<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/624efb9c6caf596192b72c4a/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/624efb9c6caf596192b72c4a/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">1532<span class="_ _0"> </span>IEEE<span class="_"> </span>TRANSACTIONS<span class="_"> </span>ON<span class="_ _1"> </span>IMA<span class="_ _2"></span>GE<span class="_"> </span>PROCESSING,<span class="_"> </span>VOL.<span class="_"> </span>9,<span class="_"> </span>NO.<span class="_ _1"> </span>9,<span class="_"> </span>SEPTEMBER<span class="_ _1"> </span>2000</div><div class="t m0 x2 h3 y2 ff1 fs1 fc0 sc0 ls0 ws0">Adapti<span class="_ _3"></span>v<span class="_ _3"></span>e<span class="_ _4"> </span>W<span class="_ _5"></span>a<span class="_ _3"></span>velet<span class="_"> </span>Thresholding<span class="_"> </span>for<span class="_"> </span>Image<span class="_ _4"> </span>Denoising</div><div class="t m0 x3 h3 y3 ff1 fs1 fc0 sc0 ls0 ws0">and<span class="_ _6"> </span>Compression</div><div class="t m0 x4 h4 y4 ff1 fs2 fc0 sc0 ls0 ws0">S.<span class="_"> </span>Grace<span class="_"> </span>Chang<span class="ff2">,<span class="_"> </span>Student<span class="_"> </span>Member<span class="_ _7"></span>,<span class="_"> </span>IEEE<span class="ff1">,<span class="_"> </span>Bin<span class="_"> </span>Y<span class="_ _7"></span>u<span class="ff2">,<span class="_"> </span>Senior<span class="_"> </span>Member<span class="_ _7"></span>,<span class="_"> </span>IEEE<span class="ff1">,<span class="_"> </span>and<span class="_"> </span>Martin<span class="_"> </span>V<span class="_ _7"></span>etterli<span class="ff2">,<span class="_"> </span>F<span class="_ _7"></span>ellow<span class="_ _3"></span>,<span class="_"> </span>IEEE</span></span></span></span></span></div><div class="t m0 x5 h5 y5 ff3 fs3 fc0 sc0 ls0 ws0">Abstract—<span class="ff4">The<span class="_ _8"> </span>first<span class="_ _9"> </span>part<span class="_ _9"> </span>of<span class="_ _8"> </span>this<span class="_ _8"> </span>paper<span class="_ _8"> </span>proposes<span class="_ _8"> </span>an<span class="_ _8"> </span>adaptive,</span></div><div class="t m0 x1 h5 y6 ff4 fs3 fc0 sc0 ls0 ws0">data-driven<span class="_"> </span>thr<span class="_ _3"></span>eshold<span class="_"> </span>for<span class="_"> </span>image<span class="_"> </span>denoising<span class="_"> </span>via<span class="_"> </span>wa<span class="_ _3"></span>velet<span class="_"> </span>soft-thresh-</div><div class="t m0 x1 h5 y7 ff4 fs3 fc0 sc0 ls0 ws0">olding.<span class="_"> </span>The<span class="_ _1"> </span>threshold<span class="_ _1"> </span>is<span class="_"> </span>deriv<span class="_ _2"></span>ed<span class="_"> </span>in<span class="_"> </span>a<span class="_ _1"> </span>Bayesian<span class="_ _1"> </span>framework,<span class="_ _1"> </span>and<span class="_"> </span>the</div><div class="t m0 x1 h5 y8 ff4 fs3 fc0 sc0 ls0 ws0">prior<span class="_ _a"> </span>used<span class="_ _a"> </span>on<span class="_ _a"> </span>the<span class="_ _a"> </span>wa<span class="_ _3"></span>velet<span class="_ _a"> </span>coefficients<span class="_ _a"> </span>is<span class="_ _a"> </span>the<span class="_"> </span>generalized<span class="_ _a"> </span>Gaussian</div><div class="t m0 x1 h5 y9 ff4 fs3 fc0 sc0 ls0 ws0">distribution<span class="_"> </span>(GGD)<span class="_ _a"> </span>widely<span class="_ _a"> </span>used<span class="_"> </span>in<span class="_ _a"> </span>image<span class="_ _a"> </span>processing<span class="_"> </span>applications.</div><div class="t m0 x1 h5 ya ff4 fs3 fc0 sc0 ls0 ws0">The<span class="_"> </span>proposed<span class="_"> </span>threshold<span class="_ _a"> </span>is<span class="_"> </span>simple<span class="_"> </span>and<span class="_ _a"> </span>closed-f<span class="_ _3"></span>orm,<span class="_ _a"> </span>and<span class="_"> </span>it<span class="_ _a"> </span>is<span class="_"> </span>adap-</div><div class="t m0 x1 h5 yb ff4 fs3 fc0 sc0 ls0 ws0">tive<span class="_"> </span>to<span class="_ _a"> </span>each<span class="_ _a"> </span>subband<span class="_"> </span>because<span class="_ _a"> </span>it<span class="_ _a"> </span>depends<span class="_ _a"> </span>on<span class="_ _a"> </span>data-driv<span class="_ _2"></span>en<span class="_ _a"> </span>estimates</div><div class="t m0 x1 h5 yc ff4 fs3 fc0 sc0 ls0 ws0">of<span class="_ _9"> </span>the<span class="_ _b"> </span>parameters.<span class="_ _b"> </span>Experimental<span class="_ _9"> </span>results<span class="_ _b"> </span>show<span class="_ _b"> </span>that<span class="_ _b"> </span>the<span class="_ _9"> </span>proposed</div><div class="t m0 x1 h5 yd ff4 fs3 fc0 sc0 ls0 ws0">method,<span class="_ _9"> </span>called<span class="_ _8"> </span><span class="ff3">BayesShrink</span>,<span class="_ _9"> </span>is<span class="_ _8"> </span>typically<span class="_ _9"> </span>within<span class="_ _8"> </span>5%<span class="_ _8"> </span>of<span class="_ _9"> </span>the<span class="_ _8"> </span>MSE</div><div class="t m0 x1 h5 ye ff4 fs3 fc0 sc0 ls0 ws0">of<span class="_ _a"> </span>the<span class="_ _b"> </span>best<span class="_ _a"> </span>soft-thresholding<span class="_ _a"> </span>benchmark<span class="_ _a"> </span>with<span class="_ _a"> </span>the<span class="_ _b"> </span>image<span class="_ _a"> </span>assumed</div><div class="t m0 x1 h5 yf ff4 fs3 fc0 sc0 ls0 ws0">known.<span class="_ _b"> </span>It<span class="_ _b"> </span>also<span class="_ _a"> </span>outperforms<span class="_ _b"> </span>Donoho<span class="_ _b"> </span>and<span class="_ _b"> </span>J<span class="_ _2"></span>ohnstone’s<span class="_ _b"> </span><span class="ff3">SureShrink</span></div><div class="t m0 x1 h5 y10 ff4 fs3 fc0 sc0 ls0 ws0">most<span class="_ _a"> </span>of<span class="_ _a"> </span>the<span class="_ _a"> </span>time.</div><div class="t m0 x6 h5 y11 ff4 fs3 fc0 sc0 ls0 ws0">The<span class="_ _c"> </span>second<span class="_ _c"> </span>part<span class="_ _c"> </span>of<span class="_ _c"> </span>the<span class="_ _c"> </span>paper<span class="_ _c"> </span>attempts<span class="_ _c"> </span>to<span class="_ _c"> </span>further<span class="_ _d"> </span>validate</div><div class="t m0 x1 h5 y12 ff4 fs3 fc0 sc0 ls0 ws0">recent<span class="_ _9"> </span>claims<span class="_ _9"> </span>that<span class="_ _9"> </span>lossy<span class="_ _9"> </span>compression<span class="_ _9"> </span>can<span class="_ _9"> </span>be<span class="_ _8"> </span>used<span class="_ _9"> </span>for<span class="_ _9"> </span>denoising.</div><div class="t m0 x1 h5 y13 ff4 fs3 fc0 sc0 ls0 ws0">The<span class="_ _e"> </span><span class="ff3">BayesShrink<span class="_ _e"> </span></span>threshold<span class="_ _e"> </span>can<span class="_ _e"> </span>aid<span class="_ _e"> </span>in<span class="_ _e"> </span>the<span class="_ _e"> </span>parameter<span class="_ _e"> </span>selection</div><div class="t m0 x1 h5 y14 ff4 fs3 fc0 sc0 ls0 ws0">of<span class="_ _e"> </span>a<span class="_ _e"> </span>coder<span class="_ _c"> </span>designed<span class="_ _e"> </span>with<span class="_ _e"> </span>the<span class="_ _e"> </span>intention<span class="_ _e"> </span>of<span class="_ _e"> </span>denoising,<span class="_ _c"> </span>and<span class="_ _e"> </span>thus</div><div class="t m0 x1 h5 y15 ff4 fs3 fc0 sc0 ls0 ws0">achieving<span class="_ _9"> </span>simultaneous<span class="_ _8"> </span>denoising<span class="_ _8"> </span>and<span class="_ _8"> </span>compression.<span class="_ _9"> </span>Specifically<span class="_ _3"></span>,</div><div class="t m0 x1 h5 y16 ff4 fs3 fc0 sc0 ls0 ws0">the<span class="_"> </span>zero-zone<span class="_"> </span>in<span class="_ _1"> </span>the<span class="_"> </span>quantization<span class="_"> </span>step<span class="_"> </span>of<span class="_ _1"> </span>compression<span class="_"> </span>is<span class="_ _1"> </span>analogous</div><div class="t m0 x1 h5 y17 ff4 fs3 fc0 sc0 ls0 ws0">to<span class="_"> </span>the<span class="_"> </span>thr<span class="_ _3"></span>eshold<span class="_"> </span>value<span class="_"> </span>in<span class="_"> </span>the<span class="_"> </span>thr<span class="_ _3"></span>esholding<span class="_"> </span>function.<span class="_"> </span>The<span class="_"> </span>r<span class="_ _2"></span>emaining</div><div class="t m0 x1 h5 y18 ff4 fs3 fc0 sc0 ls0 ws0">coder<span class="_ _a"> </span>design<span class="_ _b"> </span>parameters<span class="_ _a"> </span>ar<span class="_ _2"></span>e<span class="_ _a"> </span>chosen<span class="_ _b"> </span>based<span class="_ _a"> </span>on<span class="_ _a"> </span>a<span class="_ _a"> </span>criterion<span class="_ _b"> </span>deriv<span class="_ _2"></span>ed</div><div class="t m0 x1 h5 y19 ff4 fs3 fc0 sc0 ls0 ws0">from<span class="_ _8"> </span>Rissanen’s<span class="_ _e"> </span>minimum<span class="_ _8"> </span>description<span class="_ _f"> </span>length<span class="_ _f"> </span>(MDL)<span class="_ _8"> </span>principle.</div><div class="t m0 x1 h5 y1a ff4 fs3 fc0 sc0 ls0 ws0">Experiments<span class="_ _b"> </span>show<span class="_ _a"> </span>that<span class="_ _b"> </span>this<span class="_ _a"> </span>compression<span class="_ _b"> </span>method<span class="_ _a"> </span>does<span class="_ _b"> </span>indeed<span class="_ _b"> </span>r<span class="_ _2"></span>e-</div><div class="t m0 x1 h5 y1b ff4 fs3 fc0 sc0 ls0 ws0">move<span class="_ _1"> </span>noise<span class="_ _10"> </span>significantly<span class="_ _3"></span>,<span class="_ _10"> </span>especially<span class="_"> </span>f<span class="_ _3"></span>or<span class="_"> </span>large<span class="_ _10"> </span>noise<span class="_"> </span>po<span class="_ _2"></span>wer<span class="_ _7"></span>.<span class="_"> </span>Ho<span class="_ _2"></span>wever<span class="_ _7"></span>,</div><div class="t m0 x1 h5 y1c ff4 fs3 fc0 sc0 ls0 ws0">it<span class="_"> </span>introduces<span class="_"> </span>quantization<span class="_"> </span>noise<span class="_ _a"> </span>and<span class="_"> </span>should<span class="_"> </span>be<span class="_"> </span>used<span class="_ _a"> </span>only<span class="_"> </span>if<span class="_"> </span>bitrate</div><div class="t m0 x1 h5 y1d ff4 fs3 fc0 sc0 ls0 ws0">were<span class="_"> </span>an<span class="_ _a"> </span>additional<span class="_"> </span>concern<span class="_"> </span>to<span class="_ _a"> </span>denoising<span class="_ _2"></span>.</div><div class="t m0 x6 h5 y1e ff3 fs3 fc0 sc0 ls0 ws0">Index<span class="_ _a"> </span>T<span class="_ _7"></span>erms—<span class="ff4">Adaptive<span class="_ _a"> </span>method,<span class="_"> </span>image<span class="_ _a"> </span>compression,<span class="_ _a"> </span>image<span class="_"> </span>de-</span></div><div class="t m0 x1 h5 y1f ff4 fs3 fc0 sc0 ls0 ws0">noising,<span class="_"> </span>image<span class="_ _a"> </span>r<span class="_ _2"></span>estoration,<span class="_"> </span>wavelet<span class="_"> </span>thresholding.</div><div class="t m0 x7 h6 y20 ff1 fs4 fc0 sc0 ls0 ws0">I.<span class="_ _c"> </span>I<span class="fs5">NTRODUCTION</span></div><div class="t m0 x1 h7 y21 ff4 fs6 fc0 sc0 ls0 ws0">A</div><div class="t m0 x8 h6 y22 ff1 fs4 fc0 sc0 ls0 ws0">N<span class="_"> </span>IMA<span class="_ _3"></span>GE<span class="_"> </span>is<span class="_ _1"> </span>often<span class="_"> </span>corrupted<span class="_"> </span>by<span class="_ _1"> </span>noise<span class="_"> </span>in<span class="_"> </span>its<span class="_ _1"> </span>acquisition<span class="_"> </span>or</div><div class="t m0 x8 h6 y23 ff1 fs4 fc0 sc0 ls0 ws0">transmission.<span class="_ _1"> </span>The<span class="_ _1"> </span>goal<span class="_ _1"> </span>of<span class="_ _1"> </span>denoising<span class="_ _1"> </span>is<span class="_ _1"> </span>to<span class="_"> </span>remo<span class="_ _3"></span>ve<span class="_ _1"> </span>the<span class="_ _1"> </span>noise</div><div class="t m0 x1 h6 y24 ff1 fs4 fc0 sc0 ls0 ws0">while<span class="_ _9"> </span>retaining<span class="_ _9"> </span>as<span class="_ _8"> </span>much<span class="_ _9"> </span>as<span class="_ _9"> </span>possible<span class="_ _8"> </span>the<span class="_ _9"> </span>important<span class="_ _8"> </span>signal<span class="_ _9"> </span>fea-</div><div class="t m0 x1 h6 y25 ff1 fs4 fc0 sc0 ls0 ws0">tures.<span class="_ _b"> </span>Traditionally<span class="_ _7"></span>,<span class="_ _9"> </span>this<span class="_ _b"> </span>is<span class="_ _9"> </span>achie<span class="_ _2"></span>ved<span class="_ _b"> </span>by<span class="_ _b"> </span>linear<span class="_ _9"> </span>processing<span class="_ _b"> </span>such</div><div class="t m0 x1 h6 y26 ff1 fs4 fc0 sc0 ls0 ws0">as<span class="_ _9"> </span>W<span class="_ _3"></span>iener<span class="_ _9"> </span>filtering.