div><div class="t m1 x32 h11 y8a ff2 fs5 fc1 sc0 ls2 ws1">s<span class="ffa">″<span class="_ _1f"> </span></span><span class="ls9 ws5">=<span class="_ _1a"> </span>image distance (s and s</span><span class="ffa">″<span class="_"> </span></span><span class="ls9 ws5">are collectively called</span></div><div class="t m1 x33 h9 y8b ff2 fs5 fc1 sc0 ls9 ws5">conjugate distances, with object and image in</div><div class="t m1 x33 h9 y8c ff2 fs5 fc1 sc0 ls9 ws5">conjugate planes), positive for image (whether real</div><div class="t m1 x33 h11 y8d ff2 fs5 fc1 sc0 ls9 ws5">or virtual) to the right of the principal point H<span class="ffa ls2 ws1">″</span></div><div class="t m1 x32 h9 y8e ff2 fs5 fc1 sc0 ls9 ws5">f<span class="_ _0"> </span>=<span class="_ _1d"> </span>effective focal length (EFL) which may be positive </div><div class="t m1 x33 h9 y8f ff2 fs5 fc1 sc0 ls9 ws5">(as shown) or negative. f represents both FH and</div><div class="t m1 x33 h11 y90 ff2 fs5 fc1 sc0 ls2 ws1">H<span class="ffa">″</span>F<span class="ffa">″<span class="_ _8"></span><span class="ff2 ls9 ws5">, assuming lens to be surrounded by medium </span></span></div><div class="t m1 x33 h9 y91 ff2 fs5 fc1 sc0 ls9 ws5">of index 1.0</div><div class="t m1 x34 h12 y92 ffc fs5 fc1 sc0 ls9 ws5">Note location of object and image relative to front and rear focal points.</div><div class="t m1 x19 h3 y93 ffd fs1 fc1 sc0 ls1 ws3">Figure 1.1<span class="_ _1c"> </span><span class="ff4 ls5">Sign conventions</span></div><div class="t m1 x6 h7 y17 ff6 fs5 fc2 sc0 ls6 ws4"><span class="fc3 sc0">Chpt. 1 Final a 7/30/99 2:39 PM Page 1.3</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,-141.176471,-347.858808]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6258ebb0be9ad24cfaaed857/bg4.jpg"><div class="t m1 x7 h3 y18 ffe fs1 fc1 sc0 ls1 ws1">1.4<span class="_ _0"> </span><span class="ff3 fs2 ls2">1<span class="_ _11"> </span></span><span class="ls5 ws3">Visit Us OnLine!<span class="_ _12"> </span><span class="fff ws1">www<span class="_ _d"></span>.mellesgriot.com</span></span></div><div class="t m3 x8 h2 y19 ff1 fs0 fc0 sc0 ls0 ws0">Fundamental Optics<span class="_ _13"></span><span class="fc1">Material Properties</span></div><div class="t m3 x8 h2 y1a ff1 fs0 fc1 sc0 ls0 ws0">Optical Specifications</div><div class="t m3 x8 h2 y1b ff1 fs0 fc1 sc0 ls0 ws0">Gaussian Beam Optics</div><div class="t m3 x8 h2 y1c ff1 fs0 fc1 sc0 ls0 ws0">Optical Coatings</div><div class="c x1d y94 w3 h13"><div class="t m1 x35 h9 y95 ffe fs5 fc1 sc0 ls2 ws1">object</div><div class="t m1 x36 h9 y96 ffe fs5 fc1 sc0 ls2 ws1">F</div><div class="t m1 x37 h14 y97 ffe fs9 fc1 sc0 ls2 ws1">1</div><div class="t m1 x38 h9 y98 ffe fs5 fc1 sc0 ls2 ws1">F</div><div class="t m1 x39 h14 y99 ffe fs9 fc1 sc0 ls2 ws1">2</div><div class="t m1 x3a h9 y9a ffe fs5 fc1 sc0 ls2 ws1">image</div><div class="t m1 x3b h9 y9b ffe fs5 fc1 sc0 ls2 ws1">200<span class="_ _20"> </span>66.7</div></div><div class="t m1 x1d hc y9c ffd fs1 fc1 sc0 ls27 ws3">Figure 1.2<span class="_ _1c"> </span><span class="fff">Example 1 <span class="ffe">(f = 50 mm, s = 200 mm, s<span class="ff10 ls2 ws1">″<span class="_ _19"> </span></span>= 66.7 mm)</span></span></div><div class="c x3c y9d w4 h15"><div class="t m1 x34 he y9e ffe fs8 fc1 sc0 ls2 ws1">object</div><div class="t m1 x17 he y9f ffe fs8 fc1 sc0 ls2 ws1">F</div><div class="t m4 x3d h16 ya0 ffe fsa fc1 sc0 ls2 ws1">1</div><div class="t m1 x3e he ya1 ffe fs8 fc1 sc0 ls2 ws1">F</div><div class="t m1 x29 h16 ya0 ffe fsa fc1 sc0 ls2 ws1">2</div><div class="t m1 x3 he ya2 ffe fs8 fc1 sc0 ls2 ws1">image</div></div><div class="t m1 x1d hc ya3 ffd fs1 fc1 sc0 ls27 ws3">Figure 1.3<span class="_ _1c"> </span><span class="fff">Example 2 <span class="ffe">(f = 50 