<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/62572d8560196e4b849cbb18/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/62572d8560196e4b849cbb18/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Progress<span class="_ _0"> </span>In<span class="_ _0"> </span>Electromagnetics<span class="_ _0"> </span>Researc<span class="_ _1"></span>h<span class="_ _2"> </span>M,<span class="_ _0"> </span>V<span class="_ _3"></span>ol.<span class="_ _0"> </span>77,<span class="_ _0"> </span>103–113,<span class="_ _0"> </span>2019</div><div class="t m0 x2 h3 y2 ff2 fs1 fc0 sc0 ls1 ws0">Tw<span class="_ _3"></span>o-Stage<span class="_ _4"> </span>Hybrid<span class="_ _5"> </span>Preco<span class="_ _6"></span>ding<span class="_ _5"> </span>Algori<span class="_ _1"></span>thm<span class="_ _4"> </span>Based<span class="_ _5"> </span>on<span class="_ _5"> </span>Switc<span class="_ _1"></span>h<span class="_ _5"> </span>Net<span class="_ _3"></span>w<span class="_ _1"></span>ork</div><div class="t m0 x3 h3 y3 ff2 fs1 fc0 sc0 ls2 ws0">for<span class="_ _5"> </span>Millimeter<span class="_ _7"> </span>W<span class="_ _8"></span>a<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _5"> </span>MIM<span class="_ _6"></span>O<span class="_ _5"> </span>Systems</div><div class="t m0 x1 h4 y4 ff3 fs2 fc0 sc0 ls3 ws0">F<span class="_ _8"></span>ulai<span class="_"> </span>Liu</div><div class="t m0 x4 h5 y5 ff4 fs3 fc0 sc0 ls4 ws0">1,<span class="_ _0"> </span>2,<span class="_ _9"> </span>*,</div><div class="t m0 x5 h6 y6 ff5 fs4 fc0 sc0 ls5 ws0">†</div><div class="t m0 x6 h4 y4 ff3 fs2 fc0 sc0 ls3 ws0">,<span class="_"> </span>Xiaodong<span class="_ _a"> </span>Kan</div><div class="t m0 x7 h5 y5 ff4 fs3 fc0 sc0 ls4 ws0">1,<span class="_ _9"> </span>2,</div><div class="t m0 x8 h6 y6 ff5 fs4 fc0 sc0 ls5 ws0">†</div><div class="t m0 x9 h4 y4 ff3 fs2 fc0 sc0 ls6 ws0">,<span class="_"> </span>Xiao<span class="_ _1"></span>yu<span class="_"> </span>Bai</div><div class="t m0 xa h5 y5 ff4 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 xb h4 y4 ff3 fs2 fc0 sc0 ls7 ws0">,R<span class="_ _b"></span>u<span class="_ _b"></span>i<span class="_ _b"></span>y<span class="_ _b"></span>a<span class="_ _b"></span>nD<span class="_ _b"></span>u</div><div class="t m0 xc h5 y5 ff4 fs3 fc0 sc0 ls4 ws0">1,<span class="_ _0"> </span>2</div><div class="t m0 xd h4 y4 ff3 fs2 fc0 sc0 ls8 ws0">,<span class="_"> </span>and<span class="_"> </span>Y<span class="_ _8"></span>anshuo<span class="_"> </span>Zhang</div><div class="t m0 xe h5 y5 ff4 fs3 fc0 sc0 ls4 ws0">1,<span class="_ _0"> </span>2</div><div class="t m0 x1 h7 y7 ff3 fs2 fc0 sc0 ls9 ws0">Abstract<span class="ff6 lsa">—Owing<span class="_ _0"> </span>to<span class="_ _0"> </span>the<span class="_ _9"> </span>hardw<span class="_ _1"></span>are<span class="_ _0"> </span>co<span class="_ _1"></span>st<span class="_"> </span>a<span class="_ _1"></span>nd<span class="_"> </span>po<span class="_ _1"></span>we<span class="_ _1"></span>r<span class="_"> </span>c<span class="_ _1"></span>onsumption<span class="_ _9"> </span>limita<span class="_ _1"></span>tion,<span class="_"> </span>h<span class="_ _3"></span>ybrid<span class="_ _0"> </span>precoding<span class="_ _9"> </span>has<span class="_"> </span>been</span></div><div class="t m0 x1 h7 y8 ff6 fs2 fc0 sc0 lsb ws0">recently<span class="_"> </span>considered<span class="_"> </span>as<span class="_"> </span>an<span class="_"> </span>alternativ<span class="_ _1"></span>e<span class="_"> </span>to<span class="_"> </span>the<span class="_"> </span>fully<span class="_"> </span>digital<span class="_"> </span>pr<span class="_ _6"></span>eco<span class="_ _6"></span>ding<span class="_"> </span>in<span class="_"> </span>millimeter<span class="_"> </span>w<span class="_ _1"></span>a<span class="_ _1"></span>ve<span class="_"> </span>(mmW<span class="_ _8"></span>av<span class="_ _1"></span>e)<span class="_"> </span>large-</div><div class="t m0 x1 h7 y9 ff6 fs2 fc0 sc0 lsc ws0">scal<span class="_ _1"></span>e<span class="_ _c"> </span>m<span class="_ _1"></span>ultiple<span class="_ _1"></span>-input<span class="_"> </span>mul<span class="_ _1"></span>tiple-o<span class="_ _1"></span>utput<span class="_"> </span>(MIMO)<span class="_ _c"> </span>syst<span class="_ _1"></span>ems.