<span class="_ _9"> </span>A<span class="_ _9"> </span>vast<span class="_ _b"> </span>literature<span class="_ _9"> </span>has<span class="_ _9"> </span>emerged<span class="_ _9"> </span>recently<span class="_ _b"> </span>on</div><div class="t m0 x9 h8 y27 ff1 fs5 fc0 sc0 ls0 ws0">Manuscript<span class="_ _b"> </span>received<span class="_ _b"> </span>January<span class="_ _9"> </span>22,<span class="_ _b"> </span>1998;<span class="_ _9"> </span>revised<span class="_ _b"> </span>April<span class="_ _b"> </span>7,<span class="_ _9"> </span>2000.<span class="_ _9"> </span>This<span class="_ _b"> </span>work</div><div class="t m0 x1 h8 y28 ff1 fs5 fc0 sc0 ls0 ws0">was<span class="_ _f"> </span>supported<span class="_ _e"> </span>in<span class="_ _f"> </span>part<span class="_ _e"> </span>by<span class="_ _e"> </span>the<span class="_ _f"> </span>NSF<span class="_ _e"> </span>Graduate<span class="_ _f"> </span>Fellowship<span class="_ _f"> </span>and<span class="_ _e"> </span>the<span class="_ _e"> </span>Univ<span class="_ _2"></span>er-</div><div class="t m0 x1 h8 y29 ff1 fs5 fc0 sc0 ls0 ws0">sity<span class="_ _c"> </span>of<span class="_ _c"> </span>California<span class="_ _c"> </span>Dissertation<span class="_ _c"> </span>Fellowship<span class="_ _c"> </span>to<span class="_ _c"> </span>S.<span class="_ _c"> </span>G.<span class="_ _c"> </span>Chang;<span class="_ _c"> </span>ARO<span class="_ _11"> </span>Grant</div><div class="t m0 x1 h8 y2a ff1 fs5 fc0 sc0 ls0 ws0">D<span class="_ _2"></span>AAH04-94-G-0232<span class="_"> </span>and<span class="_ _12"> </span>NSF<span class="_"> </span>Grant<span class="_ _12"> </span>DMS-9322817<span class="_"> </span>to<span class="_ _12"> </span>B.<span class="_"> </span>Y<span class="_ _3"></span>u;<span class="_"> </span>and<span class="_ _12"> </span>NSF<span class="_"> </span>Grant</div><div class="t m0 x1 h8 y2b ff1 fs5 fc0 sc0 ls0 ws0">MIP-93-213002<span class="_ _12"> </span>and<span class="_"> </span>Swiss<span class="_ _12"> </span>NSF<span class="_ _1"> </span>Grant<span class="_ _12"> </span>20-52347.97<span class="_ _12"> </span>to<span class="_ _12"> </span>M.<span class="_"> </span>V<span class="_ _3"></span>etterli.<span class="_"> </span>Part<span class="_"> </span>of<span class="_ _12"> </span>this</div><div class="t m0 x1 h8 y2c ff1 fs5 fc0 sc0 ls0 ws0">work<span class="_ _10"> </span>was<span class="_ _10"> </span>presented<span class="_ _10"> </span>at<span class="_ _10"> </span>the<span class="_ _10"> </span>IEEE<span class="_"> </span>International<span class="_ _10"> </span>Conference<span class="_ _10"> </span>on<span class="_ _10"> </span>Image<span class="_ _10"> </span>Processing,</div><div class="t m0 x1 h8 y2d ff1 fs5 fc0 sc0 ls0 ws0">Santa<span class="_ _e"> </span>Barbara,<span class="_ _e"> </span>CA,<span class="_ _11"> </span>October<span class="_ _e"> </span>1997.<span class="_ _e"> </span>The<span class="_ _11"> </span>associate<span class="_ _e"> </span>editor<span class="_ _e"> </span>coordinating<span class="_ _11"> </span>the</div><div class="t m0 x1 h8 y2e ff1 fs5 fc0 sc0 ls0 ws0">revie<span class="_ _3"></span>w<span class="_ _12"> </span>of<span class="_"> </span>this<span class="_ _1"> </span>manuscript<span class="_ _12"> </span>and<span class="_"> </span>approving<span class="_"> </span>it<span class="_ _12"> </span>for<span class="_"> </span>publication<span class="_"> </span>was<span class="_ _1"> </span>Prof.<span class="_ _12"> </span>Patrick<span class="_"> </span>L.</div><div class="t m0 x1 h8 y2f ff1 fs5 fc0 sc0 ls0 ws0">Combettes.</div><div class="t m0 x9 h8 y30 ff1 fs5 fc0 sc0 ls0 ws0">S.<span class="_ _13"> </span>G.<span class="_ _13"> </span>Chang<span class="_ _13"> </span>was<span class="_ _13"> </span>with<span class="_ _13"> </span>the<span class="_ _13"> </span>Department<span class="_ _13"> </span>of<span class="_ _13"> </span>Electrical<span class="_ _13"> </span>Engineering<span class="_ _13"> </span>and<span class="_ _13"> </span>Computer</div><div class="t m0 x1 h8 y31 ff1 fs5 fc0 sc0 ls0 ws0">Sciences,<span class="_"> </span>University<span class="_"> </span>of<span class="_"> </span>California,<span class="_"> </span>Berkeley<span class="_ _3"></span>,<span class="_"> </span>CA<span class="_"> </span>94720<span class="_"> </span>USA.<span class="_ _12"> </span>She<span class="_"> </span>is<span class="_"> </span>now<span class="_"> </span>with</div><div class="t m0 x1 h8 y32 ff1 fs5 fc0 sc0 ls0 ws0">Hewlett-P<span class="_ _2"></span>ackard<span class="_"> </span>Company<span class="_ _3"></span>,<span class="_"> </span>Grenoble,<span class="_"> </span>France<span class="_"> </span>(e-mail:<span class="_"> </span>grchang@yahoo.com).</div><div class="t m0 x9 h8 y33 ff1 fs5 fc0 sc0 ls0 ws0">B.<span class="_ _10"> </span>Y<span class="_ _7"></span>u<span class="_"> </span>is<span class="_ _13"> </span>with<span class="_"> </span>the<span class="_ _13"> </span>Department<span class="_"> </span>of<span class="_ _13"> </span>Statistics,<span class="_"> </span>Uni<span class="_ _3"></span>versity<span class="_"> </span>of<span class="_ _13"> </span>California,<span class="_"> </span>Berkele<span class="_ _2"></span>y<span class="_ _3"></span>,</div><div class="t m0 x1 h8 y34 ff1 fs5 fc0 sc0 ls0 ws0">CA<span class="_"> </span>94720<span class="_ _12"> </span>USA<span class="_"> </span>(e-mail:<span class="_ _12"> </span>binyu@stat.berkele<span class="_ _2"></span>y<span class="_ _3"></span>.edu)</div><div class="t m0 x9 h8 y35 ff1 fs5 fc0 sc0 ls0 ws0">M.<span class="_ _a"> </span>V<span class="_ _7"></span>etterli<span class="_ _b"> </span>is<span class="_ _a"> </span>with<span class="_ _a"> </span>the<span class="_ _b"> </span>Laboratory<span class="_ _a"> </span>of<span class="_ _a"> </span>Audiovisual<span class="_ _a"> </span>Communications,<span class="_ _a"> </span>Swiss</div><div class="t m0 x1 h8 y36 ff1 fs5 fc0 sc0 ls0 ws0">Federal<span class="_ _12"> </span>Institute<span class="_ _12"> </span>of<span class="_ _12"> </span>T<span class="_ _2"></span>echnology<span class="_ _12"> </span>(EPFL),<span class="_ _12"> </span>Lausanne,<span class="_ _12"> </span>Switzerland<span class="_ _a"> </span>and<span class="_ _12"> </span>also<span class="_ _12"> </span>with</div><div class="t m0 x1 h8 y37 ff1 fs5 fc0 sc0 ls0 ws0">the<span class="_ _10"> </span>Department<span class="_ _13"> </span>of<span class="_"> </span>Electrical<span class="_ _13"> </span>Engineering<span class="_ _10"> </span>and<span class="_ _13"> </span>Computer<span class="_"> </span>Sciences,<span class="_ _13"> </span>University<span class="_ _13"> </span>of</div><div class="t m0 x1 h8 y38 ff1 fs5 fc0 sc0 ls0 ws0">California,<span class="_ _12"> </span>Berkeley<span class="_ _7"></span>,<span class="_ _12"> </span>CA<span class="_ _12"> </span>94720<span class="_"> </span>USA.</div><div class="t m0 x9 h8 y39 ff1 fs5 fc0 sc0 ls0 ws0">Publisher<span class="_"> </span>Item<span class="_ _12"> </span>Identifier<span class="_"> </span>S<span class="_"> </span>1057-7149(00)06914-1.</div><div class="t m0 xa h6 y5 ff1 fs4 fc0 sc0 ls0 ws0">signal<span class="_ _9"> </span>denoising<span class="_ _8"> </span>using<span class="_ _8"> </span>nonlinear<span class="_ _8"> </span>techniques,<span class="_ _8"> </span>in<span class="_ _8"> </span>the<span class="_ _8"> </span>setting<span class="_ _8"> </span>of</div><div class="t m0 xa h6 y3a ff1 fs4 fc0 sc0 ls0 ws0">additiv<span class="_ _3"></span>e<span class="_ _a"> </span>white<span class="_ _a"> </span>Gaussian<span class="_"> </span>noise.<span class="_ _a"> </span>The<span class="_ _a"> </span>seminal<span class="_ _a"> </span>work<span class="_"> </span>on<span class="_ _a"> </span>signal<span class="_ _a"> </span>de-</div><div class="t m0 xa h6 y3b ff1 fs4 fc0 sc0 ls0 ws0">noising<span class="_ _b"> </span>via<span class="_ _9"> </span><span class="ff2">wavelet<span class="_ _9"> </span>thr<span class="_ _2"></span>esholding<span class="_ _9"> </span><span class="ff1">or<span class="_ _b"> </span></span>shrinkage<span class="_ _b"> </span><span class="ff1">of<span class="_ _9"> </span>Donoho<span class="_ _9"> </span>and</span></span></div><div class="t m0 xa h6 y3c ff1 fs4 fc0 sc0 ls0 ws0">Johnstone<span class="_ _a"> </span>([13]–[16])<span class="_ _b"> </span>ha<span class="_ _2"></span>ve<span class="_"> </span>shown<span class="_ _a"> </span>that<span class="_ _a"> </span>various<span class="_ _a"> </span>wav<span class="_ _2"></span>elet<span class="_ _a"> </span>thresh-</div><div class="t m0 xa h6 y3d ff1 fs4 fc0 sc0 ls0 ws0">olding<span class="_ _9"> </span>schemes<span class="_ _9"> </span>for<span class="_ _9"> </span>denoising<span class="_ _8"> </span>hav<span class="_ _2"></span>e<span class="_ _9"> </span>near-optimal<span class="_ _9"> </span>properties<span class="_ _9"> </span>in</div><div class="t m0 xa h6 y3e ff1 fs4 fc0 sc0 ls0 ws0">the<span class="_ _9"> </span>minimax<span class="_ _8"> </span>sense<span class="_ _9"> </span>and<span class="_ _8"> </span>perform<span class="_ _8"> </span>well<span class="_ _9"> </span>in<span class="_ _8"> </span>simulation<span class="_ _9"> </span>studies<span class="_ _8"> </span>of</div><div class="t m0 xa h6 y3f ff1 fs4 fc0 sc0 ls0 ws0">one-dimensional<span class="_ _9"> </span>curve<span class="_ _9"> </span>estimation.<span class="_ _9"> </span>It<span class="_ _8"> </span>has<span class="_ _9"> </span>been<span class="_ _8"> </span>shown<span class="_ _9"> </span>to<span class="_ _9"> </span>hav<span class="_ _2"></span>e</div><div class="t m0 xa h6 y40 ff1 fs4 fc0 sc0 ls0 ws0">better<span class="_ _f"> </span>rates<span class="_ _f"> </span>of<span class="_ _f"> </span>conv<span class="_ _2"></span>ergence<span class="_ _8"> </span>than<span class="_ _e"> </span>linear<span class="_ _f"> </span>methods<span class="_ _f"> </span>for<span class="_ _f"> </span>approxi-</div><div class="t m0 xa h6 y41 ff1 fs4 fc0 sc0 ls0 ws0">mating<span class="_ _a"> </span>functions<span class="_ _b"> </span>in<span class="_ _a"> </span>Besov<span class="_ _a"> </span>spaces<span class="_ _b"> </span>([13],<span class="_ _a"> </span>[14]).<span class="_ _b"> </span>Thresholding<span class="_ _a"> </span>is</div><div class="t m0 xa h6 y42 ff1 fs4 fc0 sc0 ls0 ws0">a<span class="_ _a"> </span>nonlinear<span class="_ _b"> </span>technique,<span class="_ _a"> </span>yet<span class="_ _b"> </span>it<span class="_ _a"> </span>is<span class="_ _b"> </span>very<span class="_"> </span>simple<span class="_ _b"> </span>because<span class="_ _a"> </span>it<span class="_ _b"> </span>operates</div><div class="t m0 xa h6 y43 ff1 fs4 fc0 sc0 ls0 ws0">on<span class="_ _a"> </span>one<span class="_ _a"> </span>wavelet<span class="_"> </span>coeff<span class="_ _2"></span>icient<span class="_"> </span>at<span class="_ _b"> </span>a<span class="_"> </span>time.<span class="_ _b"> </span>Alternati<span class="_ _3"></span>ve<span class="_ _a"> </span>approaches<span class="_ _b"> </span>to</div><div class="t m0 xa h6 y44 ff1 fs4 fc0 sc0 ls0 ws0">nonlinear<span class="_ _10"> </span>wa<span class="_ _2"></span>velet-based<span class="_ _13"></span>denoising<span class="_ _1"> </span>can<span class="_ _10"> </span>be<span class="_ _10"> </span>found<span class="_ _10"> </span>in,<span class="_ _10"> </span>for<span class="_ _10"> </span>example,</div><div class="t m0 xa h6 y45 ff1 fs4 fc0 sc0 ls0 ws0">[1],<span class="_ _9"> </span>[4],<span class="_ _9"> </span>[8]–[10],<span class="_ _8"> </span>[12],<span class="_ _9"> </span>[18],<span class="_ _8"> </span>[19],<span class="_ _9"> </span>[24],<span class="_ _9"> </span>[27]–[29],<span class="_ _8"> </span>[32],<span class="_ _9"> </span>[33],</div><div class="t m0 xa h6 y46 ff1 fs4 fc0 sc0 ls0 ws0">[35],<span class="_ _a"> </span>and<span class="_ _a"> </span>references<span class="_ _b"> </span>therein.</div><div class="t m0 xb h6 y47 ff1 fs4 fc0 sc0 ls0 ws0">On<span class="_"> </span>a<span class="_ _a"> </span>seemingly<span class="_ _b"> </span>unrelated<span class="_"> </span>front,<span class="_"> </span>lossy<span class="_ _b"> </span>compression<span class="_"> </span>has<span class="_ _a"> </span>been</div><div class="t m0 xa h6 y48 ff1 fs4 fc0 sc0 ls0 ws0">proposed<span class="_ _f"> </span>for<span class="_ _e"> </span>denoising<span class="_ _e"> </span>in<span class="_ _f"> </span>several<span class="_ _f"> </span>works<span class="_ _f"> </span>[6],<span class="_ _e"> </span>[5],<span class="_ _f"> </span>[21],<span class="_ _e"> </span>[25],</div><div class="t m0 xa h6 y49 ff1 fs4 fc0 sc0 ls0 ws0">[28].<span class="_ _b"> </span>Concerns<span class="_ _b"> </span>regarding<span class="_ _b"> </span>the<span class="_ _b"> </span>compression<span class="_ _b"> </span>rate<span class="_ _b"> </span>were<span class="_ _b"> </span>explicitly</div><div class="t m0 xa h6 y4a ff1 fs4 fc0 sc0 ls0 ws0">addressed.