mm, s = 30 mm, s<span class="ff10 ls2 ws1">″<span class="_ _19"> </span><span class="ffe ls28">= <span class="_ _d"></span><span class="ff9 ls2">4<span class="ffe ls27 ws3">75 mm)</span></span></span></span></span></span></div><div class="c x7 ya4 w5 h17"><div class="t m1 x3f ha ya5 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x3f ha ya6 ff7 fs1 fc2 sc0 ls2 ws1">f</div><div class="t m1 x40 ha ya7 ff7 fs1 fc2 sc0 ls29 ws20"> = </div><div class="t m1 x41 ha ya8 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x41 ha ya9 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x3 ha yaa ff7 fs1 fc2 sc0 ls2a ws1"> </div><div class="t m1 x42 ha yab ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x1a ha yac ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x43 hc yad ff7 fs1 fc2 sc0 ls2 ws1"> .<span class="_ _21"></span><span class="ff10">+</span></div><div class="t m1 x44 hc yae ff10 fs1 fc2 sc0 ls2b ws1">′′</div></div><div class="c x7 yaf w5 h18"><div class="t m1 x45 ha yb0 ff7 fs1 fc2 sc0 ls2 ws21">m =<span class="_ _19"> </span> </div><div class="t m1 x41 ha yb1 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x25 ha yb2 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x46 ha yb3 ff7 fs1 fc2 sc0 ls29 ws20"> = </div><div class="t m1 x7 ha yb4 ff7 fs1 fc2 sc0 ls2 ws1">h</div><div class="t m1 x47 ha yb5 ff7 fs1 fc2 sc0 ls2 ws1">h</div><div class="t m1 x48 hc yb6 ff10 fs1 fc2 sc0 ls2b ws1">′′<span class="_ _22"> </span>′′</div><div class="t m1 x17 ha yb7 ff7 fs1 fc2 sc0 ls2 ws1">.</div></div><div class="c x49 yb8 w6 h19"><div class="t m1 x4a ha yb9 ff7 fs1 fc2 sc0 ls2 ws22">f =<span class="_ _19"> </span> <span class="_ _23"></span>m</div><div class="t m1 x19 ha yba ff7 fs1 fc2 sc0 ls2 ws23">(s +<span class="_ _24"> </span> <span class="_ _14"></span>s<span class="_ _17"> </span>)</div><div class="t m1 x3 ha ybb ff7 fs1 fc2 sc0 ls2 ws24">(m +<span class="_ _24"> </span> <span class="_ _14"></span>1)</div><div class="t m1 x4a ha ybc ff7 fs1 fc2 sc0 ls2 ws22">f =<span class="_ _19"> </span> </div><div class="t m1 x3 ha ybd ff7 fs1 fc2 sc0 ls2 ws1">sm</div><div class="t m1 x41 ha ybe ff7 fs1 fc2 sc0 ls2 ws25">m +<span class="_ _24"> </span> <span class="_ _14"></span>1</div><div class="t m1 x4a ha ybf ff7 fs1 fc2 sc0 ls2 ws22">f =<span class="_ _19"> </span> </div><div class="t m1 x4b ha yc0 ff7 fs1 fc2 sc0 ls2 ws26">s +<span class="_ _24"> </span> <span class="_ _14"></span>s</div><div class="t m1 x41 ha yc1 ff7 fs1 fc2 sc0 ls2 ws25">m +<span class="_ _24"> </span> <span class="_ _14"></span>2 +<span class="_ _24"> </span> </div><div class="t m1 x4c ha yc2 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x4d ha yc3 ff7 fs1 fc2 sc0 ls2 ws1">m</div><div class="t m1 x4a ha yc4 ff7 fs1 fc2 sc0 ls2 ws1">s (m <span class="_ _25"></span>+<span class="_ _24"> </span> 1) <span class="_ _19"> </span>=<span class="_"> </span> s <span class="_ _25"></span>+<span class="_ _24"> </span> s</div><div class="t m1 x4e h1a yc5 ff7 fsb fc2 sc0 ls2 ws1">2</div><div class="t m1 x4f hc yc6 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x43 hc yc7 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x50 hc yc8 ff10 fs1 fc2 sc0 ls2b ws1">′′</div></div><div class="c x49 yc9 w7 h1b"><div class="t m1 x4a ha yca ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x3f ha ycb ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x8 ha ycc ff7 fs1 fc2 sc0 ls2c ws27"> = </div><div class="t m1 x3 ha ycd ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x3 ha yce ff7 fs1 fc2 sc0 ls2 ws1">f</div><div class="t m1 x51 ha ycf ff7 fs1 fc2 sc0 ls2d ws1"> </div><div class="t m1 x52 ha yd0 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x52 ha yd1 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x4a