<span class="_ _4"> </span>Althoug<span class="_ _1"></span>h<span class="_ _c"> </span>the<span class="_"> </span>num<span class="_ _3"></span>b<span class="_ _6"></span>er<span class="_"> </span>of<span class="_ _c"> </span>radi<span class="_ _1"></span>o<span class="_ _c"> </span>freq<span class="_ _1"></span>uency<span class="_"> </span>(RF)</div><div class="t m0 x1 h7 ya ff6 fs2 fc0 sc0 lsd ws0">c<span class="_ _1"></span>hain<span class="_ _6"></span>s<span class="_ _0"> </span>is<span class="_ _9"> </span>r<span class="_ _6"></span>educed<span class="_"> </span>to<span class="_ _9"> </span>a<span class="_"> </span>certain<span class="_"> </span>exten<span class="_ _1"></span>t<span class="_ _0"> </span>in<span class="_ _9"> </span>th<span class="_ _6"></span>e<span class="_ _0"> </span>h<span class="_ _1"></span>yb<span class="_ _6"></span>rid<span class="_ _9"> </span>p<span class="_ _6"></span>reco<span class="_ _6"></span>ding<span class="_"> </span>structure,<span class="_"> </span>a<span class="_ _9"> </span>great<span class="_"> </span>n<span class="_ _1"></span>u<span class="_ _6"></span>m<span class="_ _1"></span>b<span class="_ _6"></span>er<span class="_ _0"> </span>of<span class="_ _0"> </span>phase<span class="_ _0"> </span>shifter<span class="_ _6"></span>s</div><div class="t m0 x1 h7 yb ff6 fs2 fc0 sc0 lse ws0">are<span class="_ _0"> </span>still<span class="_"> </span>needed.<span class="_ _d"> </span>In<span class="_ _0"> </span>this<span class="_ _0"> </span>pap<span class="_ _6"></span>er,<span class="_"> </span>w<span class="_ _1"></span>e<span class="_ _0"> </span>present<span class="_ _0"> </span>a<span class="_ _9"> </span>n<span class="_ _6"></span>ew<span class="_ _9"> </span>hybrid<span class="_ _0"> </span>preco<span class="_ _6"></span>di<span class="_ _6"></span>ng<span class="_ _0"> </span>arc<span class="_ _1"></span>hitectu<span class="_ _6"></span>re<span class="_ _0"> </span>based<span class="_"> </span>on<span class="_ _9"> </span>s<span class="_ _6"></span>witc<span class="_ _1"></span>h<span class="_"> </span>net<span class="_ _1"></span>w<span class="_ _1"></span>or<span class="_ _6"></span>k</div><div class="t m0 x1 h7 yc ff6 fs2 fc0 sc0 lsf ws0">to<span class="_ _9"> </span>decrea<span class="_ _1"></span>se<span class="_ _0"> </span>the<span class="_ _9"> </span>p<span class="_ _6"></span>o<span class="_ _1"></span>w<span class="_ _1"></span>er<span class="_ _9"> </span>consumption<span class="_ _9"> </span>of<span class="_ _9"> </span>h<span class="_ _1"></span>ybrid<span class="_ _9"> </span>precoder<span class="_ _0"> </span>b<span class="_ _1"></span>y<span class="_ _9"> </span>reducing<span class="_ _9"> </span>the<span class="_ _9"> </span>n<span class="_ _1"></span>um<span class="_ _1"></span>b<span class="_ _6"></span>er<span class="_ _9"> </span>of<span class="_ _9"> </span>phase<span class="_ _9"> </span>shifters<span class="_ _9"> </span>great<span class="_ _1"></span>ly<span class="_ _3"></span>.</div><div class="t m0 x1 h7 yd ff6 fs2 fc0 sc0 lsf ws0">The<span class="_"> </span>new<span class="_"> </span>hy<span class="_ _1"></span>brid<span class="_"> </span>precoding<span class="_ _c"> </span>a<span class="_ _1"></span>rc<span class="_ _1"></span>hitect<span class="_ _1"></span>ure<span class="_ _c"> </span>consi<span class="_ _1"></span>sts<span class="_ _c"> </span>o<span class="_ _1"></span>f<span class="_ _c"> </span>thre<span class="_ _1"></span>e<span class="_ _c"> </span>part<span class="_ _1"></span>s,<span class="_ _c"> </span>a<span class="_"> </span>digi<span class="_ _1"></span>tal<span class="_ _c"> </span>pre<span class="_ _1"></span>co<span class="_ _6"></span>der,<span class="_"> </span>an<span class="_"> </span>analo<span class="_ _1"></span>g<span class="_ _c"> </span>precoder,</div><div class="t m0 x1 h7 ye ff6 fs2 fc0 sc0 ls10 ws0">and<span class="_ _c"> </span>a<span class="_ _c"> </span>swi<span class="_ _1"></span>tc<span class="_ _1"></span>h<span class="_ _c"> </span>net<span class="_ _1"></span>w<span class="_ _1"></span>ork,<span class="_ _c"> </span>in<span class="_ _c"> </span>whic<span class="_ _1"></span>h<span class="_ _c"> </span>the<span class="_ _c"> </span>swit<span class="_ _1"></span>c<span class="_ _1"></span>h<span class="_ _c"> </span>net<span class="_ _1"></span>w<span class="_ _1"></span>ork<span class="_ _c"> </span>is<span class="_ _c"> </span>used<span class="_ _c"> </span>t<span class="_ _1"></span>o<span class="_ _c"> </span>offer<span class="_ _c"> </span>a<span class="_ _c"> </span>dynami<span class="_ _1"></span>c<span class="_ _c"> </span>connec<span class="_ _1"></span>tion<span class="_ _c"> </span>from<span class="_ _c"> </span>pha<span class="_ _1"></span>se</div><div class="t m0 x1 h7 yf ff6 fs2 fc0 sc0 lse ws0">shifter<span class="_ _6"></span>s<span class="_ _d"> </span>to<span class="_ _5"> </span>antennas.