<span class="_ _b"> </span>This<span class="_ _b"> </span>is<span class="_ _b"> </span>important<span class="_ _b"> </span>because<span class="_ _a"> </span>any<span class="_ _b"> </span>practical<span class="_ _b"> </span>coder<span class="_ _b"> </span>must</div><div class="t m0 xa h6 y4b ff1 fs4 fc0 sc0 ls0 ws0">assume<span class="_ _1"> </span>a<span class="_ _1"> </span>limited<span class="_"> </span>resource<span class="_ _10"> </span>(such<span class="_"> </span>as<span class="_ _10"> </span>bits)<span class="_"> </span>at<span class="_ _10"> </span>its<span class="_"> </span>disposal<span class="_ _10"> </span>for<span class="_"> </span>repre-</div><div class="t m0 xa h6 y4c ff1 fs4 fc0 sc0 ls0 ws0">senting<span class="_"> </span>the<span class="_ _a"> </span>data.<span class="_ _a"> </span>Other<span class="_ _a"> </span>works<span class="_ _a"> </span>[4],<span class="_ _a"> </span>[12]–[16]<span class="_ _a"> </span>also<span class="_ _a"> </span>addressed<span class="_ _a"> </span>the</div><div class="t m0 xa h6 y4d ff1 fs4 fc0 sc0 ls0 ws0">connection<span class="_ _10"> </span>between<span class="_ _10"> </span>compression<span class="_ _10"> </span>and<span class="_ _1"> </span>denoising,<span class="_ _10"> </span>especially<span class="_ _10"> </span>with</div><div class="t m0 xa h6 y4e ff1 fs4 fc0 sc0 ls0 ws0">nonlinear<span class="_ _b"> </span>algorithms<span class="_ _a"> </span>such<span class="_ _b"> </span>as<span class="_ _b"> </span>wa<span class="_ _3"></span>velet<span class="_ _b"> </span>thresholding<span class="_ _b"> </span>in<span class="_ _a"> </span>a<span class="_ _b"> </span>mathe-</div><div class="t m0 xa h6 y4f ff1 fs4 fc0 sc0 ls0 ws0">matical<span class="_ _a"> </span>framework.<span class="_"> </span>Howe<span class="_ _2"></span>ver<span class="_ _3"></span>,<span class="_ _a"> </span>these<span class="_ _b"> </span>latter<span class="_ _a"> </span>works<span class="_ _a"> </span>were<span class="_ _b"> </span>not<span class="_ _a"> </span>con-</div><div class="t m0 xa h6 y50 ff1 fs4 fc0 sc0 ls0 ws0">cerned<span class="_ _1"> </span>with<span class="_"> </span>quantization<span class="_ _1"> </span>and<span class="_ _1"> </span>bitrates:<span class="_"> </span>compression<span class="_ _1"> </span>results<span class="_ _1"> </span>from</div><div class="t m0 xa h6 y51 ff1 fs4 fc0 sc0 ls0 ws0">a<span class="_ _1"> </span>reduced<span class="_ _1"> </span>number<span class="_ _1"> </span>of<span class="_"> </span>nonzero<span class="_ _10"> </span>wavelet<span class="_ _10"> </span>coeff<span class="_ _2"></span>icients,<span class="_ _1"> </span>and<span class="_ _1"> </span>not<span class="_ _1"> </span>from</div><div class="t m0 xa h6 y52 ff1 fs4 fc0 sc0 ls0 ws0">an<span class="_ _a"> </span>explicit<span class="_ _a"> </span>design<span class="_ _a"> </span>of<span class="_ _b"> </span>a<span class="_ _a"> </span>coder<span class="_ _3"></span>.</div><div class="t m0 xb h6 y53 ff1 fs4 fc0 sc0 ls0 ws0">The<span class="_ _b"> </span>intuition<span class="_ _b"> </span>behind<span class="_ _b"> </span>using<span class="_ _b"> </span>lossy<span class="_ _b"> </span>compression<span class="_ _b"> </span>for<span class="_ _b"> </span>denoising</div><div class="t m0 xa h6 y54 ff1 fs4 fc0 sc0 ls0 ws0">may<span class="_ _b"> </span>be<span class="_ _b"> </span>explained<span class="_ _b"> </span>as<span class="_ _b"> </span>follows.<span class="_ _b"> </span>A<span class="_ _b"> </span>signal<span class="_ _b"> </span>typically<span class="_ _b"> </span>has<span class="_ _b"> </span>structural</div><div class="t m0 xa h6 y55 ff1 fs4 fc0 sc0 ls0 ws0">correlations<span class="_ _1"> </span>that<span class="_ _1"> </span>a<span class="_"> </span>good<span class="_ _10"> </span>coder<span class="_"> </span>can<span class="_ _1"> </span>exploit<span class="_ _10"> </span>to<span class="_"> </span>yield<span class="_ _1"> </span>a<span class="_ _1"> </span>concise<span class="_ _1"> </span>rep-</div><div class="t m0 xa h6 y56 ff1 fs4 fc0 sc0 ls0 ws0">resentation.<span class="_ _a"> </span>White<span class="_ _b"> </span>noise,<span class="_ _a"> </span>howe<span class="_ _3"></span>ver<span class="_ _2"></span>,<span class="_ _a"> </span>does<span class="_ _b"> </span>not<span class="_ _a"> </span>have<span class="_"> </span>structural<span class="_ _b"> </span>re-</div><div class="t m0 xa h6 y57 ff1 fs4 fc0 sc0 ls0 ws0">dundancies<span class="_"> </span>and<span class="_"> </span>thus<span class="_ _a"> </span>is<span class="_ _a"> </span>not<span class="_"> </span>easily<span class="_ _a"> </span>compressable.<span class="_ _a"> </span>Hence,<span class="_"> </span>a<span class="_ _a"> </span>good</div><div class="t m0 xa h6 y58 ff1 fs4 fc0 sc0 ls0 ws0">compression<span class="_ _9"> </span>method<span class="_ _8"> </span>can<span class="_ _8"> </span>provide<span class="_ _9"> </span>a<span class="_ _8"> </span>suitable<span class="_ _8"> </span>model<span class="_ _8"> </span>for<span class="_ _8"> </span>distin-</div><div class="t m0 xa h6 y59 ff1 fs4 fc0 sc0 ls0 ws0">guishing<span class="_ _b"> </span>between<span class="_ _b"> </span>signal<span class="_ _b"> </span>and<span class="_ _9"> </span>noise.<span class="_ _b"> </span>The<span class="_ _b"> </span>discussion<span class="_ _9"> </span>will<span class="_ _b"> </span>be<span class="_ _b"> </span>re-</div><div class="t m0 xa h6 y5a ff1 fs4 fc0 sc0 ls0 ws0">stricted<span class="_ _b"> </span>to<span class="_ _9"> </span>wa<span class="_ _2"></span>velet-based<span class="_ _b"> </span>coders,<span class="_ _9"> </span>though<span class="_ _b"> </span>these<span class="_ _9"> </span>insights<span class="_ _9"> </span>can<span class="_ _b"> </span>be</div><div class="t m0 xa h6 y5b ff1 fs4 fc0 sc0 ls0 ws0">extended<span class="_"> </span>to<span class="_"> </span>other<span class="_"> </span>transform-domain<span class="_"> </span>coders<span class="_"> </span>as<span class="_"> </span>well.<span class="_"> </span>A<span class="_"> </span>concrete</div><div class="t m0 xa h6 y5c ff1 fs4 fc0 sc0 ls0 ws0">connection<span class="_ _10"> </span>between<span class="_ _1"> </span>lossy<span class="_ _10"> </span>compression<span class="_ _1"> </span>and<span class="_ _10"> </span>denoising<span class="_ _1"> </span>can<span class="_ _1"> </span>easily</div><div class="t m0 xa h6 y5d ff1 fs4 fc0 sc0 ls0 ws0">be<span class="_ _1"> </span>seen<span class="_"> </span>when<span class="_ _10"> </span>one<span class="_"> </span>examines<span class="_ _10"> </span>the<span class="_"> </span>similarity<span class="_ _1"> </span>between<span class="_ _1"> </span>thresholding</div><div class="t m0 xa h6 y5e ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _10"> </span>quantization,<span class="_ _10"> </span>the<span class="_ _10"> </span>latter<span class="_ _1"> </span>of<span class="_ _10"> </span>which<span class="_ _10"> </span>is<span class="_ _10"> </span>a<span class="_ _1"> </span>necessary<span class="_ _10"> </span>step<span class="_ _10"> </span>in<span class="_ _10"> </span>a<span class="_ _10"> </span>prac-</div><div class="t m0 xa h6 y5f ff1 fs4 fc0 sc0 ls0 ws0">tical<span class="_ _10"> </span>lossy<span class="_ _10"> </span>coder<span class="_ _3"></span>.<span class="_ _10"> </span>That<span class="_ _1"> </span>is,<span class="_ _10"> </span>the<span class="_ _10"> </span>quantization<span class="_ _10"> </span>of<span class="_ _10"> </span>wav<span class="_ _2"></span>elet<span class="_ _10"> </span>coeff<span class="_ _3"></span>icients</div><div class="t m0 xa h6 y60 ff2 fs4 fc0 sc0 ls0 ws0">with<span class="_ _a"> </span>a<span class="_ _b"> </span>zer<span class="_ _3"></span>o-zone<span class="_ _a"> </span><span class="ff1">is<span class="_ _b"> </span>an<span class="_ _a"> </span>approximation<span class="_ _b"> </span>to<span class="_"> </span>the<span class="_ _b"> </span>thresholding<span class="_ _a"> </span>func-</span></div><div class="t m0 xa h6 y61 ff1 fs4 fc0 sc0 ls0 ws0">tion<span class="_ _b"> </span>(see<span class="_ _9"> </span>Fig.<span class="_ _9"> </span>1).<span class="_ _b"> </span>Thus,<span class="_ _9"> </span>provided<span class="_ _b"> </span>that<span class="_ _9"> </span>the<span class="_ _9"> </span>quantization<span class="_ _b"> </span>outside</div><div class="t m0 xa h6 y62 ff1 fs4 fc0 sc0 ls0 ws0">of<span class="_"> </span>the<span class="_ _1"> </span>zero-zone<span class="_ _1"> </span>does<span class="_"> </span>not<span class="_ _1"> </span>introduce<span class="_"> </span>significant<span class="_ _1"> </span>distortion,<span class="_"> </span>it<span class="_ _1"> </span>fol-</div><div class="t m0 xa h6 y63 ff1 fs4 fc0 sc0 ls0 ws0">lows<span class="_"> </span>that<span class="_"> </span>w<span class="_ _2"></span>av<span class="_ _2"></span>elet-based<span class="_"> </span>lossy<span class="_"> </span>compression<span class="_"> </span>achie<span class="_ _2"></span>ves<span class="_"> </span>denoising.</div><div class="t m0 xa h6 y64 ff1 fs4 fc0 sc0 ls0 ws0">W<span class="_ _3"></span>ith<span class="_ _1"> </span>this<span class="_ _1"> </span>connection<span class="_ _10"> </span>in<span class="_ _1"> </span>mind,<span class="_ _1"> </span>this<span class="_ _1"> </span>paper<span class="_ _10"> </span>is<span class="_ _1"> </span>about<span class="_ _1"> </span>wa<span class="_ _2"></span>velet<span class="_ _10"> </span>thresh-</div><div class="t m0 xa h6 y65 ff1 fs4 fc0 sc0 ls0 ws0">olding<span class="_ _1"> </span>for<span class="_"> </span>image<span class="_ _1"> </span>denoising<span class="_"> </span>and<span class="_ _1"> </span>also<span class="_"> </span>for<span class="_ _1"> </span>lossy<span class="_ _1"> </span>compression.<span class="_"> </span>The</div><div class="t m0 xa h6 y66 ff1 fs4 fc0 sc0 ls0 ws0">threshold<span class="_ _b"> </span>choice<span class="_ _9"> </span>aids<span class="_ _9"> </span>the<span class="_ _9"> </span>lossy<span class="_ _9"> </span>coder<span class="_ _9"> </span>to<span class="_ _9"> </span>choose<span class="_ _9"> </span>its<span class="_ _b"> </span>zero-zone,</div><div class="t m0 xa h6 y67 ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _f"> </span>the<span class="_ _8"> </span>resulting<span class="_ _f"> </span>coder<span class="_ _f"> </span>achieves<span class="_ _8"> </span>simultaneous<span class="_ _f"> </span>denoising<span class="_ _f"> </span>and</div><div class="t m0 xa h6 y68 ff1 fs4 fc0 sc0 ls0 ws0">compression<span class="_"> </span>if<span class="_ _a"> </span>such<span class="_ _b"> </span>property<span class="_"> </span>is<span class="_ _a"> </span>desired.</div><div class="t m0 xc h8 y69 ff1 fs5 fc0 sc0 ls0 ws0">1057–7149/00$10.00<span class="_ _12"> </span>©<span class="_ _12"> </span>2000<span class="_ _12"> </span>IEEE</div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/624efb9c6caf596192b72c4a/bg2.jpg"><div class="t m0 xd h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">CHANG<span class="_"> </span><span class="ff2">et<span class="_ _1"> </span>al.</span>:<span class="_"> </span>ADAPTIVE<span class="_"> </span>W<span class="_ _7"></span>A<span class="_ _7"></span>VELET<span class="_ _1"> </span>THRESHOLDING<span class="_"> </span>FOR<span class="_ _1"> </span>IMA<span class="_ _2"></span>GE<span class="_"> </span>DENOISING<span class="_ _1"> </span>AND<span class="_"> </span>COMPRESSION<span class="_ _14"> </span>1533</div><div class="t m0 xd h8 y6a ff1 fs5 fc0 sc0 ls0 ws0">Fig.<span class="_ _b"> </span>1.<span class="_ _15"> </span>Thresholding<span class="_ _b"> </span>function<span class="_ _b"> </span>can<span class="_ _b"> </span>be<span class="_ _b"> </span>approximated<span class="_ _b"> </span>by<span class="_ _b"> </span>quantization<span class="_ _b"> </span>with<span class="_ _b"> </span>a</div><div class="t m0 xd h8 y6b ff1 fs5 fc0 sc0 ls0 ws0">zero-zone.</div><div class="t m0 x9 h6 y6c ff1 fs4 fc0 sc0 ls0 ws0">The<span class="_ _10"> </span>theoretical<span class="_ _13"></span>formalization<span class="_ _10"> </span>of<span class="_ _13"></span>filtering<span class="_ _10"> </span>additi<span class="_ _2"></span>ve<span class="_ _13"></span><span class="ff2">iid<span class="_ _10"> </span></span>Gaussian</div><div class="t m0 xd h6 y6d ff1 fs4 fc0 sc0 ls0 ws0">noise<span class="_"> </span>(of<span class="_"> </span>zero-mean<span class="_"> </span>and<span class="_"> </span>standard<span class="_"> </span>deviation</div><div class="t m0 xe h6 y6e ff1 fs4 fc0 sc0 ls0 ws0">)<span class="_"> </span>via<span class="_"> </span>thresholding</div><div class="t m0 xd h6 y6f ff1 fs4 fc0 sc0 ls0 ws0">wa<span class="_ _2"></span>velet<span class="_ _b"> </span>coeff<span class="_ _2"></span>icients<span class="_ _b"> </span>was<span class="_ _9"> </span>pioneered<span class="_ _9"> </span>by<span class="_ _b"> </span>Donoho<span class="_ _9"> </span>and<span class="_ _9"> </span>Johnstone</div><div class="t m0 xd h6 y70 ff1 fs4 fc0 sc0 ls0 ws0">[14].