ha yd2 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x3f ha yd3 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x8 ha yd4 ff7 fs1 fc2 sc0 ls2c ws27"> = </div><div class="t m1 x53 ha yd5 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x3 ha yd6 ff7 fs1 fc2 sc0 ls2 ws1">50</div><div class="t m1 x2d ha yd7 ff7 fs1 fc2 sc0 ls2d ws1"> </div><div class="t m1 x54 ha yd8 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x43 ha yd9 ff7 fs1 fc2 sc0 ls2 ws1">200</div><div class="t m1 x45 ha yda ff7 fs1 fc2 sc0 ls2 ws1">s<span class="_ _26"> </span> <span class="_ _27"> </span>=<span class="_"> </span> 66.7 mm</div><div class="t m1 x55 ha ydb ff7 fs1 fc2 sc0 ls2 ws1">m <span class="_"> </span>=<span class="_ _27"> </span> </div><div class="t m1 x56 ha ydc ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x57 ha ydd ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x58 ha yde ff7 fs1 fc2 sc0 ls2c ws27"> = </div><div class="t m1 x59 ha ydf ff7 fs1 fc2 sc0 ls2 ws1">66.7</div><div class="t m1 x5a ha ye0 ff7 fs1 fc2 sc0 ls2 ws1">200</div><div class="t m1 x50 ha ye1 ff7 fs1 fc2 sc0 ls2 ws28"> =<span class="_ _27"> </span> <span class="_ _28"></span>0.33</div><div class="t m1 x45 ha ye2 ff7 fs1 fc2 sc0 ls2 ws1">(or real image is 0.33 mm high and inverted).</div><div class="t m1 x5b hc ye3 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x5b hc ye4 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x4a hc ye5 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x53 hc ye6 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x5c h1c ye7 ff9 fs1 fc2 sc0 ls2 ws1">4</div><div class="t m1 x5d h1c ye8 ff9 fs1 fc2 sc0 ls2 ws1">4</div></div><div class="t m1 x5e h1d ye9 ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.1</span>)</div><div class="t m1 x5e h1d yea ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.2<span class="_ _15"></span></span>)</div><div class="t m1 x5f h1d yeb ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.3<span class="_ _15"></span></span>)</div><div class="t m1 x5f h1d yec ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.4<span class="_ _15"></span></span>)</div><div class="t m1 x5f h1d yed ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.5<span class="_ _15"></span></span>)</div><div class="t m1 x5f h1d yee ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.6<span class="_ _15"></span></span>)</div><div class="t m1 x17 ha y3e ff7 fs1 fc1 sc0 ls2f ws29">T<span class="_ _d"></span>ypically<span class="_ _14"></span>, the first step in optical prob<span class="_ _8"></span>lem solving is to select a</div><div class="t m1 x7 ha y3f ff7 fs1 fc1 sc0 ls2f ws2a">system f<span class="_ _8"></span>ocal length based on constraints such as ma<span class="_ _8"></span>gnification or</div><div class="t m1 x7 ha y40 ff7 fs1 fc1 sc0 ls30 ws2b">conjuga<span class="_ _8"></span>te distances (object and image distance). The r<span class="_ _8"></span>elation-</div><div class="t m1 x7 ha y41 ff7 fs1 fc1 sc0 ls31 ws2c">ship among f<span class="_ _8"></span>ocal length, object position, and image position is </div><div class="t m1 x7 ha yef ff7 fs1 fc1 sc0 ls2f ws2d">giv<span class="_ _8"></span>en by</div><div class="t m1 x17 ha yf0 ff7 fs1 fc1 sc0 ls32 ws2e">This f<span class="_ _8"></span>ormula is refer<span class="_ _8"></span>enced to figure 1.1 and the sign con<span class="_ _d"></span>ven-</div><div class="t m1 x7 ha yf1 ff7 fs1 fc1 sc0 ls2f ws2d">tions giv<span class="_ _8"></span>en on page 1.3.