<span class="_ _e"> </span>Afterwards,<span class="_ _4"> </span>a<span class="_ _5"> </span>t<span class="_ _1"></span>w<span class="_ _1"></span>o-stage<span class="_ _4"> </span>algorith<span class="_ _6"></span>m<span class="_ _5"> </span>is<span class="_ _d"> </span>p<span class="_ _6"></span>rop<span class="_ _6"></span>osed<span class="_ _5"> </span>to<span class="_ _d"> </span>d<span class="_ _6"></span>etermine<span class="_ _5"> </span>eac<span class="_ _1"></span>h<span class="_ _5"> </span>p<span class="_ _6"></span>art<span class="_ _5"> </span>of<span class="_ _d"> </span>th<span class="_ _6"></span>e</div><div class="t m0 x1 h7 y10 ff6 fs2 fc0 sc0 ls11 ws0">h<span class="_ _1"></span>ybrid<span class="_"> </span>prec<span class="_ _1"></span>o<span class="_ _6"></span>ding<span class="_ _0"> </span>imple<span class="_ _1"></span>men<span class="_ _1"></span>tati<span class="_ _1"></span>on.<span class="_ _5"> </span>Sp<span class="_ _6"></span>eci<span class="_ _1"></span>fically<span class="_ _8"></span>,<span class="_"> </span>the<span class="_"> </span>pro<span class="_ _6"></span>duct<span class="_ _0"> </span>of<span class="_"> </span>the<span class="_ _0"> </span>analo<span class="_ _1"></span>g<span class="_ _c"> </span>pre<span class="_ _1"></span>co<span class="_ _6"></span>ding<span class="_ _0"> </span>matri<span class="_ _1"></span>x<span class="_"> </span>and<span class="_"> </span>digi<span class="_ _1"></span>tal</div><div class="t m0 x1 h7 y11 ff6 fs2 fc0 sc0 ls12 ws0">preco<span class="_ _6"></span>din<span class="_ _6"></span>g<span class="_ _a"> </span>matr<span class="_ _6"></span>ix<span class="_ _a"> </span>is<span class="_ _d"> </span>viewed<span class="_ _a"> </span>as<span class="_ _d"> </span>a<span class="_ _d"> </span>whole<span class="_ _d"> </span>matrix<span class="_ _d"> </span>firstly<span class="_ _3"></span>,<span class="_ _d"> </span>th<span class="_ _6"></span>ereb<span class="_ _1"></span>y<span class="_ _d"> </span>the<span class="_ _d"> </span>original<span class="_ _d"> </span>pr<span class="_ _6"></span>oblem<span class="_ _d"> </span>is<span class="_ _a"> </span>simp<span class="_ _6"></span>lified<span class="_ _d"> </span>in<span class="_ _1"></span>to</div><div class="t m0 x1 h7 y12 ff6 fs2 fc0 sc0 ls13 ws0">a<span class="_ _a"> </span>t<span class="_ _1"></span>w<span class="_ _1"></span>o-v<span class="_ _1"></span>ariab<span class="_ _6"></span>le<span class="_ _a"> </span>pr<span class="_ _6"></span>oblem<span class="_ _c"> </span>w<span class="_ _6"></span>hic<span class="_ _1"></span>h<span class="_ _a"> </span>is<span class="_ _a"> </span>r<span class="_ _6"></span>elativ<span class="_ _1"></span>ely<span class="_ _d"> </span>easy<span class="_ _a"> </span>to<span class="_ _a"> </span>b<span class="_ _6"></span>e<span class="_ _c"> </span>s<span class="_ _6"></span>olv<span class="_ _1"></span>ed.<span class="_ _f"> </span>Then<span class="_ _6"></span>,<span class="_ _c"> </span>th<span class="_ _6"></span>e<span class="_ _c"> </span>d<span class="_ _6"></span>ecomp<span class="_ _6"></span>osition<span class="_ _a"> </span>of<span class="_ _a"> </span>th<span class="_ _6"></span>e<span class="_ _c"> </span>an<span class="_ _6"></span>alog</div><div class="t m0 x1 h7 y13 ff6 fs2 fc0 sc0 ls14 ws0">precoding<span class="_ _10"> </span>matri<span class="_ _1"></span>x<span class="_ _10"> </span>and<span class="_ _9"> </span>dig<span class="_ _1"></span>ital<span class="_ _10"> </span>precoding<span class="_ _10"> </span>matrix<span class="_ _10"> </span>is<span class="_ _10"> </span>conside<span class="_ _1"></span>red<span class="_ _10"> </span>in<span class="_ _10"> </span>the<span class="_ _9"> </span>se<span class="_ _1"></span>cond<span class="_ _10"> </span>stage<span class="_ _1"></span>.