<span class="_ _1"> </span>A<span class="_ _1"> </span>wav<span class="_ _2"></span>elet<span class="_ _1"> </span>coeff<span class="_ _3"></span>icient<span class="_"> </span>is<span class="_ _10"> </span>compared<span class="_"> </span>to<span class="_ _10"> </span>a<span class="_ _1"> </span>given<span class="_ _10"> </span>threshold<span class="_"> </span>and</div><div class="t m0 xd h6 y71 ff1 fs4 fc0 sc0 ls0 ws0">is<span class="_ _10"></span>set<span class="_ _13"></span>to<span class="_ _10"> </span>zero<span class="_ _10"></span>if<span class="_ _13"></span>its<span class="_ _10"> </span>magnitude<span class="_ _10"> </span>is<span class="_ _13"></span>less<span class="_ _10"> </span>than<span class="_ _10"> </span>the<span class="_ _13"></span>threshold;<span class="_ _10"> </span>otherwise,</div><div class="t m0 xd h6 y72 ff1 fs4 fc0 sc0 ls0 ws0">it<span class="_"> </span>is<span class="_"> </span>kept<span class="_ _1"> </span>or<span class="_"> </span>modified<span class="_"> </span>(depending<span class="_ _1"> </span>on<span class="_"> </span>the<span class="_"> </span>thresholding<span class="_"> </span>rule).<span class="_"> </span>The</div><div class="t m0 xd h6 y73 ff1 fs4 fc0 sc0 ls0 ws0">threshold<span class="_ _e"> </span>acts<span class="_ _e"> </span>as<span class="_ _e"> </span>an<span class="_ _e"> </span>oracle<span class="_ _e"> </span>which<span class="_ _e"> </span>distinguishes<span class="_ _e"> </span>between<span class="_ _e"> </span>the</div><div class="t m0 xd h6 y74 ff1 fs4 fc0 sc0 ls0 ws0">insignificant<span class="_ _1"> </span>coeff<span class="_ _2"></span>icients<span class="_"> </span>lik<span class="_ _2"></span>ely<span class="_"> </span>due<span class="_ _1"> </span>to<span class="_"> </span>noise,<span class="_"> </span>and<span class="_"> </span>the<span class="_ _1"> </span>significant</div><div class="t m0 xd h6 y75 ff1 fs4 fc0 sc0 ls0 ws0">coeff<span class="_ _3"></span>icients<span class="_ _8"> </span>consisting<span class="_ _9"> </span>of<span class="_ _8"> </span>important<span class="_ _8"> </span>signal<span class="_ _9"> </span>structures.<span class="_ _8"> </span>Thresh-</div><div class="t m0 xd h6 y76 ff1 fs4 fc0 sc0 ls0 ws0">olding<span class="_ _b"> </span>rules<span class="_ _9"> </span>are<span class="_ _9"> </span>especially<span class="_ _b"> </span>effecti<span class="_ _2"></span>ve<span class="_ _b"> </span>for<span class="_ _b"> </span>signals<span class="_ _9"> </span>with<span class="_ _b"> </span>sparse<span class="_ _9"> </span>or</div><div class="t m0 xd h6 y77 ff1 fs4 fc0 sc0 ls0 ws0">near-sparse<span class="_ _13"></span>representations<span class="_ _13"></span>where<span class="_ _13"></span>only<span class="_ _13"></span>a<span class="_ _16"></span>small<span class="_ _16"></span>subset<span class="_ _13"></span>of<span class="_ _13"></span>the<span class="_ _13"></span>coef-</div><div class="t m0 xd h6 y78 ff1 fs4 fc0 sc0 ls0 ws0">ficients<span class="_ _10"> </span>represents<span class="_ _1"> </span>all<span class="_ _1"> </span>or<span class="_ _1"> </span>most<span class="_ _10"> </span>of<span class="_ _1"> </span>the<span class="_ _1"> </span>signal<span class="_ _1"> </span>energy<span class="_ _3"></span>.<span class="_ _10"> </span>Thresholding</div><div class="t m0 xd h6 y79 ff1 fs4 fc0 sc0 ls0 ws0">essentially<span class="_ _b"> </span>creates<span class="_ _a"> </span>a<span class="_ _b"> </span>region<span class="_ _b"> </span>around<span class="_ _b"> </span>zero<span class="_ _a"> </span>where<span class="_ _b"> </span>the<span class="_ _b"> </span>coef<span class="_ _2"></span>ficients</div><div class="t m0 xd h6 y7a ff1 fs4 fc0 sc0 ls0 ws0">are<span class="_ _10"> </span>considered<span class="_ _10"> </span>negligible.<span class="_ _13"></span>Outside<span class="_ _10"> </span>of<span class="_ _10"> </span>this<span class="_ _10"> </span>region,<span class="_ _10"> </span>the<span class="_ _10"> </span>thresholded</div><div class="t m0 xd h6 y7b ff1 fs4 fc0 sc0 ls0 ws0">coeff<span class="_ _3"></span>icients<span class="_ _9"> </span>are<span class="_ _8"> </span>kept<span class="_ _9"> </span>to<span class="_ _9"> </span>full<span class="_ _9"> </span>precision<span class="_ _9"> </span>(that<span class="_ _8"> </span>is,<span class="_ _9"> </span>without<span class="_ _9"> </span>quanti-</div><div class="t m0 xd h6 y7c ff1 fs4 fc0 sc0 ls0 ws0">zation).<span class="_ _b"> </span>Their<span class="_ _9"> </span>most<span class="_ _b"> </span>well-known<span class="_ _b"> </span>thresholding<span class="_ _b"> </span>methods<span class="_ _9"> </span>include</div><div class="t m0 xd h6 y7d ff2 fs4 fc0 sc0 ls0 ws0">V<span class="_ _3"></span>isuShrink<span class="_ _b"> </span><span class="ff1">[14]<span class="_ _9"> </span>and<span class="_ _b"> </span></span>SureShrink<span class="_ _b"> </span><span class="ff1">[15].<span class="_ _9"> </span>These<span class="_ _b"> </span>threshold<span class="_ _9"> </span>choices</span></div><div class="t m0 xd h6 y7e ff1 fs4 fc0 sc0 ls0 ws0">enjoy<span class="_ _e"> </span>asymptotic<span class="_ _e"> </span>minimax<span class="_ _e"> </span>optimalities<span class="_ _e"> </span>over<span class="_ _f"> </span>function<span class="_ _e"> </span>spaces</div><div class="t m0 xd h6 y7f ff1 fs4 fc0 sc0 ls0 ws0">such<span class="_ _10"> </span>as<span class="_ _10"> </span>Besov<span class="_ _10"> </span>spaces.<span class="_ _10"> </span>For<span class="_ _13"></span>image<span class="_ _10"> </span>denoising,<span class="_ _10"> </span>howe<span class="_ _3"></span>ver<span class="_ _3"></span>,<span class="_ _10"> </span><span class="ff2">V<span class="_ _3"></span>isuShrink</span></div><div class="t m0 xd h6 y80 ff1 fs4 fc0 sc0 ls0 ws0">is<span class="_ _b"> </span>kno<span class="_ _2"></span>wn<span class="_ _b"> </span>to<span class="_ _a"> </span>yield<span class="_ _b"> </span>overly<span class="_"> </span>smoothed<span class="_ _b"> </span>images.<span class="_ _b"> </span>This<span class="_ _b"> </span>is<span class="_ _a"> </span>because<span class="_ _b"> </span>its</div><div class="t m0 xd h6 y81 ff1 fs4 fc0 sc0 ls0 ws0">threshold<span class="_ _10"> </span>choice,</div><div class="t m0 xf h6 y82 ff1 fs4 fc0 sc0 ls0 ws0">(called<span class="_ _10"> </span>the<span class="_ _10"></span><span class="ff2">universal<span class="_ _13"></span>thr<span class="_ _3"></span>eshold<span class="_ _10"> </span><span class="ff1">and</span></span></div><div class="t m0 x10 h6 y83 ff1 fs4 fc0 sc0 ls0 ws0">is<span class="_"> </span>the<span class="_ _a"> </span>noise<span class="_ _a"> </span>variance),<span class="_"> </span>can<span class="_"> </span>be<span class="_ _a"> </span>unwarrantedly<span class="_ _a"> </span>large<span class="_"> </span>due<span class="_"> </span>to<span class="_ _a"> </span>its</div><div class="t m0 xd h6 y84 ff1 fs4 fc0 sc0 ls0 ws0">dependence<span class="_ _16"></span>on<span class="_ _16"></span>the<span class="_ _16"></span>number<span class="_ _13"></span>of<span class="_ _16"></span>samples,</div><div class="t m0 x11 h6 y85 ff1 fs4 fc0 sc0 ls0 ws0">,<span class="_ _16"></span>which<span class="_ _16"></span>is<span class="_ _16"></span>more<span class="_ _16"></span>than</div><div class="t m0 xd h6 y86 ff1 fs4 fc0 sc0 ls0 ws0">for<span class="_ _16"></span>a<span class="_ _16"></span>typical<span class="_ _16"></span>test<span class="_ _16"></span>image<span class="_ _16"></span>of<span class="_ _16"></span>size<span class="_ _17"> </span>.<span class="_ _16"></span><span class="ff2">Sur<span class="_ _3"></span>eShrink<span class="_ _16"></span><span class="ff1">uses<span class="_ _16"></span>a<span class="_ _16"></span>hybrid</span></span></div><div class="t m0 xd h6 y87 ff1 fs4 fc0 sc0 ls0 ws0">of<span class="_ _10"> </span>the<span class="_ _1"> </span>univ<span class="_ _2"></span>ersal<span class="_ _10"> </span>threshold<span class="_ _1"> </span>and<span class="_ _10"> </span>the<span class="_ _1"> </span>SURE<span class="_ _1"> </span>threshold,<span class="_ _10"> </span>derived<span class="_ _10"> </span>from</div><div class="t m0 xd h6 y88 ff1 fs4 fc0 sc0 ls0 ws0">minimizing<span class="_ _b"> </span>Stein’s<span class="_ _b"> </span>unbiased<span class="_ _a"> </span>risk<span class="_ _b"> </span>estimator<span class="_ _b"> </span>[30],<span class="_ _b"> </span>and<span class="_ _b"> </span>has<span class="_ _b"> </span>been</div><div class="t m0 xd h6 y89 ff1 fs4 fc0 sc0 ls0 ws0">shown<span class="_ _16"></span>to<span class="_ _16"></span>perform<span class="_ _16"></span>well.<span class="_ _16"></span><span class="ff2">Sur<span class="_ _3"></span>eShrink<span class="_ _16"></span><span class="ff1">will<span class="_ _16"></span>be<span class="_ _13"></span>the<span class="_ _16"></span>main<span class="_ _16"></span>comparison<span class="_ _16"></span>to</span></span></div><div class="t m0 xd h6 y8a ff1 fs4 fc0 sc0 ls0 ws0">the<span class="_ _10"> </span>method<span class="_ _10"> </span>proposed<span class="_ _10"> </span>here,<span class="_ _1"> </span>and,<span class="_ _10"> </span>as<span class="_ _10"> </span>will<span class="_ _10"> </span>be<span class="_ _10"> </span>seen<span class="_ _10"> </span>later<span class="_ _1"> </span>in<span class="_ _10"> </span>this<span class="_ _10"> </span>paper<span class="_ _2"></span>,</div><div class="t m0 xd h6 y8b ff1 fs4 fc0 sc0 ls0 ws0">our<span class="_ _16"></span>proposed<span class="_ _13"></span>threshold<span class="_ _13"></span>often<span class="_ _13"></span>yields<span class="_ _13"></span>better<span class="_ _16"></span>result.</div><div class="t m0 x9 h6 y8c ff1 fs4 fc0 sc0 ls0 ws0">Since<span class="_ _8"> </span>the<span class="_ _8"> </span>works<span class="_ _9"> </span>of<span class="_ _8"> </span>Donoho<span class="_ _f"> </span>and<span class="_ _9"> </span>Johnstone,<span class="_ _8"> </span>there<span class="_ _8"> </span>has<span class="_ _8"> </span>been</div><div class="t m0 xd h6 y8d ff1 fs4 fc0 sc0 ls0 ws0">much<span class="_"> </span>research<span class="_"> </span>on<span class="_"> </span>finding<span class="_"> </span>thresholds<span class="_"> </span>for<span class="_"> </span>nonparametric<span class="_"> </span>estima-</div><div class="t m0 xd h6 y8e ff1 fs4 fc0 sc0 ls0 ws0">tion<span class="_"> </span>in<span class="_ _b"> </span>statistics.<span class="_"> </span>Howe<span class="_ _3"></span>ver<span class="_ _2"></span>,<span class="_"> </span>few<span class="_"> </span>are<span class="_ _a"> </span>specifically<span class="_ _a"> </span>tailored<span class="_ _a"> </span>for<span class="_ _a"> </span>im-</div><div class="t m0 xd h6 y8f ff1 fs4 fc0 sc0 ls0 ws0">ages.<span class="_ _f"> </span>In<span class="_ _f"> </span>this<span class="_ _f"> </span>paper<span class="_ _2"></span>,<span class="_ _f"> </span>we<span class="_ _f"> </span>propose<span class="_ _f"> </span>a<span class="_ _f"> </span>framework<span class="_ _8"> </span>and<span class="_ _f"> </span>a<span class="_ _f"> </span>near-op-</div><div class="t m0 xd h6 y90 ff1 fs4 fc0 sc0 ls0 ws0">timal<span class="_ _b"> </span>threshold<span class="_ _b"> </span>in<span class="_ _b"> </span>this<span class="_ _b"> </span>frame<span class="_ _2"></span>work<span class="_ _a"> </span>more<span class="_ _b"> </span>suitable<span class="_ _b"> </span>for<span class="_ _b"> </span>image<span class="_ _b"> </span>de-</div><div class="t m0 xd h6 y91 ff1 fs4 fc0 sc0 ls0 ws0">noising.<span class="_ _a"> </span>This<span class="_ _a"> </span>approach<span class="_ _a"> </span>can<span class="_ _a"> </span>be<span class="_ _b"> </span>formally<span class="_"> </span>described<span class="_ _a"> </span>as<span class="_ _a"> </span>Bayesian,</div><div class="t m0 xd h6 y92 ff1 fs4 fc0 sc0 ls0 ws0">but<span class="_ _b"> </span>this<span class="_ _9"> </span>only<span class="_ _b"> </span>describes<span class="_ _9"> </span>our<span class="_ _9"> </span>mathematical<span class="_ _9"> </span>formulation,<span class="_ _b"> </span>not<span class="_ _9"> </span>our</div><div class="t m0 xd h6 y93 ff1 fs4 fc0 sc0 ls0 ws0">philosophy<span class="_ _3"></span>.<span class="_ _b"> </span>The<span class="_ _b"> </span>formulation<span class="_ _b"> </span>is<span class="_ _b"> </span>grounded<span class="_ _b"> </span>on<span class="_ _b"> </span>the<span class="_ _b"> </span>empirical<span class="_ _b"> </span>ob-</div><div class="t m0 xd h6 y94 ff1 fs4 fc0 sc0 ls0 ws0">servation<span class="_"> </span>that<span class="_"> </span>the<span class="_"> </span>wa<span class="_ _3"></span>velet<span class="_"> </span>coeff<span class="_ _2"></span>icients<span class="_"> </span>in<span class="_"> </span>a<span class="_"> </span>subband<span class="_"> </span>of<span class="_"> </span>a<span class="_"> </span>natural</div><div class="t m0 xd h6 y95 ff1 fs4 fc0 sc0 ls0 ws0">image<span class="_ _10"> </span>can<span class="_ _10"> </span>be<span class="_ _10"> </span>summarized<span class="_ _10"> </span>adequately<span class="_ _10"></span>by<span class="_ _10"></span>a<span class="_ _10"></span><span class="ff2">gener<span class="_ _2"></span>alized<span class="_ _10"> </span>Gaussian</span></div><div class="t m0 xd h6 y96 ff2 fs4 fc0 sc0 ls0 ws0">distribution<span class="_ _8"> </span><span class="ff1">(GGD).