</div><div class="t m1 x17 ha yf2 ff7 fs1 fc1 sc0 ls2f ws2f">By definition, magnifica<span class="_ _d"></span>tion is the ratio of ima<span class="_ _8"></span>ge size to object</div><div class="t m1 x7 ha yf3 ff7 fs1 fc1 sc0 ls2f ws2d">size or </div><div class="t m1 x17 ha yf4 ff7 fs1 fc1 sc0 ls33 ws30">This rela<span class="_ _8"></span>tionship can be used to recast the first f<span class="_ _d"></span>or<span class="_ _15"></span>mula into the</div><div class="t m1 x7 ha yf5 ff7 fs1 fc1 sc0 ls2f ws2d">f<span class="_ _8"></span>ollo<span class="_ _8"></span>wing f<span class="_ _8"></span>orms:</div><div class="t m1 x7 hc yf6 ff7 fs1 fc1 sc0 ls2f ws2d">wher<span class="_ _8"></span>e (s + s<span class="ff10 ls2 ws1">″</span>) is the a<span class="_ _8"></span>ppr<span class="_ _8"></span>oxima<span class="_ _d"></span>te object-to-image distance<span class="_ _d"></span>.</div><div class="t m1 x17 ha yf7 ff7 fs1 fc1 sc0 ls2f ws31">With a r<span class="_ _8"></span>eal lens of finite thickness<span class="_ _d"></span>, the image distance<span class="_ _d"></span>, object</div><div class="t m1 x7 ha yf8 ff7 fs1 fc1 sc0 ls34 ws32">distance<span class="_ _d"></span>, and focal length ar<span class="_ _8"></span>e all referenced to the principal points<span class="_ _d"></span>,</div><div class="t m1 x7 ha yf9 ff7 fs1 fc1 sc0 ls35 ws33">not to the ph<span class="_ _d"></span>ysical center of the lens<span class="_ _8"></span>. By neglecting the distance</div><div class="t m1 x7 hc yfa ff7 fs1 fc1 sc0 ls36 ws34">between the lens’ principal points<span class="_ _d"></span>, known as the hia<span class="_ _d"></span>tus, s + s<span class="ff10 ls2 ws1">″</span></div><div class="t m1 x7 ha yfb ff7 fs1 fc1 sc0 ls37 ws35">becomes the object-to-image distance<span class="_ _d"></span>. This simplifica<span class="_ _8"></span>tion, called the</div><div class="t m1 x7 ha yfc ff7 fs1 fc1 sc0 ls38 ws36">thin-lens appr<span class="_ _d"></span>oxima<span class="_ _8"></span>tion, can speed up calcula<span class="_ _8"></span>tion when dealing</div><div class="t m1 x7 ha yfd ff7 fs1 fc1 sc0 ls2f ws2d">with simple optical systems<span class="_ _d"></span>.</div><div class="t m1 x7 h3 yfe fff fs1 fc1 sc0 ls2f ws3">Example 1:<span class="_ _12"> </span>Object outside Focal Point </div><div class="t m1 x7 ha yff ff7 fs1 fc1 sc0 ls39 ws37">A 1-mm-high object is placed on the optical axis<span class="_ _d"></span>, 200 mm left of the</div><div class="t m1 x7 ha y100 ff7 fs1 fc1 sc0 ls3a ws38">left principal point of a 01 LDX 103 (f = 50 mm). W<span class="_ _8"></span>here is the</div><div class="t m1 x7 ha y101 ff7 fs1 fc1 sc0 ls2f ws2d">image f<span class="_ _d"></span>or<span class="_ _15"></span>med, and wha<span class="_ _d"></span>t is the magnification? (See figur<span class="_ _8"></span>e 1.2.)</div><div class="t m1 x1d h3 y102 fff fs1 fc1 sc0 ls2f ws3">Example 2:<span class="_ _12"> </span>Object inside Focal Point </div><div class="t m1 x1d ha y103 ff7 fs1 fc1 sc0 ls2f ws39">The same object is placed 30 mm left of the left principal point of</div><div class="t m1 x1d ha y104 ff7 fs1 fc1 sc0 ls2f ws3a">the same lens<span class="_ _d"></span>. Wher<span class="_ _8"></span>e is the image f<span class="_ _d"></span>or<span class="_ _15"></span>med, and wha<span class="_ _8"></span>t is the ma<span class="_ _8"></span>gni-</div><div class="t m1 x1d ha y105 ff7 fs1 fc1 sc0 ls2f ws2d">fica<span class="_ _8"></span>tion? (See figure 1.3.)