<span class="_ _d"> </span>Sim<span class="_ _1"></span>ulat<span class="_ _1"></span>ion<span class="_ _10"> </span>results<span class="_ _10"> </span>sho<span class="_ _1"></span>w</div><div class="t m0 x1 h7 y14 ff6 fs2 fc0 sc0 ls15 ws0">that<span class="_ _9"> </span>th<span class="_ _6"></span>e<span class="_ _9"> </span>presented<span class="_ _9"> </span>imp<span class="_ _6"></span>lemen<span class="_ _1"></span>tation<span class="_"> </span>can<span class="_ _9"> </span>not<span class="_ _9"> </span>on<span class="_ _6"></span>ly<span class="_ _9"> </span>provide<span class="_ _9"> </span>a<span class="_ _9"> </span>b<span class="_ _6"></span>etter<span class="_ _0"> </span>trade-off<span class="_ _9"> </span>b<span class="_ _11"></span>et<span class="_ _1"></span>ween<span class="_ _9"> </span>har<span class="_ _6"></span>dw<span class="_ _1"></span>are<span class="_ _9"> </span>com<span class="_ _6"></span>plexit<span class="_ _1"></span>y</div><div class="t m0 x1 h7 y15 ff6 fs2 fc0 sc0 ls16 ws0">and<span class="_ _c"> </span>system<span class="_ _c"> </span>p<span class="_ _6"></span>erformance<span class="_ _1"></span>,<span class="_ _a"> </span>but<span class="_ _c"> </span>also<span class="_ _a"> </span>ac<span class="_ _3"></span>hiev<span class="_ _1"></span>e<span class="_ _d"> </span>highe<span class="_ _1"></span>r<span class="_ _a"> </span>energ<span class="_ _1"></span>y<span class="_ _a"> </span>efficienc<span class="_ _1"></span>y<span class="_ _a"> </span>with<span class="_ _a"> </span>far<span class="_ _c"> </span>few<span class="_ _1"></span>er<span class="_ _a"> </span>phase<span class="_ _c"> </span>shift<span class="_ _1"></span>ers<span class="_ _a"> </span>than</div><div class="t m0 x1 h7 y16 ff6 fs2 fc0 sc0 ls16 ws0">previo<span class="_ _1"></span>us<span class="_"> </span>w<span class="_ _1"></span>orks.</div><div class="t m0 x1 h4 y17 ff3 fs2 fc0 sc0 ls17 ws0">1.<span class="_ _5"> </span>INTRODU<span class="_ _1"></span>CTION</div><div class="t m0 x1 h7 y18 ff6 fs2 fc0 sc0 ls12 ws0">Millimeter<span class="_ _9"> </span>w<span class="_ _1"></span>a<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _9"> </span>(mmW<span class="_ _3"></span>a<span class="_ _1"></span>v<span class="_ _1"></span>e)<span class="_ _9"> </span>communication<span class="_ _10"> </span>system<span class="_ _6"></span>s,<span class="_ _10"> </span>op<span class="_ _6"></span>er<span class="_ _6"></span>ating<span class="_ _10"> </span>in<span class="_ _10"> </span>the<span class="_ _10"> </span>sp<span class="_ _6"></span>ectru<span class="_ _6"></span>m<span class="_ _10"> </span>from<span class="_ _10"> </span>30<span class="_ _12"> </span>GHz<span class="_ _10"> </span>to<span class="_ _10"> </span>300<span class="_ _13"> </span>GHz,</div><div class="t m0 x1 h7 y19 ff6 fs2 fc0 sc0 lse ws0">ha<span class="_ _1"></span>ve<span class="_ _0"> </span>attracted<span class="_"> </span>extensive<span class="_"> </span>atten<span class="_ _1"></span>tion<span class="_"> </span>o<span class="_ _1"></span>v<span class="_ _1"></span>er<span class="_"> </span>th<span class="_ _6"></span>e<span class="_ _9"> </span>p<span class="_ _6"></span>ast<span class="_ _0"> </span>y<span class="_ _1"></span>ears<span class="_"> </span>[1–3].<span class="_ _d"> </span>Mu<span class="_ _6"></span>ltiple-i<span class="ls18">nput<span class="_ _9"> </span>mult<span class="_ _1"></span>iple-o<span class="_ _1"></span>utput<span class="_ _0"> </span>(MIM<span class="_ _1"></span>O)<span class="_ _0"> </span>is</span></div><div class="t m0 x1 h7 y1a ff6 fs2 fc0 sc0 lsb ws0">one<span class="_ _10"> </span>of<span class="_ _9"> </span>the<span class="_ _10"> </span>promis<span class="_ _6"></span>ing<span class="_ _10"> </span>tec<span class="_ _1"></span>hn<span class="_ _6"></span>iques,<span class="_ _9"> </span>which<span class="_ _10"> </span>can<span class="_ _10"> </span>exploit<span class="_ _9"> </span>large-scale<span class="_ _9"> </span>antenna<span class="_ _10"> </span>elements<span class="_ _10"> </span>at<span class="_ _10"> </span>tr<span class="_ _6"></span>ansceiv<span class="_ _1"></span>ers<span class="_ _9"> </span>to<span class="_ _10"> </span>achiev<span class="_ _1"></span>e</div><div class="t m0 x1 h7 y1b ff6 fs2 fc0 sc0 lse ws0">high<span