<span class="_ _f"> </span>This<span class="_ _f"> </span>observation<span class="_ _f"> </span>is<span class="_ _f"> </span>well-accepted<span class="_ _f"> </span>in<span class="_ _f"> </span>the</span></div><div class="t m0 xd h6 y97 ff1 fs4 fc0 sc0 ls0 ws0">image<span class="_ _1"> </span>processing<span class="_"> </span>community<span class="_ _1"> </span>(for<span class="_"> </span>e<span class="_ _2"></span>xample,<span class="_ _1"> </span>see<span class="_"> </span>[20],<span class="_ _1"> </span>[22],<span class="_"> </span>[23],</div><div class="t m0 xd h6 y98 ff1 fs4 fc0 sc0 ls0 ws0">[29],<span class="_ _9"> </span>[34],<span class="_ _8"> </span>[36])<span class="_ _8"> </span>and<span class="_ _9"> </span>is<span class="_ _8"> </span>used<span class="_ _8"> </span>for<span class="_ _9"> </span>state-of-the-art<span class="_ _8"> </span>image<span class="_ _8"> </span>coders</div><div class="t m0 xd h6 y99 ff1 fs4 fc0 sc0 ls0 ws0">in<span class="_ _a"> </span>[20],<span class="_ _a"> </span>[22],<span class="_ _b"> </span>[36].<span class="_"> </span>It<span class="_ _b"> </span>follo<span class="_ _3"></span>ws<span class="_ _a"> </span>from<span class="_ _b"> </span>this<span class="_"> </span>observation<span class="_ _a"> </span>that<span class="_ _a"> </span>the<span class="_ _b"> </span>a<span class="_ _3"></span>v-</div><div class="t m0 xd h6 y9a ff1 fs4 fc0 sc0 ls0 ws0">erage<span class="_ _b"> </span>MSE<span class="_ _9"> </span>(in<span class="_ _b"> </span>a<span class="_ _9"> </span>subband)<span class="_ _9"> </span>can<span class="_ _b"> </span>be<span class="_ _9"> </span>approximated<span class="_ _b"> </span>by<span class="_ _9"> </span>the<span class="_ _b"> </span>corre-</div><div class="t m0 xd h6 y9b ff1 fs4 fc0 sc0 ls0 ws0">sponding<span class="_ _1"> </span>Bayesian<span class="_"> </span>squared<span class="_ _10"> </span>error<span class="_"> </span>risk<span class="_ _1"> </span>with<span class="_ _1"> </span>the<span class="_"> </span>GGD<span class="_ _10"> </span>as<span class="_"> </span>the<span class="_ _1"> </span>prior</div><div class="t m0 xd h6 y9c ff1 fs4 fc0 sc0 ls0 ws0">applied<span class="_ _1"> </span>to<span class="_"> </span>each<span class="_ _1"> </span>in<span class="_"> </span>an<span class="_ _1"> </span><span class="ff2">iid<span class="_ _1"> </span></span>fashion.<span class="_"> </span>That<span class="_ _1"> </span>is,<span class="_ _1"> </span>a<span class="_"> </span>sum<span class="_ _1"> </span>is<span class="_"> </span>approximated</div><div class="t m0 xd h6 y9d ff1 fs4 fc0 sc0 ls0 ws0">by<span class="_ _a"> </span>an<span class="_ _b"> </span>integral.<span class="_"> </span>W<span class="_ _3"></span>e<span class="_ _a"> </span>emphasize<span class="_ _b"> </span>that<span class="_ _a"> </span>this<span class="_ _b"> </span>is<span class="_"> </span>an<span class="_ _b"> </span>analytical<span class="_ _a"> </span>approx-</div><div class="t m0 xd h6 y9e ff1 fs4 fc0 sc0 ls0 ws0">imation<span class="_ _9"> </span>and<span class="_ _9"> </span>our<span class="_ _b"> </span>framework<span class="_ _b"> </span>is<span class="_ _9"> </span>broader<span class="_ _9"> </span>than<span class="_ _9"> </span>assuming<span class="_ _9"> </span>wa<span class="_ _2"></span>velet</div><div class="t m0 x12 h6 y9f ff1 fs4 fc0 sc0 ls0 ws0">coeff<span class="_ _3"></span>icients<span class="_ _b"> </span>are<span class="_ _b"> </span><span class="ff2">iid<span class="_ _a"> </span></span>draws<span class="_ _b"> </span>from<span class="_ _a"> </span>a<span class="_ _b"> </span>GGD.<span class="_ _b"> </span>The<span class="_ _a"> </span>goal<span class="_ _b"> </span>is<span class="_ _b"> </span>to<span class="_ _a"> </span>find<span class="_ _a"> </span>the</div><div class="t m0 x12 h6 ya0 ff1 fs4 fc0 sc0 ls0 ws0">soft-threshold<span class="_ _10"> </span>that<span class="_ _1"> </span>minimizes<span class="_ _1"> </span>this<span class="_ _10"> </span>Bayesian<span class="_ _1"> </span>risk,<span class="_ _1"> </span>and<span class="_ _1"> </span>we<span class="_ _10"> </span>call<span class="_ _1"> </span>our</div><div class="t m0 x12 h6 ya1 ff1 fs4 fc0 sc0 ls0 ws0">method<span class="_ _a"> </span><span class="ff2">BayesShrink</span>.</div><div class="t m0 x13 h6 ya2 ff1 fs4 fc0 sc0 ls0 ws0">The<span class="_"> </span>proposed<span class="_"> </span>Bayesian<span class="_ _1"> </span>risk<span class="_"> </span>minimization<span class="_"> </span>is<span class="_ _1"> </span>subband-depen-</div><div class="t m0 x12 h6 ya3 ff1 fs4 fc0 sc0 ls0 ws0">dent.<span class="_ _9"> </span>Giv<span class="_ _2"></span>en<span class="_ _9"> </span>the<span class="_ _9"> </span>signal<span class="_ _9"> </span>being<span class="_ _9"> </span>generalized<span class="_ _9"> </span>Gaussian<span class="_ _8"> </span>distributed</div><div class="t m0 x12 h6 ya4 ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _10"> </span>the<span class="_ _1"> </span>noise<span class="_ _1"> </span>being<span class="_ _1"> </span>Gaussian,<span class="_ _10"> </span>via<span class="_ _1"> </span>numerical<span class="_ _1"> </span>calculation<span class="_ _10"> </span>a<span class="_ _1"> </span>nearly</div><div class="t m0 x12 h6 ya5 ff1 fs4 fc0 sc0 ls0 ws0">optimal<span class="_ _8"> </span>threshold<span class="_ _f"> </span>for<span class="_ _8"> </span>soft-thresholding<span class="_ _8"> </span>is<span class="_ _f"> </span>found<span class="_ _8"> </span>to<span class="_ _f"> </span>be</div><div class="t m0 x14 h6 ya6 ff1 fs4 fc0 sc0 ls0 ws0">(where<span class="_ _18"> </span>is<span class="_"> </span>the<span class="_"> </span>noise<span class="_ _a"> </span>variance<span class="_"> </span>and<span class="_ _19"> </span>the<span class="_"> </span>signal<span class="_"> </span>vari-</div><div class="t m0 x12 h6 ya7 ff1 fs4 fc0 sc0 ls0 ws0">ance).<span class="_ _1"> </span>This<span class="_"> </span>threshold<span class="_"> </span>gi<span class="_ _3"></span>ves<span class="_ _1"> </span>a<span class="_"> </span>risk<span class="_ _1"> </span>within<span class="_"> </span>5%<span class="_ _1"> </span>of<span class="_"> </span>the<span class="_"> </span>minimal<span class="_ _1"> </span>risk</div><div class="t m0 x12 h6 ya8 ff1 fs4 fc0 sc0 ls0 ws0">over<span class="_"> </span>a<span class="_ _a"> </span>broad<span class="_ _b"> </span>range<span class="_ _a"> </span>of<span class="_ _b"> </span>parameters<span class="_"> </span>in<span class="_ _b"> </span>the<span class="_ _a"> </span>GGD<span class="_ _a"> </span>family<span class="_ _3"></span>.<span class="_ _a"> </span>T<span class="_ _3"></span>o<span class="_ _a"> </span>make</div><div class="t m0 x12 h6 ya9 ff1 fs4 fc0 sc0 ls0 ws0">this<span class="_ _9"> </span>threshold<span class="_ _8"> </span>data-driven,<span class="_ _9"> </span>the<span class="_ _9"> </span>parameters</div><div class="t m0 x15 h6 yaa ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _1a"> </span>are<span class="_ _9"> </span>esti-</div><div class="t m0 x12 h6 yab ff1 fs4 fc0 sc0 ls0 ws0">mated<span class="_"> </span>from<span class="_"> </span>the<span class="_"> </span>observed<span class="_"> </span>data,<span class="_"> </span>one<span class="_"> </span>set<span class="_ _a"> </span>for<span class="_"> </span>each<span class="_"> </span>subband.</div><div class="t m0 x13 h6 yac ff1 fs4 fc0 sc0 ls0 ws0">T<span class="_ _7"></span>o<span class="_ _d"> </span>achiev<span class="_ _2"></span>e<span class="_ _c"> </span>simultaneous<span class="_ _d"> </span>denoising<span class="_ _c"> </span>and<span class="_ _d"> </span>compression,<span class="_ _c"> </span>the</div><div class="t m0 x12 h6 yad ff1 fs4 fc0 sc0 ls0 ws0">nonzero<span class="_"> </span>thresholded<span class="_ _a"> </span>wavelet<span class="_"> </span>coef<span class="_ _3"></span>ficients<span class="_"> </span>need<span class="_ _a"> </span>to<span class="_ _a"> </span>be<span class="_ _a"> </span>quantized.</div><div class="t m0 x12 h6 yae ff1 fs4 fc0 sc0 ls0 ws0">Uniform<span class="_ _9"> </span>quantizer<span class="_ _8"> </span>and<span class="_ _9"> </span>centroid<span class="_ _8"> </span>reconstruction<span class="_ _9"> </span>is<span class="_ _8"> </span>used<span class="_ _9"> </span>on<span class="_ _8"> </span>the</div><div class="t m0 x12 h6 yaf ff1 fs4 fc0 sc0 ls0 ws0">GGD.<span class="_ _10"> </span>The<span class="_ _10"> </span>design<span class="_ _1"> </span>parameters<span class="_ _10"> </span>of<span class="_ _10"> </span>the<span class="_ _10"> </span>coder,<span class="_ _10"> </span>such<span class="_ _10"> </span>as<span class="_ _10"> </span>the<span class="_ _10"> </span>number<span class="_ _1"> </span>of</div><div class="t m0 x12 h6 yb0 ff1 fs4 fc0 sc0 ls0 ws0">quantization<span class="_ _16"></span>le<span class="_ _2"></span>vels<span class="_ _16"></span>and<span class="_ _1b"></span>binwidths,<span class="_ _1b"></span>are<span class="_ _16"></span>decided<span class="_ _16"></span>based<span class="_ _1b"></span>on<span class="_ _16"></span>a<span class="_ _16"></span>criterion</div><div class="t m0 x12 h6 yb1 ff1 fs4 fc0 sc0 ls0 ws0">deriv<span class="_ _3"></span>ed<span class="_ _f"> </span>from<span class="_ _f"> </span>Rissanen’s<span class="_ _8"> </span><span class="ff2">minimum<span class="_ _f"> </span>description<span class="_ _f"> </span>length<span class="_ _8"> </span></span>(MDL)</div><div class="t m0 x12 h6 yb2 ff1 fs4 fc0 sc0 ls0 ws0">principle<span class="_"> </span>[26].<span class="_ _b"> </span>This<span class="_"> </span>criterion<span class="_ _a"> </span>balances<span class="_ _a"> </span>the<span class="_ _b"> </span>tradeof<span class="_ _3"></span>f<span class="_ _a"> </span>between<span class="_ _b"> </span>the</div><div class="t m0 x12 h6 yb3 ff1 fs4 fc0 sc0 ls0 ws0">compression<span class="_ _1"> </span>rate<span class="_"> </span>and<span class="_ _1"> </span>distortion,<span class="_"> </span>and<span class="_ _1"> </span>yields<span class="_"> </span>a<span class="_ _1"> </span>nice<span class="_"> </span>interpretation</div><div class="t m0 x12 h6 yb4 ff1 fs4 fc0 sc0 ls0 ws0">of<span class="_ _16"></span>operating<span class="_ _13"></span>at<span class="_ _13"></span>a<span class="_ _13"></span>fix<span class="_ _2"></span>ed<span class="_ _16"></span>slope<span class="_ _13"></span>on<span class="_ _13"></span>the<span class="_ _13"></span>rate-distortion<span class="_ _16"></span>curve.</div><div class="t m0 x13 h6 yb5 ff1 fs4 fc0 sc0 ls0 ws0">The<span class="_ _a"> </span>paper<span class="_ _a"> </span>is<span class="_ _a"> </span>organized<span class="_"> </span>as<span class="_ _a"> </span>follows.<span class="_"> </span>In<span class="_ _a"> </span>Section<span class="_ _a"> </span>II,<span class="_ _a"> </span>the<span class="_ _b"> </span>w<span class="_ _2"></span>av<span class="_ _2"></span>elet</div><div class="t m0 x12 h6 yb6 ff1 fs4 fc0 sc0 ls0 ws0">thresholding<span class="_ _1c"> </span>idea<span class="_ _1c"> </span>is<span class="_ _1c"> </span>introduced.<span class="_ _1c"> </span>Section<span class="_ _1c"> </span>II-A<span class="_ _1c"> </span>explains<span class="_ _1c"> </span>the</div><div class="t m0 x12 h6 yb7 ff1 fs4 fc0 sc0 ls0 ws0">deriv<span class="_ _3"></span>ation<span class="_ _4"> </span>of<span class="_ _4"> </span>the<span class="_ _1c"> </span><span class="ff2">BayesShrink<span class="_ _4"> </span></span>threshold<span class="_ _4"> </span>by<span class="_ _1d"> </span>minimizing<span class="_ _1d"> </span>a</div><div class="t m0 x12 h6 yb8 ff1 fs4 fc0 sc0 ls0 ws0">Bayesian<span class="_"> </span>risk<span class="_"> </span>with<span class="_"> </span>squared<span class="_ _a"> </span>error<span class="_ _3"></span>.<span class="_ _a"> </span>The<span class="_"> </span>lossy<span class="_"> </span>compression<span class="_ _a"> </span>based</div><div class="t m0 x12 h6 yb9 ff1 fs4 fc0 sc0 ls0 ws0">on<span class="_"> </span>the<span class="_ _a"> </span>MDL<span class="_ _a"> </span>criterion<span class="_ _a"> </span>is<span class="_ _a"> </span>explained<span class="_"> </span>in<span class="_ _a"> </span>Section<span class="_ _a"> </span>III.