</div><div class="c x1d y106 w5 h1e"><div class="t m1 x60 ha y107 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x55 ha y108 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x61 ha y109 ff7 fs1 fc2 sc0 ls29 ws20"> = </div><div class="t m1 x62 ha y10a ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x48 ha y10b ff7 fs1 fc2 sc0 ls2 ws1">50</div><div class="t m1 x5c ha y10c ff7 fs1 fc2 sc0 ls2d ws1"> </div><div class="t m1 x47 ha y10d ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x7 ha y10e ff7 fs1 fc2 sc0 ls2 ws1">30</div><div class="t m1 x45 ha y10f ff7 fs1 fc2 sc0 ls2 ws3b">s<span class="_ _26"> </span> =<span class="_ _19"> </span> <span class="_ _1f"> </span>75 <span class="_ _23"></span>mm</div><div class="t m1 x45 ha y110 ff7 fs1 fc2 sc0 ls2 ws21">m =<span class="_ _19"> </span> </div><div class="t m1 x41 ha y111 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x63 ha y112 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x46 ha y113 ff7 fs1 fc2 sc0 ls29 ws20"> = </div><div class="t m1 x64 ha y114 ff7 fs1 fc2 sc0 ls2 ws1">75</div><div class="t m1 x22 ha y115 ff7 fs1 fc2 sc0 ls2 ws1">30</div><div class="t m1 x1b ha y116 ff7 fs1 fc2 sc0 ls2 ws3b"> =<span class="_ _19"> </span> <span class="_ _1f"> </span>2.5</div><div class="t m1 x45 ha y117 ff7 fs1 fc2 sc0 ls2 ws1">(or virtual image is 2.5 mm high and upright).</div><div class="t m1 x65 hc y118 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x4a hc y119 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x48 hc y11a ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x58 h1c y11b ff9 fs1 fc2 sc0 ls2 ws1">4</div><div class="t m1 x66 h1c y11c ff9 fs1 fc2 sc0 ls2 ws1">4</div><div class="t m1 x44 h1c y11d ff9 fs1 fc2 sc0 ls2 ws1">4</div><div class="t m1 x67 h1c y116 ff9 fs1 fc2 sc0 ls2 ws1">4</div></div><div class="c x1d y11e w5 h1f"><div class="t m1 x60 ha y11f ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x55 ha y120 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x61 ha y121 ff7 fs1 fc2 sc0 ls29 ws20"> = </div><div class="t m1 x19 ha y122 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x68 ha y123 ff7 fs1 fc2 sc0 ls2 ws1">50</div><div class="t m1 x1a ha y124 ff7 fs1 fc2 sc0 ls2d ws1"> </div><div class="t m1 x69 ha y125 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x64 ha y126 ff7 fs1 fc2 sc0 ls2 ws1">50</div><div class="t m1 x45 ha y127 ff7 fs1 fc2 sc0 ls2 ws3b">s<span class="_ _26"> </span> =<span class="_ _19"> </span> <span class="_ _1f"> </span>25 <span class="_ _23"></span>mm</div><div class="t m1 x45 ha y128 ff7 fs1 fc2 sc0 ls2 ws21">m =<span class="_ _19"> </span> </div><div class="t m1 x41 ha y129 ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x63 ha y12a ff7 fs1 fc2 sc0 ls2 ws1">s</div><div class="t m1 x46 ha y12b ff7 fs1 fc2 sc0 ls29 ws20"> = </div><div class="t m1 x64 ha y12c ff7 fs1 fc2 sc0 ls2 ws1">25</div><div class="t m1 x22 ha y12d ff7 fs1 fc2 sc0 ls2 ws1">50</div><div class="t m1 x1b ha y12e ff7 fs1 fc2 sc0 ls2 ws3b"> =<span class="_ _19"> </span> <span class="_ _1f"> </span>0.5</div><div class="t m1 x45 ha y12f ff7 fs1 fc2 sc0 ls2 ws1">(or virtual image is 0.5 mm high and upright).</div><div class="t m1 x65 hc y130 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x4a hc y131 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x48 hc y132 ff10 fs1 fc2 sc0 ls2b ws1">′′</div><div class="t m1 x25 h1c y133 ff9 fs1 fc2 sc0 ls2 ws1">4</div><div class="t m1 x42 h1c y134 ff9 fs1 fc2 sc0 ls2 ws1">4</div><div class="t m1 x66 h1c y135 ff9 fs1 fc2 sc0 ls2 ws1">4</div><div class="t m1 x44 h1c y136 ff9 fs1 fc2 sc0 ls2 ws1">4</div><div class="t m1 x67 h1c y137 ff9 fs1 fc2 sc0 ls2 ws1">4</div></div><div class="t m1 x1d ha y138 ff7 fs1 fc1 sc0 ls3b ws3c">In this case<span class="_ _d"></span>, the lens is being used as a magnifier<span class="_ _d"></span>, and the ima<span class="_ _8"></span>ge can</div><div class="t m1 x1d ha y139 ff7 fs1 fc1 sc0 ls2f ws2d">be view<span class="_ _8"></span>ed only back thr<span class="_ _d"></span>ough the lens<span class="_ _8"></span>.