class="_"> </span>b<span class="_ _6"></span>eamform<span class="_ _6"></span>ing<span class="_ _0"> </span>gains<span class="_"> </span>and<span class="_ _0"> </span>com<span class="_ _1"></span>bat<span class="_"> </span>huge<span class="_ _0"> </span>atten<span class="_ _1"></span>u<span class="_ _6"></span>ation<span class="_"> </span>and<span class="_ _0"> </span>p<span class="_ _6"></span>enetr<span class="_ _6"></span>ation<span class="_"> </span>loss<span class="_ _0"> </span>at<span class="_ _0"> </span>mmW<span class="_ _3"></span>a<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_"> </span>fr<span class="_ _6"></span>equencies<span class="_"> </span>[4].</div><div class="t m0 x1 h7 y1c ff6 fs2 fc0 sc0 ls10 ws0">Ho<span class="_ _3"></span>wev<span class="_ _3"></span>er,<span class="_ _c"> </span>increased<span class="_ _c"> </span>po<span class="_ _1"></span>we<span class="_ _1"></span>r<span class="_ _c"> </span>consumpti<span class="_ _1"></span>on<span class="_ _c"> </span>and<span class="_"> </span>hardw<span class="_ _1"></span>are<span class="_ _c"> </span>co<span class="_ _1"></span>st<span class="_ _c"> </span>mak<span class="_ _1"></span>e<span class="_ _c"> </span>a<span class="_ _c"> </span>full<span class="_ _1"></span>y<span class="_ _c"> </span>digit<span class="_ _1"></span>al<span class="_ _c"> </span>precoder<span class="_ _c"> </span>infe<span class="_ _1"></span>asible<span class="_ _c"> </span>fo<span class="_ _1"></span>r</div><div class="t m0 x1 h7 y1d ff6 fs2 fc0 sc0 lsd ws0">large-scale<span class="_ _9"> </span>m<span class="_ _6"></span>mW<span class="_ _8"></span>av<span class="_ _1"></span>e<span class="_ _9"> </span>MIMO<span class="_ _9"> </span>systems<span class="_ _9"> </span>[5].<span class="_ _d"> </span>T<span class="_ _3"></span>o<span class="_ _10"> </span>ov<span class="_ _3"></span>er<span class="_ _6"></span>come<span class="_ _9"> </span>this<span class="_ _9"> </span>shor<span class="_ _6"></span>tcoming,<span class="_ _9"> </span>a<span class="_ _9"> </span>h<span class="_ _1"></span>ybr<span class="_ _6"></span>id<span class="_ _10"> </span>preco<span class="_ _6"></span>d<span class="_ _6"></span>ing<span class="_ _10"> </span>ar<span class="_ _6"></span>c<span class="_ _1"></span>hitectur<span class="_ _6"></span>e,</div><div class="t m0 x1 h7 y1e ff6 fs2 fc0 sc0 ls13 ws0">which<span class="_ _10"> </span>only<span class="_ _10"> </span>ad<span class="_ _6"></span>opts<span class="_ _10"> </span>a<span class="_ _10"> </span>lim<span class="_ _6"></span>ited<span class="_ _10"> </span>numb<span class="_ _6"></span>er<span class="_ _10"> </span>of<span class="_ _10"> </span>RF<span class="_ _10"> </span>c<span class="_ _1"></span>h<span class="_ _6"></span>ains<span class="_ _10"> </span>to<span class="_ _9"> </span>connect<span class="_ _9"> </span>a<span class="_ _10"> </span>lo<span class="_ _1"></span>w-d<span class="_ _6"></span>imension<span class="_ _6"></span>al<span class="_ _10"> </span>d<span class="_ _6"></span>igital<span class="_ _10"> </span>b<span class="_ _6"></span>aseband<span class="_ _10"> </span>pr<span class="_ _6"></span>eco<span class="_ _6"></span>der</div><div class="t m0 x1 h7 y1f ff6 fs2 fc0 sc0 ls13 ws0">and<span class="_"> </span>a<span class="_"> </span>h<span class="_ _6"></span>igh-dim<span class="_ _6"></span>ensional<span class="_ _14"> </span>analog<span class="_ _14"> </span>RF<span class="_"> </span>pr<span class="_ _6"></span>eco<span class="_ _6"></span>der,<span class="_"> </span>has<span class="_ _14"> </span>recently<span class="_"> </span>received<span class="_ _2"> </span>muc<span class="_ _1"></span>h<span class="_"> </span>con<span class="_ _6"></span>sideration<span class="_ _c"> </span>[6,<span class="_ _12"> </span>7].</div><div class="t m0 xf h7 y20 ff6 fs2 fc0 sc0 lsb ws0">In<span class="_ _15"> </span>general,<span class="_ _16"> </span>the<span class="_ _15"> </span>hybrid<span class="_ _15"> </span>preco<span class="_ _6"></span>d<span class="_ _6"></span>ing<span class="_ _15"> </span>is<span class="_ _15"> </span>categorized<span class="_ _17"> </span>in<span class="_ _1"></span>to<span class="_ _17"> </span>fully-conn<span class="_ _6"></span>ected<span class="_ _15"> </span>and<span class="_ _17"> </span>partially-conn<span class="_ _6"></span>ected</div><div class="t m0 x1 h7 y21 ff6 fs2 fc0 sc0 lsb ws0">structu<span class="_ _6"></span>res<span class="_ _a"> </span>w<span class="_ _6"></span>ith<span class="_ _a"> </span>ph<span class="_ _6"></span>ase<span class="_ _a"> </span>sh<span class="_ _6"></span>ifters<span class="_ _a"> </span>(FC-PSs<span class="_ _d"> </span>and<span class="_ _a"> </span>P<span class="_ _6"></span>C-PSs).