<span class="_ _a"> </span>Experimental</div><div class="t m0 x12 h6 yba ff1 fs4 fc0 sc0 ls0 ws0">results<span class="_ _e"> </span>on<span class="_ _11"> </span>sev<span class="_ _2"></span>eral<span class="_ _e"> </span>test<span class="_ _11"> </span>images<span class="_ _e"> </span>are<span class="_ _11"> </span>sho<span class="_ _2"></span>wn<span class="_ _e"> </span>in<span class="_ _11"> </span>Section<span class="_ _11"> </span>IV<span class="_ _e"> </span>and</div><div class="t m0 x12 h6 ybb ff1 fs4 fc0 sc0 ls0 ws0">compared<span class="_ _d"> </span>with<span class="_ _d"> </span><span class="ff2">SureShrink</span>.<span class="_ _c"> </span>T<span class="_ _3"></span>o<span class="_ _d"> </span>benchmark<span class="_ _d"> </span>against<span class="_ _1e"> </span>the<span class="_ _d"> </span>best</div><div class="t m0 x12 h6 ybc ff1 fs4 fc0 sc0 ls0 ws0">possible<span class="_ _d"> </span>performance<span class="_ _1e"> </span>of<span class="_ _d"> </span>a<span class="_ _1e"> </span>threshold<span class="_ _1e"> </span>estimate,<span class="_ _d"> </span>the<span class="_ _1e"> </span>compar-</div><div class="t m0 x12 h6 ybd ff1 fs4 fc0 sc0 ls0 ws0">isons<span class="_ _1e"> </span>also<span class="_ _1e"> </span>include<span class="_ _1e"> </span><span class="ff2">OracleShrink</span>,<span class="_ _1e"> </span>the<span class="_ _1e"> </span>best<span class="_ _1c"> </span>soft-thresholding</div><div class="t m0 x12 h6 ybe ff1 fs4 fc0 sc0 ls0 ws0">estimate<span class="_ _8"> </span>obtainable<span class="_ _f"> </span>assuming<span class="_ _f"> </span>the<span class="_ _f"> </span>original<span class="_ _8"> </span>image<span class="_ _f"> </span>known,<span class="_ _8"> </span>and</div><div class="t m0 x12 h6 ybf ff2 fs4 fc0 sc0 ls0 ws0">OracleThr<span class="_ _3"></span>esh<span class="ff1">,<span class="_ _4"> </span>the<span class="_ _1d"> </span>best<span class="_ _4"> </span>hard-thresholding<span class="_ _1d"> </span>counterpart.<span class="_ _4"> </span>The</span></div><div class="t m0 x12 h6 yc0 ff2 fs4 fc0 sc0 ls0 ws0">BayesShrink<span class="_ _8"> </span><span class="ff1">method<span class="_ _8"> </span>often<span class="_ _f"> </span>comes<span class="_ _8"> </span>to<span class="_ _8"> </span>within<span class="_ _8"> </span>5%<span class="_ _f"> </span>of<span class="_ _8"> </span>the<span class="_ _8"> </span>MSEs</span></div><div class="t m0 x12 h6 yc1 ff1 fs4 fc0 sc0 ls0 ws0">of<span class="_ _b"> </span><span class="ff2">OracleShrink</span>,<span class="_ _b"> </span>and<span class="_ _b"> </span>is<span class="_ _b"> </span>better<span class="_ _b"> </span>than<span class="_ _b"> </span><span class="ff2">Sur<span class="_ _2"></span>eShrink<span class="_ _b"> </span><span class="ff1">up<span class="_ _b"> </span>to<span class="_ _b"> </span>8%<span class="_ _b"> </span>most</span></span></div><div class="t m0 x12 h6 yc2 ff1 fs4 fc0 sc0 ls0 ws0">of<span class="_ _f"> </span>the<span class="_ _f"> </span>time,<span class="_ _8"> </span>or<span class="_ _f"> </span>is<span class="_ _f"> </span>within<span class="_ _f"> </span>1%<span class="_ _f"> </span>if<span class="_ _f"> </span>it<span class="_ _f"> </span>is<span class="_ _f"> </span>worse.<span class="_ _8"> </span>Furthermore,<span class="_ _f"> </span>the</div><div class="t m0 x12 h6 yc3 ff2 fs4 fc0 sc0 ls0 ws0">BayesShrink<span class="_ _f"> </span><span class="ff1">threshold<span class="_ _f"> </span>is<span class="_ _8"> </span>very<span class="_ _f"> </span>easy<span class="_ _f"> </span>to<span class="_ _f"> </span>compute.<span class="_ _f"> </span></span>BayesShrink</div><div class="t m0 x12 h6 yc4 ff1 fs4 fc0 sc0 ls0 ws0">with<span class="_ _1c"> </span>the<span class="_ _1e"> </span>additional<span class="_ _1c"> </span>MDL-based<span class="_ _1c"> </span>compression,<span class="_ _1c"> </span>as<span class="_ _1e"> </span>expected,</div><div class="t m0 x12 h6 yc5 ff1 fs4 fc0 sc0 ls0 ws0">introduces<span class="_"> </span>quantization<span class="_"> </span>noise<span class="_"> </span>to<span class="_ _1"> </span>the<span class="_"> </span>image.<span class="_"> </span>This<span class="_"> </span>distortion<span class="_"> </span>may</div><div class="t m0 x12 h6 yc6 ff1 fs4 fc0 sc0 ls0 ws0">negate<span class="_ _1"> </span>the<span class="_ _1"> </span>denoising<span class="_"> </span>achie<span class="_ _2"></span>ved<span class="_ _1"> </span>by<span class="_"> </span>thresholding,<span class="_ _1"> </span>especially<span class="_"> </span>when</div><div class="t m0 x16 h6 yc7 ff1 fs4 fc0 sc0 ls0 ws0">is<span class="_"> </span>small.<span class="_"> </span>Howe<span class="_ _3"></span>ver<span class="_ _3"></span>,<span class="_"> </span>for<span class="_"> </span>larger<span class="_"> </span>v<span class="_ _2"></span>alues<span class="_"> </span>of<span class="_ _1f"> </span>,<span class="_"> </span>the<span class="_"> </span>MSE<span class="_"> </span>due<span class="_"> </span>to<span class="_"> </span>the</div><div class="t m0 x12 h6 yc8 ff1 fs4 fc0 sc0 ls0 ws0">lossy<span class="_ _8"> </span>compression<span class="_ _8"> </span>is<span class="_ _8"> </span>still<span class="_ _f"> </span>significantly<span class="_ _9"> </span>lower<span class="_ _9"> </span>than<span class="_ _f"> </span>that<span class="_ _8"> </span>of<span class="_ _8"> </span>the</div><div class="t m0 x12 h6 yc9 ff1 fs4 fc0 sc0 ls0 ws0">noisy<span class="_ _a"> </span>image,<span class="_ _a"> </span>while<span class="_ _b"> </span>fe<span class="_ _2"></span>wer<span class="_ _a"> </span>bits<span class="_ _a"> </span>are<span class="_ _b"> </span>used<span class="_ _a"> </span>to<span class="_ _a"> </span>code<span class="_ _b"> </span>the<span class="_"> </span>image,<span class="_ _b"> </span>thus</div><div class="t m0 x12 h6 yca ff1 fs4 fc0 sc0 ls0 ws0">achieving<span class="_"> </span>both<span class="_"> </span>denoising<span class="_ _a"> </span>and<span class="_ _a"> </span>compression.</div><div class="t m0 x17 h6 ycb ff1 fs4 fc0 sc0 ls0 ws0">II.<span class="_ _c"> </span>W</div><div class="t m0 x18 h6 ycc ff1 fs5 fc0 sc0 ls0 ws0">A<span class="_ _7"></span>VELET<span class="_ _12"> </span><span class="fs4">T</span>HRESHOLDING<span class="_ _a"> </span>AND<span class="_ _12"> </span><span class="fs4">T</span>HRESHOLD<span class="_ _a"> </span><span class="fs4">S</span>ELECTION</div><div class="t m0 x13 h6 ycd ff1 fs4 fc0 sc0 ls0 ws0">Let<span class="_ _a"> </span>the<span class="_ _a"> </span>signal<span class="_ _b"> </span>be<span class="_ _20"> </span>,<span class="_ _a"> </span>where<span class="_ _21"> </span>is<span class="_ _a"> </span>some</div><div class="t m0 x12 h6 yce ff1 fs4 fc0 sc0 ls0 ws0">integer<span class="_"> </span>power<span class="_"> </span>of<span class="_"> </span>2.<span class="_ _a"> </span>It<span class="_ _a"> </span>has<span class="_ _a"> </span>been<span class="_ _a"> </span>corrupted<span class="_ _a"> </span>by<span class="_ _a"> </span>additive<span class="_"> </span>noise<span class="_"> </span>and</div><div class="t m0 x12 h6 ycf ff1 fs4 fc0 sc0 ls0 ws0">one<span class="_ _b"> </span>observ<span class="_ _2"></span>es</div><div class="t m0 x19 h6 yd0 ff1 fs4 fc0 sc0 ls0 ws0">(1)</div><div class="t m0 x12 h6 yd1 ff1 fs4 fc0 sc0 ls0 ws0">where</div><div class="t m0 x1a h6 yd2 ff1 fs4 fc0 sc0 ls0 ws0">are<span class="_ _8"> </span>independent<span class="_ _8"> </span>and<span class="_ _8"> </span>identically<span class="_ _f"> </span>distributed<span class="_ _9"> </span>(<span class="_ _22"> </span>)</div><div class="t m0 x12 h6 yd3 ff1 fs4 fc0 sc0 ls0 ws0">as<span class="_ _b"> </span>normal</div><div class="t m0 x1b h6 yd4 ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _b"> </span>independent<span class="_ _9"> </span>of<span class="_ _23"> </span>.<span class="_ _b"> </span>The<span class="_ _9"> </span>goal<span class="_ _b"> </span>is<span class="_ _9"> </span>to</div><div class="t m0 x12 h6 yd5 ff1 fs4 fc0 sc0 ls0 ws0">remove<span class="_ _1"> </span>the<span class="_"> </span>noise,<span class="_"> </span>or<span class="_"> </span>“denoise”</div><div class="t m0 x1c h6 yd6 ff1 fs4 fc0 sc0 ls0 ws0">,<span class="_"> </span>and<span class="_"> </span>to<span class="_"> </span>obtain<span class="_ _1"> </span>an<span class="_"> </span>estimate</div><div class="t m0 x1d h6 yd7 ff1 fs4 fc0 sc0 ls0 ws0">of<span class="_ _24"> </span>which<span class="_ _1"> </span>minimizes<span class="_"> </span>the<span class="_ _10"> </span>mean<span class="_"> </span>squared<span class="_ _1"> </span>error<span class="_ _1"> </span>(MSE),</div><div class="t m0 x1e h6 yd8 ff1 fs4 fc0 sc0 ls0 ws0">MSE</div><div class="t m0 x19 h6 yd9 ff1 fs4 fc0 sc0 ls0 ws0">(2)</div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/624efb9c6caf596192b72c4a/bg3.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">1534<span class="_ _0"> </span>IEEE<span class="_"> </span>TRANSACTIONS<span class="_"> </span>ON<span class="_ _1"> </span>IMA<span class="_ _2"></span>GE<span class="_"> </span>PROCESSING,<span class="_"> </span>VOL.<span class="_"> </span>9,<span class="_"> </span>NO.<span class="_ _1"> </span>9,<span class="_"> </span>SEPTEMBER<span class="_ _1"> </span>2000</div><div class="t m0 x1f h8 yda ff1 fs5 fc0 sc0 ls0 ws0">Fig.<span class="_"> </span>2.<span class="_ _15"> </span>Subbands<span class="_"> </span>of<span class="_ _12"> </span>the<span class="_"> </span>2-D<span class="_"> </span>orthogonal<span class="_ _12"> </span>wa<span class="_ _2"></span>velet<span class="_"> </span>transform.</div><div class="t m0 x20 h6 ydb ff1 fs4 fc0 sc0 ls0 ws0">Let<span class="_ _25"> </span>,<span class="_ _26"> </span>,<span class="_ _b"> </span>and<span class="_ _27"> </span>;<span class="_ _b"> </span>that<span class="_ _b"> </span>is,</div><div class="t m0 x1 h6 ydc ff1 fs4 fc0 sc0 ls0 ws0">the<span class="_ _1"> </span>boldfaced<span class="_ _1"> </span>letters<span class="_ _10"> </span>will<span class="_"> </span>denote<span class="_ _10"> </span>the<span class="_ _1"> </span>matrix<span class="_ _1"> </span>representation<span class="_ _1"> </span>of<span class="_ _1"> </span>the</div><div class="t m0 x1 h6 ydd ff1 fs4 fc0 sc0 ls0 ws0">signals<span class="_ _9"> </span>under<span class="_ _9"> </span>consideration.<span class="_ _8"> </span>Let</div><div class="t m0 xe h6 yde ff1 fs4 fc0 sc0 ls0 ws0">denote<span class="_ _9"> </span>the<span class="_ _9"> </span>matrix</div><div class="t m0 x1 h6 ydf ff1 fs4 fc0 sc0 ls0 ws0">of<span class="_ _b"> </span>wav<span class="_ _2"></span>elet<span class="_ _b"> </span>coeff<span class="_ _2"></span>icients<span class="_ _b"> </span>of</div><div class="t m0 x21 h6 ye0 ff1 fs4 fc0 sc0 ls0 ws0">,<span class="_ _b"> </span>where<span class="_ _28"> </span>is<span class="_ _b"> </span>the<span class="_ _9"> </span>two-dimensional</div><div class="t m0 x1 h6 ye1 ff1 fs4 fc0 sc0 ls0 ws0">dyadic<span class="_"> </span>orthogonal<span class="_"> </span>w<span class="_ _3"></span>avelet<span class="_"> </span>transform<span class="_ _1"> </span>operator<span class="_ _3"></span>,<span class="_"> </span>and<span class="_"> </span>similarly</div><div class="t m0 x22 h6 ye2 ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _29"> </span>.<span class="_ _10"> </span>The<span class="_ _10"> </span>readers<span class="_ _10"> </span>are<span class="_ _1"> </span>referred<span class="_ _10"> </span>to<span class="_ _10"> </span>references<span class="_ _10"> </span>such<span class="_ _10"> </span>as</div><div class="t m0 x1 h6 ye3 ff1 fs4 fc0 sc0 ls0 ws0">[23],<span class="_ _1"> </span>[31]<span class="_ _1"> </span>for<span class="_"> </span>details<span class="_ _10"> </span>of<span class="_ _1"> </span>the<span class="_"> </span>tw<span class="_ _2"></span>o-dimensional<span class="_ _1"> </span>orthogonal<span class="_ _1"> </span>wavelet</div><div class="t m0 x1 h6 ye4 ff1 fs4 fc0 sc0 ls0 ws0">transform.<span class="_ _10"> </span>It<span class="_ _1"> </span>is<span class="_ _10"> </span>con<span class="_ _2"></span>venient<span class="_ _10"> </span>to<span class="_ _10"> </span>label<span class="_ _1"> </span>the<span class="_ _10"> </span>subbands<span class="_ _1"> </span>of<span class="_ _10"> </span>the<span class="_ _1"> </span>transform</div><div class="t m0 x1 h6 ye5 ff1 fs4 fc0 sc0 ls0 ws0">as<span class="_"> </span>in<span class="_"> </span>Fig.<span class="_"> </span>2.<span class="_ _1"> </span>The<span class="_"> </span>subbands</div><div class="t m0 x23 h6 ye6 ff1 fs4 fc0 sc0 ls0 ws0">,<span class="_ _2a"> </span>,<span class="_ _2b"> </span>,</div><div class="t m0 x1 h6 ye7 ff1 fs4 fc0 sc0 ls0 ws0">are<span class="_ _9"> </span>called<span class="_ _8"> </span>the<span class="_ _8"> </span><span class="ff2">details</span>,<span class="_ _8"> </span>where<span class="_ _2c"> </span>is<span class="_ _9"> </span>the<span class="_ _8"> </span><span class="ff2">scale</span>,<span class="_ _8"> </span>with<span class="_ _2d"> </span>being<span class="_ _9"> </span>the</div><div class="t m0 x1 h6 ye8 ff1 fs4 fc0 sc0 ls0 ws0">largest<span class="_"> </span>(or<span class="_ _a"> </span>coarsest)<span class="_ _a"> </span>scale<span class="_ _a"> </span>in<span class="_ _a"> </span>the<span class="_ _a"> </span>decomposition,<span class="_ _b"> </span>and<span class="_"> </span>a<span class="_ _a"> </span>subband</div><div class="t m0 x1 h6 ye9 ff1 fs4 fc0 sc0 ls0 ws0">at<span class="_"> </span>scale</div><div class="t m0 x24 h6 yea ff1 fs4 fc0 sc0 ls0 ws0">has<span class="_"> </span>size<span class="_ _2e"> </span>.