</div><div class="t m1 x1d h3 y13a fff fs1 fc1 sc0 ls2f ws3">Example 3:<span class="_ _12"> </span>Object at Focal Point</div><div class="t m1 x1d ha y13b ff7 fs1 fc1 sc0 ls1 ws3d">A 1-mm-high object is placed on the optical axis<span class="_ _d"></span>, 50 mm left of the</div><div class="t m1 x1d ha y13c ff7 fs1 fc1 sc0 ls2f ws3e">first principal point of an 01 LDK 019 (f = 50 mm). W<span class="_ _8"></span>here is the</div><div class="t m1 x1d ha y13d ff7 fs1 fc1 sc0 ls2f ws2d">image f<span class="_ _d"></span>or<span class="_ _15"></span>med, and wha<span class="_ _d"></span>t is the magnification? (See figur<span class="_ _8"></span>e 1.4.)</div><div class="t m1 x6 h7 y17 ff6 fs5 fc2 sc0 ls3c ws3f"><span class="fc3 sc0">Chpt. 1 Final 10/8/99 11:00 AM Page 1.4</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,-141.176471,-347.858808]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/6258ebb0be9ad24cfaaed857/bg5.jpg"><div class="t m1 x18 h3 y18 ffe fs1 fc1 sc0 ls5 ws3">Visit Us Online!<span class="_ _12"> </span><span class="fff ws1">www<span class="_ _d"></span>.mellesgriot.com<span class="_ _16"> </span><span class="ff3 fs2 ls2">1<span class="_ _1c"> </span></span><span class="ffe ls1">1.5</span></span></div><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Fundamental Optics</div><div class="t m0 x1 h2 y2 ff1 fs0 fc1 sc0 ls0 ws0">Gaussian Beam Optics</div><div class="t m0 x1 h2 y3 ff1 fs0 fc1 sc0 ls0 ws0">Optical Specifications</div><div class="t m0 x1 h2 y4 ff1 fs0 fc1 sc0 ls0 ws0">Material Properties</div><div class="t m0 x1 h2 y5 ff1 fs0 fc1 sc0 ls0 ws0">Optical Coatings</div><div class="c x19 y13e w3 h20"><div class="t m1 x60 he y13f ffe fs8 fc1 sc0 ls2 ws1">object</div><div class="t m1 x6a he y140 ffe fs8 fc1 sc0 ls2 ws1">F</div><div class="t m4 x6b h16 y141 ffe fsa fc1 sc0 ls2 ws1">1</div><div class="t m1 x6c he y142 ffe fs8 fc1 sc0 ls2 ws1">F</div><div class="t m1 x6d h16 y143 ffe fsa fc1 sc0 ls2 ws1">2</div><div class="t m1 x1a he y144 ffe fs8 fc1 sc0 ls2 ws1">image</div></div><div class="t m1 x19 hc y145 ffd fs1 fc1 sc0 ls3d ws1e">Figure 1.4<span class="_ _1c"> </span><span class="fff ls3e">Example 3 </span><span class="ffe">(f = <span class="ff9 ls2 ws1">4<span class="_ _d"></span><span class="ffe ls3e ws3">50 mm, s = 50 mm, s<span class="ff10 ls2 ws1">″<span class="_ _19"> </span><span class="ffe ls3f">= </span><span class="ff9">4<span class="_ _d"></span><span class="ffe ls3d ws1e">25 mm)</span></span></span></span></span></span></div><div class="c x5 y146 w3 h21"><div class="t m1 x6e hf y147 ffb fs8 fc1 sc0 ls2 ws1">v</div><div class="t m1 x65 hf y148 ffb fs8 fc1 sc0 ls2 ws1">f</div><div class="t m1 x65 he y149 ffe fs8 fc1 sc0 ls2 ws1">2</div><div class="t m1 x7 he y14a ffe fs8 fc1 sc0 ls2 ws1">principal surface</div><div class="t m1 x6f he y14b ffe fs8 fc1 sc0 ls2 ws1">f</div></div><div class="t m1 x5 h3 y14c ffd fs1 fc1 sc0 ls1 ws1e">Figure 1.5<span class="_ _1c"> </span><span class="fff ls5">F-number and numerical aperture</span></div><div class="t m1 x1a ha y14d ff7 fs1 fc1 sc0 ls40 ws40">A simple gra<span class="_ _8"></span>phical method can also be used to deter<span class="_ _15"></span>mine paraxial</div><div class="t m1 x19 ha y14e ff7 fs1 fc1 sc0 ls27 ws41">image loca<span class="_ _d"></span>tion and magnifica<span class="_ _8"></span>tion. This graphical a<span class="_ _8"></span>ppr<span class="_ _8"></span>oach relies on</div><div class="t m1 x19 ha y14f ff7 fs1 fc1 sc0 ls41 ws42">tw<span class="_ _8"></span>o simple pr<span class="_ _8"></span>operties of an optical system. First, a ra<span class="_ _8"></span>y tha<span class="_ _8"></span>t enters</div><div class="t m1 x19 ha y150 ff7 fs1 fc1 sc0 ls41 ws43">the system parallel to the optical axis cr<span class="_ _8"></span>osses the optical axis a<span class="_ _8"></span>t the</div><div class="t m1 x19 ha y151 ff7 fs1 fc1 sc0 ls41 ws44">f<span class="_ _8"></span>ocal point. Second, a ra<span class="_ _d"></span>y