<span class="_ _16"> </span>Recently<span class="_ _3"></span>,<span class="_ _d"> </span>several<span class="_ _a"> </span>hybrid<span class="_ _d"> </span>preco<span class="_ _6"></span>din<span class="_ _6"></span>g<span class="_ _a"> </span>algorithms</div><div class="t m0 x1 h7 y22 ff6 fs2 fc0 sc0 ls18 ws0">ha<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _5"> </span>b<span class="_ _6"></span>een<span class="_ _d"> </span>presen<span class="_ _3"></span>ted<span class="_ _5"> </span>for<span class="_ _5"> </span>F<span class="_ _3"></span>C-PSs.<span class="_ _e"> </span>The<span class="_ _5"> </span>spati<span class="_ _1"></span>ally<span class="_ _5"> </span>sparse<span class="_ _d"> </span>precoding<span class="_ _d"> </span>algorit<span class="_ _1"></span>hm<span class="_ _5"> </span>in<span class="_ _5"> </span>[7]<span class="_ _5"> </span>re<span class="_ _1"></span>form<span class="_ _1"></span>ulate<span class="_ _1"></span>s<span class="_ _5"> </span>the</div><div class="t m0 x1 h7 y23 ff6 fs2 fc0 sc0 lse ws0">h<span class="_ _1"></span>yb<span class="_ _6"></span>rid<span class="_"> </span>preco<span class="_ _6"></span>ding<span class="_"> </span>pr<span class="_ _6"></span>oblem<span class="_"> </span>as<span class="_"> </span>a<span class="_"> </span>sparse<span class="_"> </span>reconstr<span class="_ _6"></span>uction<span class="_"> </span>pr<span class="_ _6"></span>oblem<span class="_"> </span>and<span class="_"> </span>solv<span class="_ _1"></span>es<span class="_"> </span>it<span class="_"> </span>by<span class="_ _0"> </span>the<span class="_"> </span>orthogonal<span class="_ _14"> </span>matching</div><div class="t m0 x1 h7 y24 ff6 fs2 fc0 sc0 ls18 ws0">pursuit<span class="_ _13"> </span>(OMP)<span class="_ _1"></span>.<span class="_ _10"> </span>Co<span class="_ _6"></span>debo<span class="_ _6"></span>ok-ba<span class="_ _1"></span>sed<span class="_ _13"> </span>hybri<span class="_ _1"></span>d<span class="_ _10"> </span>prec<span class="_ _1"></span>o<span class="_ _6"></span>ding<span class="_ _13"> </span>algori<span class="_ _1"></span>thm<span class="_ _10"> </span>in<span class="_ _13"> </span>[8]<span class="_ _10"> </span>in<span class="_ _1"></span>v<span class="_ _1"></span>olv<span class="_ _1"></span>es<span class="_ _10"> </span>an<span class="_ _13"> </span>iterat<span class="_ _1"></span>iv<span class="_ _1"></span>e<span class="_ _10"> </span>searc<span class="_ _1"></span>hing<span class="_ _13"> </span>pro<span class="_ _6"></span>cess</div><div class="t m0 x1 h7 y25 ff6 fs2 fc0 sc0 ls15 ws0">in<span class="_ _d"> </span>a<span class="_ _d"> </span>p<span class="_ _6"></span>redefin<span class="_ _6"></span>ed<span class="_ _a"> </span>co<span class="_ _6"></span>d<span class="_ _6"></span>eb<span class="_ _6"></span>o<span class="_ _6"></span>ok<span class="_ _d"> </span>to<span class="_ _d"> </span>fi<span class="_ _6"></span>nd<span class="_ _d"> </span>the<span class="_ _d"> </span>optim<span class="_ _6"></span>al<span class="_ _d"> </span>hybrid<span class="_ _d"> </span>pr<span class="_ _6"></span>ecod<span class="_ _6"></span>ing<span class="_ _d"> </span>matr<span class="_ _6"></span>ix.<span class="_ _18"> </span>The<span class="_ _d"> </span>works<span class="_ _d"> </span>in<span class="_ _d"> </span>[<span class="_ _6"></span>9–12]<span class="_ _d"> </span>d<span class="_ _6"></span>evise</div><div class="t m0 x1 h7 y26 ff6 fs2 fc0 sc0 ls19 ws0">h<span class="_ _1"></span>yb<span class="_ _6"></span>rid<span class="_ _a"> </span>preco<span class="_ _6"></span>din<span class="_ _6"></span>g<span class="_ _c"> </span>algor<span class="_ _6"></span>ithm<span class="_ _a"> </span>by<span class="_ _c"> </span>matr<span class="_ _6"></span>ix<span class="_ _a"> </span>decomp<span class="_ _11"></span>osition<span class="_ _a"> </span>and<span class="_ _a"> </span>altern<span class="_ _6"></span>ativ<span class="_ _1"></span>e<span class="_ _d"> </span>minimization<span class="_ _6"></span>,<span class="_ _d"> </span>resp<span class="_ _6"></span>ectiv<span class="_ _1"></span>ely<span class="_ _3"></span>,<span class="_ _d"> </span>and</div><div class="t m0 x2 h8 y27 ff7 fs3 fc0 sc0 ls1a ws0">R<span class="_ _1"></span>e<span class="_ _1"></span>c<span class="_ _1"></span>eiv<span class="_ _6"></span>e<span class="_ _1"></span>d<span class="_ _9"> </span>28<span class="_ _0"> </span>Oct<span class="_ _6"></span>ob<span class="_ _3"></span>e<span class="_ _6"></span>r<span class="_ _9"> </span>2018,<span class="_ _0"> </span>A<span class="_ _1"></span>c<span class="_ _1"></span>c<span class="_ _1"></span>epted<span class="_ _9"> </span>6<span class="_ _0"> </span>De<span class="_ _1"></span>c<span class="_ _1"></span>emb<span class="_"> </span>er<span class="_ _9"> </span>2018,<span class="_ _0"> </span>Sche<span class="_ _1"></span>dule<span class="_ _1"></span>d<span class="_ _0"> </span>29<span class="_ _0"> </span>De<span class="_ _1"></span>c<span class="_ _1"></span>emb<span class="_"> </span>er<span class="_ _9"> </span>2018</div><div class="t m0 x1 h5 y28 ff8 fs3 fc0 sc0 ls1b ws0">*<span class="_ _14"> </span>Corresponding<span class="_ _10"> </span>author:<span class="_ _10"> </span>F<span class="_ _3"></span>ulai<span class="_ _10"> </span>Liu<span class="_ _9"> </span>(fulailiu@1<span class="_ _1"></span>26.com)<span class="_ _1"></span>.</div><div class="t m0 x1 h6 y29 ff9 fs4 fc0 sc0 ls5 ws0">1</div><div class="t m0 x2 h5 y2a ff8 fs3 fc0 sc0 ls1c ws0">Engineer<span class="_ _0"> </span>Opti<span class="_ _6"></span>mization<span class="_ _0"> </span>&<span class="_ _0"> </span>Sm<span class="_ _6"></span>art<span class="_ _0"> </span>Antenna<span class="_ _0"> </span>Institute,<span class="_ _2"> </span>Northeas<span class="_ _6"></span>tern<span class="_ _0"> </span>University<span class="_ _0"> </span>at<span class="_ _0"> </span>Qinh<span class="_"> </span>uangdao,<span class="_ _0"> </span>Qinhuangdao,<span class="_ _0"> </span>Chi<span class="_ _6"></span>na.</div><div class="t m0 x10 h6 y29 ff9 fs4 fc0 sc0 ls5 ws0">2</div><div class="t m0 x11 h5 y2a ff8 fs3 fc0 sc0 ls1d ws0">Sc<span class="_"> </span>hool<span class="_ _0"> </span>of</div><div class="t m0 x1 h5 y2b ff8 fs3 fc0 sc0 ls1e ws0">Computer<span class="_ _9"> </span>Sci<span class="_ _6"></span>ence<span class="_ _9"> </span>and<span class="_ _9"> </span>Engineeri<span class="_ _6"></span>ng,<span class="_ _9"> </span>Northeastern<span class="_ _0"> </span>University<span class="_ _3"></span>,<span class="_ _9"> </span>Shen<span class="_ _1"></span>yang,<span class="_ _9"> </span>China.</div><div class="t m0 x12 h6 y2c ff5 fs4 fc0 sc0 ls5 ws0">†</div><div class="t m0 x13 h5 y2d ff8 fs3 fc0 sc0 ls1f ws0">F<span class="_ _3"></span>ulai<span class="_ _10"> </span>Liu<span class="_ _9"> </span>and<span class="_ _9"> </span>Xiaodong<span class="_ _10"> </span>Kan<span class="_ _9"> </span>ha<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _9"> </span>made<span class="_ _9"> </span>the<span class="_ _9"> </span>same</div><div class="t m0 x1 h5 y2e ff8 fs3 fc0 sc0 ls20 ws0">cont<span class="_"> </span>ributions<span class="_ _9"> </span>on<span class="_ _9"> </span>this<span class="_ _9"> </span>pap<span class="_ _6"></span>er.</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/62572d8560196e4b849cbb18/bg2.jpg"><div class="t m0 x1 h2 y1 ffa fs0 fc0 sc0 ls21 ws0">104<span class="_ _19"> </span><span class="ls22">Liu<span class="_ _0"> </span>e<span class="_ _6"></span>t<span class="_ _0"> </span>al.</span></div><div class="t m0 x1 h7 y2f ff6 fs2 fc0 sc0 ls12 ws0">the<span class="_ _d"> </span>ob<span class="_ _11"></span>jective<span class="_ _d"> </span>of<span class="_ _d"> </span>ac<span class="_ _1"></span>hieving<span class="_ _d"> </span>sp<span class="_ _6"></span>ectr<span class="_ _6"></span>al<span class="_ _a"> </span>effi<span class="_ _6"></span>ciency<span class="_ _d"> </span>is<span class="_ _d"> </span>close<span class="_ _d"> </span>to<span class="_ _d"> </span>that<span class="_ _d"> </span>of<span class="_ _d"> </span>fu<span class="_ _6"></span>lly<span class="_ _a"> </span>digital<span class="_ _5"> </span>solutions.