<span class="_"> </span>The<span class="_"> </span>subband<span class="_ _2f"> </span>is<span class="_"> </span>the<span class="_"> </span><span class="ff2">low</span></div><div class="t m0 x1 h6 yeb ff2 fs4 fc0 sc0 ls0 ws0">r<span class="_ _3"></span>esolution<span class="_"> </span>r<span class="_ _3"></span>esidual<span class="ff1">,<span class="_ _1"> </span>and</span></div><div class="t m0 x25 h6 yec ff1 fs4 fc0 sc0 ls0 ws0">is<span class="_ _1"> </span>typically<span class="_ _1"> </span>chosen<span class="_ _1"> </span>large<span class="_ _1"> </span>enough<span class="_ _1"> </span>such</div><div class="t m0 x1 h6 yed ff1 fs4 fc0 sc0 ls0 ws0">that</div><div class="t m0 x26 h6 yee ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _30"> </span>.<span class="_"> </span>Note<span class="_ _a"> </span>that<span class="_ _a"> </span>since<span class="_ _a"> </span>the<span class="_ _a"> </span>transform</div><div class="t m0 x1 h6 yef ff1 fs4 fc0 sc0 ls0 ws0">is<span class="_"> </span>orthogonal,</div><div class="t m0 x27 h6 yf0 ff1 fs4 fc0 sc0 ls0 ws0">are<span class="_"> </span>also<span class="_ _a"> </span><span class="ff2">iid<span class="_ _17"> </span></span>.</div><div class="t m0 x20 h6 yf1 ff1 fs4 fc0 sc0 ls0 ws0">The<span class="_ _b"> </span>wav<span class="_ _2"></span>elet-thresholding<span class="_ _b"> </span>denoising<span class="_ _b"> </span>method<span class="_ _b"> </span>filters<span class="_ _b"> </span>each<span class="_ _b"> </span>co-</div><div class="t m0 x1 h6 yf2 ff1 fs4 fc0 sc0 ls0 ws0">eff<span class="_ _3"></span>icient</div><div class="t m0 x28 h6 yf3 ff1 fs4 fc0 sc0 ls0 ws0">from<span class="_"> </span>the<span class="_"> </span>detail<span class="_"> </span>subbands<span class="_"> </span>with<span class="_"> </span>a<span class="_"> </span>threshold<span class="_"> </span>function</div><div class="t m0 x1 h6 yf4 ff1 fs4 fc0 sc0 ls0 ws0">(to<span class="_ _1"> </span>be<span class="_ _10"> </span>explained<span class="_ _1"> </span>shortly)<span class="_ _1"> </span>to<span class="_ _1"> </span>obtain</div><div class="t m0 x29 h6 yf5 ff1 fs4 fc0 sc0 ls0 ws0">.<span class="_ _1"> </span>The<span class="_ _10"> </span>denoised<span class="_ _1"> </span>estimate<span class="_ _1"> </span>is</div><div class="t m0 x1 h6 yf6 ff1 fs4 fc0 sc0 ls0 ws0">then</div><div class="t m0 x26 h6 yf7 ff1 fs4 fc0 sc0 ls0 ws0">,<span class="_"> </span>where<span class="_ _24"> </span>is<span class="_"> </span>the<span class="_"> </span>in<span class="_ _3"></span>verse<span class="_"> </span>wa<span class="_ _3"></span>velet<span class="_"> </span>transform</div><div class="t m0 x1 h6 yf8 ff1 fs4 fc0 sc0 ls0 ws0">operator<span class="_ _3"></span>.</div><div class="t m0 x20 h6 yf9 ff1 fs4 fc0 sc0 ls0 ws0">There<span class="_ _e"> </span>are<span class="_ _e"> </span>two<span class="_ _f"> </span>thresholding<span class="_ _e"> </span>methods<span class="_ _e"> </span>frequently<span class="_ _e"> </span>used.<span class="_ _e"> </span>The</div><div class="t m0 x1 h6 yfa ff2 fs4 fc0 sc0 ls0 ws0">soft-thr<span class="_ _3"></span>eshold<span class="_ _a"> </span><span class="ff1">function<span class="_"> </span>(also<span class="_"> </span>called<span class="_"> </span>the<span class="_"> </span>shrinkage<span class="_ _a"> </span>function)</span></div><div class="t m0 x2a h6 yfb ff1 fs4 fc0 sc0 ls0 ws0">sgn<span class="_ _31"> </span>(3)</div><div class="t m0 x1 h6 yfc ff1 fs4 fc0 sc0 ls0 ws0">takes<span class="_ _a"> </span>the<span class="_ _a"> </span>argument<span class="_ _a"> </span>and<span class="_ _b"> </span>shrinks<span class="_ _a"> </span>it<span class="_ _a"> </span>toward<span class="_"> </span>zero<span class="_ _b"> </span>by<span class="_ _a"> </span>the<span class="_ _a"> </span><span class="ff2">threshold</span></div><div class="t m0 x2b h6 yfd ff1 fs4 fc0 sc0 ls0 ws0">.<span class="_"> </span>The<span class="_"> </span>other<span class="_"> </span>popular<span class="_"> </span>alternativ<span class="_ _2"></span>e<span class="_"> </span>is<span class="_"> </span>the<span class="_"> </span><span class="ff2">har<span class="_ _3"></span>d-threshold<span class="_"> </span><span class="ff1">function</span></span></div><div class="t m0 x2c h6 yfe ff1 fs4 fc0 sc0 ls0 ws0">(4)</div><div class="t m0 x1 h6 yff ff1 fs4 fc0 sc0 ls0 ws0">which<span class="_ _b"> </span>keeps<span class="_ _b"> </span>the<span class="_ _b"> </span>input<span class="_ _b"> </span>if<span class="_ _b"> </span>it<span class="_ _b"> </span>is<span class="_ _b"> </span>larger<span class="_ _a"> </span>than<span class="_ _9"> </span>the<span class="_ _b"> </span>threshold</div><div class="t m0 x2d h6 y100 ff1 fs4 fc0 sc0 ls0 ws0">;<span class="_ _b"> </span>oth-</div><div class="t m0 x1 h6 y101 ff1 fs4 fc0 sc0 ls0 ws0">erwise,<span class="_"> </span>it<span class="_"> </span>is<span class="_"> </span>set<span class="_"> </span>to<span class="_"> </span>zero.<span class="_"> </span>The<span class="_"> </span>wavelet<span class="_"> </span>thresholding<span class="_"> </span>procedure<span class="_"> </span>re-</div><div class="t m0 x1 h6 y102 ff1 fs4 fc0 sc0 ls0 ws0">moves<span class="_ _10"> </span>noise<span class="_ _1"> </span>by<span class="_ _1"> </span>thresholding<span class="_ _1"> </span><span class="ff2">only<span class="_ _1"> </span></span>the<span class="_ _1"> </span>wa<span class="_ _2"></span>velet<span class="_ _10"> </span>coefficients<span class="_ _10"> </span>of<span class="_ _1"> </span>the</div><div class="t m0 x1 h6 y103 ff1 fs4 fc0 sc0 ls0 ws0">detail<span class="_ _b"> </span>subbands,<span class="_ _9"> </span>while<span class="_ _b"> </span>keeping<span class="_ _9"> </span>the<span class="_ _b"> </span>low<span class="_ _b"> </span>resolution<span class="_ _b"> </span>coefficients</div><div class="t m0 x1 h6 y104 ff1 fs4 fc0 sc0 ls0 ws0">unaltered.</div><div class="t m0 x20 h6 y105 ff1 fs4 fc0 sc0 ls0 ws0">The<span class="_ _b"> </span>soft-thresholding<span class="_ _9"> </span>rule<span class="_ _b"> </span>is<span class="_ _b"> </span>chosen<span class="_ _9"> </span>over<span class="_ _b"> </span>hard-thresholding</div><div class="t m0 x1 h6 y106 ff1 fs4 fc0 sc0 ls0 ws0">for<span class="_ _b"> </span>sev<span class="_ _2"></span>eral<span class="_ _b"> </span>reasons.<span class="_ _b"> </span>First,<span class="_ _b"> </span>soft-thresholding<span class="_ _b"> </span>has<span class="_ _a"> </span>been<span class="_ _b"> </span>shown<span class="_ _b"> </span>to</div><div class="t m0 x1 h6 y107 ff1 fs4 fc0 sc0 ls0 ws0">achiev<span class="_ _3"></span>e<span class="_ _a"> </span>near-optimal<span class="_"> </span>minimax<span class="_"> </span>rate<span class="_ _a"> </span>over<span class="_"> </span>a<span class="_"> </span>lar<span class="_ _2"></span>ge<span class="_"> </span>range<span class="_"> </span>of<span class="_"> </span>Besov</div><div class="t m0 x1 h6 y108 ff1 fs4 fc0 sc0 ls0 ws0">spaces<span class="_ _8"> </span>[12],<span class="_ _9"> </span>[14].<span class="_ _8"> </span>Second,<span class="_ _8"> </span>for<span class="_ _8"> </span>the<span class="_ _8"> </span>generalized<span class="_ _8"> </span>Gaussian<span class="_ _8"> </span>prior</div><div class="t m0 x1 h6 y109 ff1 fs4 fc0 sc0 ls0 ws0">assumed<span class="_ _9"> </span>in<span class="_ _9"> </span>this<span class="_ _9"> </span>work,<span class="_ _b"> </span>the<span class="_ _9"> </span>optimal<span class="_ _9"> </span>soft-thresholding<span class="_ _9"> </span>estimator</div><div class="t m0 x1 h6 y10a ff1 fs4 fc0 sc0 ls0 ws0">yields<span class="_ _8"> </span>a<span class="_ _f"> </span>smaller<span class="_ _8"> </span>risk<span class="_ _f"> </span>than<span class="_ _8"> </span>the<span class="_ _f"> </span>optimal<span class="_ _8"> </span>hard-thresholding<span class="_ _f"> </span>esti-</div><div class="t m0 x1 h6 y10b ff1 fs4 fc0 sc0 ls0 ws0">mator<span class="_"> </span>(to<span class="_"> </span>be<span class="_"> </span>sho<span class="_ _2"></span>wn<span class="_"> </span>later<span class="_"> </span>in<span class="_"> </span>this<span class="_"> </span>section).<span class="_"> </span>Lastly<span class="_ _7"></span>,<span class="_"> </span>in<span class="_"> </span>practice,<span class="_"> </span>the</div><div class="t m0 x1 h6 y10c ff1 fs4 fc0 sc0 ls0 ws0">soft-thresholding<span class="_"> </span>method<span class="_ _b"> </span>yields<span class="_"> </span>more<span class="_ _a"> </span>visually<span class="_ _a"> </span>pleasant<span class="_ _a"> </span>images</div><div class="t m0 x1 h6 y10d ff1 fs4 fc0 sc0 ls0 ws0">over<span class="_ _a"> </span>hard-thresholding<span class="_ _9"> </span>because<span class="_ _b"> </span>the<span class="_ _b"> </span>latter<span class="_ _b"> </span>is<span class="_ _b"> </span>discontinuous<span class="_ _9"> </span>and</div><div class="t m0 x1 h6 y10e ff1 fs4 fc0 sc0 ls0 ws0">yields<span class="_"> </span>abrupt<span class="_ _1"> </span>artifacts<span class="_"> </span>in<span class="_"> </span>the<span class="_ _1"> </span>recovered<span class="_ _1"> </span>images,<span class="_"> </span>especially<span class="_"> </span>when</div><div class="t m0 xa h6 y10f ff1 fs4 fc0 sc0 ls0 ws0">the<span class="_ _e"> </span>noise<span class="_ _f"> </span>energy<span class="_ _e"> </span>is<span class="_ _e"> </span>significant.<span class="_ _f"> </span>In<span class="_ _e"> </span>what<span class="_ _e"> </span>follo<span class="_ _2"></span>ws,<span class="_ _e"> </span>soft-thresh-</div><div class="t m0 xa h6 y110 ff1 fs4 fc0 sc0 ls0 ws0">olding<span class="_ _a"> </span>will<span class="_ _a"> </span>be<span class="_ _b"> </span>the<span class="_"> </span>primary<span class="_ _a"> </span>focus.</div><div class="t m0 xb h6 y111 ff1 fs4 fc0 sc0 ls0 ws0">While<span class="_ _1c"> </span>the<span class="_ _1e"> </span>idea<span class="_ _1c"> </span>of<span class="_ _1c"> </span>thresholding<span class="_ _1e"> </span>is<span class="_ _1c"> </span>simple<span class="_ _1c"> </span>and<span class="_ _1c"> </span>ef<span class="_ _2"></span>fecti<span class="_ _2"></span>ve,</div><div class="t m0 xa h6 y112 ff1 fs4 fc0 sc0 ls0 ws0">finding<span class="_ _9"> </span>a<span class="_ _9"> </span>good<span class="_ _8"> </span>threshold<span class="_ _8"> </span>is<span class="_ _8"> </span>not<span class="_ _9"> </span>an<span class="_ _8"> </span>easy<span class="_ _8"> </span>task.<span class="_ _8"> </span>For<span class="_ _9"> </span>one-dimen-</div><div class="t m0 xa h6 y113 ff1 fs4 fc0 sc0 ls0 ws0">sional<span class="_ _e"> </span>(1-D)<span class="_ _11"> </span>deterministic<span class="_ _11"> </span>signal<span class="_ _11"> </span>of<span class="_ _e"> </span>length</div><div class="t m0 x2e h6 y114 ff1 fs4 fc0 sc0 ls0 ws0">,<span class="_ _e"> </span>Donoho<span class="_ _11"> </span>and</div><div class="t m0 xa h6 y115 ff1 fs4 fc0 sc0 ls0 ws0">Johnstone<span class="_ _1"> </span>[14]<span class="_"> </span>proposed<span class="_ _1"> </span>for<span class="_"> </span><span class="ff2">V<span class="_ _7"></span>isuShrink<span class="_"> </span><span class="ff1">the<span class="_ _1"> </span>univ<span class="_ _2"></span>ersal<span class="_"> </span>threshold,</span></span></div><div class="t m0 x2f h6 y116 ff1 fs4 fc0 sc0 ls0 ws0">,<span class="_"> </span>which<span class="_ _a"> </span>results<span class="_ _a"> </span>in<span class="_ _a"> </span>an<span class="_ _a"> </span>estimate<span class="_ _a"> </span>asymptotically</div><div class="t m0 xa h6 y117 ff1 fs4 fc0 sc0 ls0 ws0">optimal<span class="_ _1c"> </span>in<span class="_ _1d"> </span>the<span class="_ _1c"> </span>minimax<span class="_ _1d"> </span>sense<span class="_ _1c"> </span>(minimizing<span class="_ _1d"> </span>the<span class="_ _1d"> </span>maximum</div><div class="t m0 xa h6 y118 ff1 fs4 fc0 sc0 ls0 ws0">error<span class="_ _9"> </span>over<span class="_ _9"> </span>all<span class="_ _8"> </span>possible</div><div class="t m0 x30 h6 y119 ff1 fs4 fc0 sc0 ls0 ws0">-sample<span class="_ _9"> </span>signals).