that enters the first principal point of the</div><div class="t m1 x19 ha y152 ff7 fs1 fc1 sc0 ls41 ws45">system exits the system fr<span class="_ _d"></span>om the second principal point parallel to</div><div class="t m1 x19 ha y153 ff7 fs1 fc1 sc0 ls42 ws46">its original direction (i.e<span class="_ _d"></span>., its exit angle with the optical axis is the same</div><div class="t m1 x19 ha y154 ff7 fs1 fc1 sc0 ls43 ws47">as its entrance angle). This method has been applied to the thr<span class="_ _8"></span>ee</div><div class="t m1 x19 ha y155 ff7 fs1 fc1 sc0 ls44 ws48">previous e<span class="_ _8"></span>xamples illustra<span class="_ _8"></span>ted in figures 1.2 thr<span class="_ _d"></span>ough 1.4. Note that b<span class="_ _8"></span>y</div><div class="t m1 x19 ha y156 ff7 fs1 fc1 sc0 ls45 ws49">using the thin-lens appr<span class="_ _d"></span>oxima<span class="_ _8"></span>tion, this second pr<span class="_ _8"></span>operty reduces to the</div><div class="t m1 x19 ha y157 ff7 fs1 fc1 sc0 ls46 ws4a">sta<span class="_ _8"></span>tement that a r<span class="_ _8"></span>a<span class="_ _8"></span>y passing thr<span class="_ _8"></span>ough the center of the lens is undevia<span class="_ _8"></span>ted.</div><div class="t m1 x19 h3 y158 fff fs1 fc1 sc0 ls5 ws3">F-NUMBER<span class="_ _18"> </span>AND<span class="_ _27"> </span>NUMERICAL APERTURE</div><div class="t m1 x1a ha y159 ff7 fs1 fc1 sc0 ls5 ws4b">The paraxial calcula<span class="_ _8"></span>tions used to determine necessary element</div><div class="t m1 x19 ha y15a ff7 fs1 fc1 sc0 ls47 ws4c">diameter are based on the concepts of f<span class="_ _d"></span>ocal ratio (f-n<span class="_ _d"></span>umber or f/#)</div><div class="t m1 x19 ha y15b ff7 fs1 fc1 sc0 ls48 ws4d">and n<span class="_ _8"></span>umerical apertur<span class="_ _8"></span>e (NA). The f-n<span class="_ _d"></span>umber is the ratio of the f<span class="_ _d"></span>ocal</div><div class="t m1 x19 ha y15c ff7 fs1 fc1 sc0 ls2f ws2d">length of the lens to its clear apertur<span class="_ _8"></span>e (effecti<span class="_ _8"></span>ve diameter).</div><div class="c x19 y15d w5 h22"><div class="t m1 x45 ha y15e ff7 fs1 fc2 sc0 ls49 ws2">f-<span class="_ _15"></span>number<span class="_ _29"> </span> =<span class="_ _17"> </span> </div><div class="t m1 x47 ha y15f ff7 fs1 fc2 sc0 ls2 ws1">f</div><div class="t m1 x49 h23 y160 ffb fs1 fc2 sc0 ls2 ws1">f</div><div class="t m1 x17 ha y161 ff7 fs1 fc2 sc0 ls2 ws1">.</div></div><div class="c x19 y162 w5 h24"><div class="t m1 x65 ha y163 ff7 fs1 fc2 sc0 ls2 ws4e">NA =<span class="_ _19"> </span> <span class="_ _23"></span>sin<span class="_ _0"> </span>=<span class="_ _19"> </span> </div><div class="t m1 x3d ha y164 ff7 fs1 fc2 sc0 ls2 ws1">2f</div><div class="t m1 x1a h23 y163 ffb fs1 fc2 sc0 ls2 ws1">v </div><div class="t m1 x70 h23 y165 ffb fs1 fc2 sc0 ls2 ws1">f</div></div><div class="c x19 y166 w5 h25"><div class="t m1 x71 ha y167 ff7 fs1 fc2 sc0 ls2 ws1">or</div><div class="t m1 x72 ha y168 ff7 fs1 fc2 sc0 ls2 ws4e">NA =<span class="_ _19"> </span> </div><div class="t m1 x54 ha y169 ff7 fs1 fc2 sc0 ls2 ws1">1</div><div class="t m1 x5c ha y16a ff7 fs1 fc2 sc0 ls2 ws1">2(f-<span class="_ _25"></span>number)</div><div class="t m1 x73 ha y16b ff7 fs1 fc2 sc0 ls2 ws1">.