<span class="_ _8"> </span>One<span class="_ _8"> </span>other<span class="_ _8"> </span>notable</div><div class="t m0 xa h6 y11a ff1 fs4 fc0 sc0 ls0 ws0">threshold<span class="_"> </span>is<span class="_ _1"> </span>the<span class="_"> </span>SURE<span class="_"> </span>threshold<span class="_ _1"> </span>[15],<span class="_"> </span>deriv<span class="_ _2"></span>ed<span class="_"> </span>from<span class="_ _1"> </span>minimizing</div><div class="t m0 xa h6 y11b ff1 fs4 fc0 sc0 ls0 ws0">Stein’s<span class="_ _1e"> </span>unbiased<span class="_ _1c"> </span>risk<span class="_ _1e"> </span>estimate<span class="_ _1c"> </span>[30]<span class="_ _1e"> </span>when<span class="_ _1c"> </span>soft-thresholding</div><div class="t m0 xa h6 y11c ff1 fs4 fc0 sc0 ls0 ws0">is<span class="_ _f"> </span>used.<span class="_ _f"> </span>The<span class="_ _f"> </span><span class="ff2">SureShrink<span class="_ _8"> </span></span>method<span class="_ _e"> </span>is<span class="_ _f"> </span>a<span class="_ _f"> </span>hybrid<span class="_ _f"> </span>of<span class="_ _f"> </span>the<span class="_ _f"> </span>universal</div><div class="t m0 xa h6 y11d ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _c"> </span>the<span class="_ _d"> </span>SURE<span class="_ _d"> </span>threshold,<span class="_ _c"> </span>with<span class="_ _d"> </span>the<span class="_ _d"> </span>choice<span class="_ _d"> </span>being<span class="_ _c"> </span>dependent</div><div class="t m0 xa h6 y11e ff1 fs4 fc0 sc0 ls0 ws0">on<span class="_ _1e"> </span>the<span class="_ _1c"> </span>ener<span class="_ _2"></span>gy<span class="_ _1e"> </span>of<span class="_ _1c"> </span>the<span class="_ _1e"> </span>particular<span class="_ _1c"> </span>subband<span class="_ _1e"> </span>[15].<span class="_ _1e"> </span>The<span class="_ _1c"> </span>SURE</div><div class="t m0 xa h6 y11f ff1 fs4 fc0 sc0 ls0 ws0">threshold<span class="_ _c"> </span>is<span class="_ _d"> </span>data-dri<span class="_ _2"></span>ven,<span class="_ _c"> </span>does<span class="_ _c"> </span>not<span class="_ _d"> </span>depend<span class="_ _c"> </span>on</div><div class="t m0 x31 h6 y120 ff1 fs4 fc0 sc0 ls0 ws0">explicitly<span class="_ _7"></span>,</div><div class="t m0 xa h6 y121 ff1 fs4 fc0 sc0 ls0 ws0">and<span class="_ _d"> </span><span class="ff2">Sur<span class="_ _2"></span>eShrink<span class="_ _d"> </span><span class="ff1">estimates<span class="_ _d"> </span>it<span class="_ _d"> </span>in<span class="_ _d"> </span>a<span class="_ _d"> </span>subband-adaptive<span class="_ _c"> </span>manner<span class="_ _3"></span>.</span></span></div><div class="t m0 xa h6 y122 ff1 fs4 fc0 sc0 ls0 ws0">Moreover<span class="_ _3"></span>,<span class="_ _6"> </span><span class="ff2">Sur<span class="_ _3"></span>eShrink<span class="_ _6"> </span><span class="ff1">has<span class="_ _6"> </span>yielded<span class="_ _4"> </span>good<span class="_ _6"> </span>image<span class="_ _6"> </span>denoising</span></span></div><div class="t m0 xa h6 y123 ff1 fs4 fc0 sc0 ls0 ws0">performance<span class="_"> </span>and<span class="_"> </span>comes<span class="_"> </span>close<span class="_"> </span>to<span class="_"> </span>the<span class="_"> </span>true<span class="_"> </span>minimum<span class="_ _a"> </span>MSE<span class="_"> </span>of<span class="_"> </span>the</div><div class="t m0 xa h6 y124 ff1 fs4 fc0 sc0 ls0 ws0">optimal<span class="_"> </span>soft-threshold<span class="_"> </span>estimator<span class="_"> </span>(cf.<span class="_"> </span>[4],<span class="_"> </span>[12]),<span class="_"> </span>and<span class="_"> </span>thus<span class="_"> </span>will<span class="_"> </span>be</div><div class="t m0 xa h6 y125 ff1 fs4 fc0 sc0 ls0 ws0">the<span class="_"> </span>main<span class="_ _a"> </span>comparison<span class="_ _a"> </span>to<span class="_"> </span>our<span class="_ _a"> </span>proposed<span class="_ _a"> </span>method.</div><div class="t m0 xb h6 y126 ff1 fs4 fc0 sc0 ls0 ws0">In<span class="_ _b"> </span>the<span class="_ _b"> </span>statistical<span class="_ _b"> </span>Bayesian<span class="_ _9"> </span>literature,<span class="_ _b"> </span>many<span class="_ _b"> </span>works<span class="_ _b"> </span>hav<span class="_ _2"></span>e<span class="_ _b"> </span>con-</div><div class="t m0 xa h6 y127 ff1 fs4 fc0 sc0 ls0 ws0">centrated<span class="_ _9"> </span>on<span class="_ _8"> </span>deriving<span class="_ _9"> </span>the<span class="_ _8"> </span>best<span class="_ _8"> </span>threshold<span class="_ _8"> </span>(or<span class="_ _8"> </span>shrinkage<span class="_ _8"> </span>factor)</div><div class="t m0 xa h6 y128 ff1 fs4 fc0 sc0 ls0 ws0">based<span class="_ _b"> </span>on<span class="_ _b"> </span>priors<span class="_ _9"> </span>such<span class="_ _b"> </span>as<span class="_ _b"> </span>the<span class="_ _b"> </span>Laplacian<span class="_ _b"> </span>and<span class="_ _9"> </span>a<span class="_ _b"> </span>mixture<span class="_ _b"> </span>of<span class="_ _9"> </span>Gaus-</div><div class="t m0 xa h6 y129 ff1 fs4 fc0 sc0 ls0 ws0">sians<span class="_"> </span>(cf.<span class="_"> </span>[1],<span class="_ _1"> </span>[8],<span class="_"> </span>[9],<span class="_"> </span>[18],<span class="_"> </span>[24],<span class="_ _1"> </span>[27],<span class="_"> </span>[29],<span class="_"> </span>[32],<span class="_ _1"> </span>[35]).<span class="_"> </span>W<span class="_ _2"></span>ith<span class="_"> </span>an</div><div class="t m0 xa h6 y12a ff1 fs4 fc0 sc0 ls0 ws0">integral<span class="_ _b"> </span>approximation<span class="_ _b"> </span>to<span class="_ _b"> </span>the<span class="_ _9"> </span>pixel-wise<span class="_ _b"> </span>MSE<span class="_ _b"> </span>distortion<span class="_ _9"> </span>mea-</div><div class="t m0 xa h6 y12b ff1 fs4 fc0 sc0 ls0 ws0">sure<span class="_"> </span>as<span class="_ _b"> </span>discussed<span class="_"> </span>earlier<span class="_ _2"></span>,<span class="_ _a"> </span>the<span class="_ _a"> </span>formulation<span class="_ _a"> </span>here<span class="_ _b"> </span>is<span class="_"> </span>also<span class="_ _a"> </span>Bayesian</div><div class="t m0 xa h6 y12c ff1 fs4 fc0 sc0 ls0 ws0">for<span class="_ _8"> </span>finding<span class="_ _f"> </span>the<span class="_ _8"> </span>best<span class="_ _f"> </span>soft-thresholding<span class="_ _f"> </span>rule<span class="_ _f"> </span>under<span class="_ _8"> </span>the<span class="_ _f"> </span>general-</div><div class="t m0 xa h6 y12d ff1 fs4 fc0 sc0 ls0 ws0">ized<span class="_ _f"> </span>Gaussian<span class="_ _f"> </span>prior<span class="_ _3"></span>.<span class="_ _e"> </span>A<span class="_ _f"> </span>related<span class="_ _e"> </span>work<span class="_ _f"> </span>is<span class="_ _f"> </span>[27]<span class="_ _f"> </span>where<span class="_ _e"> </span>the<span class="_ _f"> </span>hard-</div><div class="t m0 xa h6 y12e ff1 fs4 fc0 sc0 ls0 ws0">thresholding<span class="_"> </span>rule<span class="_"> </span>is<span class="_ _a"> </span>in<span class="_ _2"></span>vestigated<span class="_"> </span>for<span class="_"> </span>signals<span class="_"> </span>with<span class="_ _a"> </span>Laplacian<span class="_"> </span>and</div><div class="t m0 xa h6 y12f ff1 fs4 fc0 sc0 ls0 ws0">Gaussian<span class="_ _a"> </span>distributions.</div><div class="t m0 xb h6 y130 ff1 fs4 fc0 sc0 ls0 ws0">The<span class="_ _a"> </span>GGD<span class="_ _b"> </span>has<span class="_ _a"> </span>been<span class="_ _b"> </span>used<span class="_ _a"> </span>in<span class="_ _a"> </span>many<span class="_ _a"> </span>subband<span class="_ _b"> </span>or<span class="_ _a"> </span>wavelet-based</div><div class="t m0 xa h6 y131 ff1 fs4 fc0 sc0 ls0 ws0">image<span class="_ _b"> </span>processing<span class="_ _9"> </span>applications<span class="_ _b"> </span>[2],<span class="_ _9"> </span>[20],<span class="_ _b"> </span>[22],<span class="_ _9"> </span>[23],<span class="_ _9"> </span>[29],<span class="_ _b"> </span>[34],</div><div class="t m0 xa h6 y132 ff1 fs4 fc0 sc0 ls0 ws0">[36].<span class="_ _1"> </span>In<span class="_"> </span>[29],<span class="_ _1"> </span>it<span class="_ _1"> </span>was<span class="_ _1"> </span>observed<span class="_"> </span>that<span class="_ _10"> </span>a<span class="_"> </span>GGD<span class="_ _1"> </span>with<span class="_ _1"> </span>the<span class="_"> </span>shape<span class="_ _1"> </span>param-</div><div class="t m0 xa h6 y133 ff1 fs4 fc0 sc0 ls0 ws0">eter</div><div class="t m0 x32 h6 y134 ff1 fs4 fc0 sc0 ls0 ws0">ranging<span class="_ _10"> </span>from<span class="_ _10"> </span>0.5<span class="_ _1"> </span>to<span class="_ _10"> </span>1<span class="_ _10"> </span>[see<span class="_ _1"> </span>(1)]<span class="_ _10"> </span>can<span class="_ _10"> </span>adequately<span class="_ _1"> </span>describe<span class="_ _10"> </span>the</div><div class="t m0 xa h6 y135 ff1 fs4 fc0 sc0 ls0 ws0">wa<span class="_ _2"></span>velet<span class="_"> </span>coeff<span class="_ _3"></span>icients<span class="_ _a"> </span>of<span class="_ _a"> </span>a<span class="_ _a"> </span>large<span class="_"> </span>set<span class="_ _a"> </span>of<span class="_ _a"> </span>natural<span class="_ _a"> </span>images.<span class="_ _a"> </span>Our<span class="_ _a"> </span>expe-</div><div class="t m0 xa h6 y136 ff1 fs4 fc0 sc0 ls0 ws0">rience<span class="_"> </span>with<span class="_"> </span>images<span class="_ _a"> </span>supports<span class="_"> </span>the<span class="_ _a"> </span>same<span class="_"> </span>conclusion.<span class="_ _a"> </span>Fig.<span class="_"> </span>3<span class="_ _a"> </span>shows</div><div class="t m0 xa h6 y137 ff1 fs4 fc0 sc0 ls0 ws0">the<span class="_ _1"> </span>histogram<span class="_ _1"> </span>of<span class="_ _10"> </span>the<span class="_ _1"> </span>wav<span class="_ _2"></span>elet<span class="_ _1"> </span>coef<span class="_ _2"></span>ficients<span class="_ _10"> </span>of<span class="_ _1"> </span>the<span class="_ _1"> </span>images<span class="_ _1"> </span>shown<span class="_ _10"> </span>in</div><div class="t m0 xa h6 y138 ff1 fs4 fc0 sc0 ls0 ws0">Fig.<span class="_"> </span>9,<span class="_"> </span>against<span class="_"> </span>the<span class="_"> </span>generalized<span class="_"> </span>Gaussian<span class="_"> </span>curve,<span class="_"> </span>with<span class="_"> </span>the<span class="_"> </span>param-</div><div class="t m0 xa h6 y139 ff1 fs4 fc0 sc0 ls0 ws0">eters<span class="_ _1"> </span>labeled<span class="_ _1"> </span>(the<span class="_ _1"> </span>estimation<span class="_"> </span>of<span class="_ _10"> </span>the<span class="_"> </span>parameters<span class="_ _10"> </span>will<span class="_"> </span>be<span class="_ _10"> </span>explained</div><div class="t m0 xa h6 y13a ff1 fs4 fc0 sc0 ls0 ws0">later<span class="_"> </span>in<span class="_ _a"> </span>the<span class="_"> </span>text.)<span class="_"> </span>A<span class="_ _a"> </span>heuristic<span class="_ _a"> </span>can<span class="_"> </span>be<span class="_ _a"> </span>set<span class="_ _a"> </span>forward<span class="_"> </span>to<span class="_ _a"> </span>explain<span class="_"> </span>why</div><div class="t m0 xa h6 y13b ff1 fs4 fc0 sc0 ls0 ws0">there<span class="_ _b"> </span>are<span class="_ _9"> </span>a<span class="_ _9"> </span>large<span class="_ _b"> </span>number<span class="_ _b"> </span>of<span class="_ _9"> </span>“small”<span class="_ _b"> </span>coefficients<span class="_ _b"> </span>but<span class="_ _b"> </span>relativ<span class="_ _2"></span>ely</div><div class="t m0 xa h6 y13c ff1 fs4 fc0 sc0 ls0 ws0">few<span class="_ _b"> </span>“large”<span class="_ _b"> </span>coefficients<span class="_ _b"> </span>as<span class="_ _9"> </span>the<span class="_ _9"> </span>GGD<span class="_ _9"> </span>suggests:<span class="_ _9"> </span>the<span class="_ _9"> </span>small<span class="_ _8"> </span>ones</div><div class="t m0 xa h6 y13d ff1 fs4 fc0 sc0 ls0 ws0">correspond<span class="_ _b"> </span>to<span class="_ _a"> </span>smooth<span class="_ _b"> </span>regions<span class="_ _a"> </span>in<span class="_ _b"> </span>a<span class="_ _b"> </span>natural<span class="_ _b"> </span>image<span class="_ _a"> </span>and<span class="_ _b"> </span>the<span class="_ _b"> </span>large</div><div class="t m0 xa h6 y13e ff1 fs4 fc0 sc0 ls0 ws0">ones<span class="_ _a"> </span>to<span class="_ _b"> </span>edges<span class="_"> </span>or<span class="_ _b"> </span>textures.</div><div class="t m0 xa h9 y13f ff2 fs4 fc0 sc0 ls0 ws0">A.<span class="_ _c"> </span>Adaptive<span class="_ _a"> </span>Threshold<span class="_"> </span>for<span class="_"> </span>BayesShrink</div><div class="t m0 xb h6 y140 ff1 fs4 fc0 sc0 ls0 ws0">The<span class="_ _a"> </span>GGD,<span class="_ _a"> </span>following<span class="_ _a"> </span>[20],<span class="_ _a"> </span>is</div><div class="t m0 x33 h6 y141 ff1 fs4 fc0 sc0 ls0 ws0">(5)</div><div class="t m0 x34 h6 y142 ff1 fs4 fc0 sc0 ls0 ws0">,<span class="_ _32"> </span>,<span class="_ _33"> </span>,<span class="_"> </span>where</div><div class="t m0 xa h6 y143 ff1 fs4 fc0 sc0 ls0 ws0">and</div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div><div class="d m1"></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>