</div></div><div class="t m1 x74 h1d y16c ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.7<span class="_ _15"></span></span>)</div><div class="t m1 x74 h1d y16d ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.9<span class="_ _15"></span></span>)</div><div class="t m1 x74 h1d y16e ffe fsc fc1 sc0 ls2 ws1">(<span class="ffc ls2e">1.8<span class="_ _15"></span></span>)</div><div class="t m1 x1a ha y16f ff7 fs1 fc1 sc0 ls2f ws4f">T<span class="_ _14"></span>o visualiz<span class="_ _15"></span>e the f-n<span class="_ _8"></span>umber<span class="_ _d"></span>, consider a lens with a positi<span class="_ _8"></span>ve f<span class="_ _d"></span>ocal</div><div class="t m1 x19 ha y170 ff7 fs1 fc1 sc0 ls2f ws50">length illumina<span class="_ _8"></span>ted unif<span class="_ _8"></span>ormly with collimated light. The f-n<span class="_ _d"></span>umber</div><div class="t m1 x19 ha y171 ff7 fs1 fc1 sc0 ls4a ws51">defines the angle of the cone of light lea<span class="_ _d"></span>ving the lens which ultima<span class="_ _d"></span>tely</div><div class="t m1 x19 ha y172 ff7 fs1 fc1 sc0 ls4b ws52">f<span class="_ _8"></span>orms the image<span class="_ _d"></span>. This is an important concept when the thr<span class="_ _8"></span>oughput</div><div class="t m1 x19 ha y173 ff7 fs1 fc1 sc0 lsd ws53">or light-ga<span class="_ _8"></span>thering pow<span class="_ _8"></span>er of an optical system is critical, such as</div><div class="t m1 x19 ha y174 ff7 fs1 fc1 sc0 ls2f ws38">when f<span class="_ _d"></span>ocusing light into a monochroma<span class="_ _d"></span>tor or projecting a high-</div><div class="t m1 x19 ha y175 ff7 fs1 fc1 sc0 ls2f ws2d">pow<span class="_ _8"></span>er ima<span class="_ _8"></span>ge<span class="_ _d"></span>.</div><div class="t m1 x1a ha y176 ff7 fs1 fc1 sc0 ls4c ws54">The other term used commonly in defining this cone angle is</div><div class="t m1 x19 ha y177 ff7 fs1 fc1 sc0 ls4d ws55">n<span class="_ _8"></span>umerical apertur<span class="_ _8"></span>e<span class="_ _d"></span>. Numerical aperture is the sine of the angle made</div><div class="t m1 x19 ha y178 ff7 fs1 fc1 sc0 ls4e ws56">by the mar<span class="_ _d"></span>ginal ray with the optical axis<span class="_ _d"></span>. By referring to </div><div class="t m1 x19 ha y179 ff7 fs1 fc1 sc0 ls4f ws2d">figure 1.5 and using simple trigonometry<span class="_ _14"></span>, it can be seen that </div><div class="t m1 x2c ha y17a ff7 fs1 fc1 sc0 ls2f ws57">R<span class="_ _8"></span>a<span class="_ _d"></span>y f-numbers can also be defined f<span class="_ _d"></span>or any arbitrary r<span class="_ _8"></span>a<span class="_ _8"></span>y if its</div><div class="t m1 x5 ha y17b ff7 fs1 fc1 sc0 ls50 ws58">conjuga<span class="_ _8"></span>te distance and the diameter at w<span class="_ _8"></span>hich it intersects the</div><div class="t m1 x5 ha y17c ff7 fs1 fc1 sc0 ls2f ws2d">principal surface of the optical system are kno<span class="_ _8"></span>wn.</div><div class="t m1 x75 h9 y17d fff fs5 fc1 sc0 ls51 ws1">NOTE</div><div class="t m1 x76 ha y17e ff7 fs1 fc1 sc0 ls52 ws59">Because the sign con<span class="_ _8"></span>vention gi<span class="_ _8"></span>ven pre<span class="_ _8"></span>viously is not</div><div class="t m1 x76 ha y17f ff7 fs1 fc1 sc0 ls53 ws5a">used universall<span class="_ _d"></span>y in all optics texts<span class="_ _8"></span>, the reader ma<span class="_ _d"></span>y</div><div class="t m1 x76 ha y180 ff7 fs1 fc1 sc0 ls54 ws5b">notice dif<span class="_ _8"></span>ferences in the paraxial f<span class="_ _d"></span>or<span class="_ _15"></span>mulas<span class="_ _d"></span>. How<span class="_ _8"></span>ev<span class="_ _8"></span>er<span class="_ _14"></span>,</div><div class="t m1 x76 ha y181 ff7 fs1 fc1 sc0 ls55 ws5c">results will be correct as long as a consistent set of</div><div class="t m1 x76 ha y182 ff7 fs1 fc1 sc0 ls54 ws2d">f<span class="_ _8"></span>ormulas and sign con<span class="_ _8"></span>ventions is used.</div><div class="t m1 x6 h7 y17 ff6 fs5 fc2 sc0 ls56 ws5d"><span class="fc3 sc0">Chpt. 1 Final a 9/2/99 4:15 PM Page 1.5</span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,-141.176471,-347.858808]}'></div></div>