<span class="_ _18"> </span>The<span class="_ _a"> </span>iter<span class="_ _6"></span>ativ<span class="_ _1"></span>e</div><div class="t m0 x1 h7 y30 ff6 fs2 fc0 sc0 lse ws0">column<span class="_ _5"> </span>m<span class="_ _6"></span>aximization<span class="_ _4"> </span>algorith<span class="_ _6"></span>m<span class="_ _5"> </span>and<span class="_ _5"> </span>iterative<span class="_ _5"> </span>co<span class="_ _6"></span>ordin<span class="_ _6"></span>ate<span class="_ _5"> </span>descent<span class="_ _5"> </span>algorithm<span class="_ _4"> </span>for<span class="_ _5"> </span>FC-PSs<span class="_ _5"> </span>are<span class="_ _5"> </span>stu<span class="_ _6"></span>died</div><div class="t m0 x1 h7 y31 ff6 fs2 fc0 sc0 ls15 ws0">in<span class="_"> </span>[13]<span class="_ _14"> </span>and<span class="_"> </span>[14],<span class="_ _14"> </span>res<span class="_ _6"></span>p<span class="_ _6"></span>ectiv<span class="_ _1"></span>ely<span class="_ _3"></span>.</div><div class="t m0 xf h7 y32 ff6 fs2 fc0 sc0 ls16 ws0">The<span class="_ _9"> </span>h<span class="_ _1"></span>ybrid<span class="_ _9"> </span>precoding<span class="_ _9"> </span>sc<span class="_ _1"></span>heme<span class="_ _9"> </span>based<span class="_ _9"> </span>on<span class="_ _9"> </span>F<span class="_ _1"></span>C-PSs<span class="_ _9"> </span>enjo<span class="_ _3"></span>ys<span class="_ _0"> </span>fully<span class="_ _9"> </span>beamforming<span class="_ _9"> </span>g<span class="_ _1"></span>ain,<span class="_ _9"> </span>since<span class="_ _0"> </span>ea<span class="_ _1"></span>c<span class="_ _1"></span>h<span class="_ _0"> </span>RF<span class="_ _9"> </span>c<span class="_ _1"></span>hain</div><div class="t m0 x1 h7 y33 ff6 fs2 fc0 sc0 lsd ws0">is<span class="_"> </span>connected<span class="_"> </span>to<span class="_"> </span>all<span class="_"> </span>ant<span class="_ _1"></span>en<span class="_ _6"></span>na<span class="_"> </span>elemen<span class="_ _1"></span>ts<span class="_"> </span>via<span class="_"> </span>p<span class="_ _6"></span>hase<span class="_"> </span>shifters.<span class="_ _d"> </span>How<span class="_ _3"></span>ever,<span class="_"> </span>th<span class="_ _6"></span>e<span class="_ _0"> </span>num<span class="_ _1"></span>b<span class="_ _6"></span>er<span class="_"> </span>of<span class="_"> </span>required<span class="_"> </span>phase<span class="_"> </span>shifters</div><div class="t m0 x1 h7 y34 ff6 fs2 fc0 sc0 lsa ws0">is<span class="_"> </span>as<span class="_"> </span>l<span class="_ _1"></span>arge<span class="_"> </span>as<span class="_"> </span>the<span class="_"> </span>product<span class="_"> </span>o<span class="_ _1"></span>f<span class="_"> </span>the<span class="_"> </span>n<span class="_ _1"></span>um<span class="_ _1"></span>b<span class="_ _6"></span>ers<span class="_"> </span>o<span class="_ _1"></span>f<span class="_ _14"> </span>RF<span class="_"> </span>c<span class="_ _3"></span>hains<span class="_"> </span>and<span class="_"> </span>an<span class="_ _1"></span>tenna<span class="_ _0"> </span>eleme<span class="_ _1"></span>n<span class="_ _1"></span>ts,<span class="_"> </span>whic<span class="_ _1"></span>h<span class="_"> </span>leads<span class="_"> </span>to<span class="_"> </span>e<span class="_ _1"></span>xcessiv<span class="_ _3"></span>e</div><div class="t m0 x1 h7 y35 ff6 fs2 fc0 sc0 ls18 ws0">hardw<span class="_ _1"></span>are<span class="_ _13"> </span>cost<span class="_ _10"> </span>and<span class="_ _10"> </span>p<span class="_ _6"></span>o<span class="_ _1"></span>w<span class="_ _1"></span>er<span class="_ _10"> </span>consumpti<span class="_ _1"></span>on.<span class="_ _a"> </span>T<span class="_ _3"></span>o<span class="_ _13"> </span>impro<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _9"> </span>the<span class="_ _13"> </span>hardw<span class="_ _1"></span>are<span class="_ _10"> </span>efficie<span class="_ _1"></span>ncy<span class="_ _3"></span>,<span class="_ _10"> </span>the<span class="_ _10"> </span>hy<span class="_ _1"></span>brid<span class="_ _10"> </span>precoding<span class="_ _10"> </span>sc<span class="_ _1"></span>heme</div><div class="t m0 x1 h7 y36 ff6 fs2 fc0 sc0 ls23 ws0">based<span class="_ _9"> </span>on<span class="_ _0"> </span>PC-PSs<span class="_ _9"> </span>is<span class="_ _0"> </span>one<span class="_ _9"> </span>p<span class="_ _6"></span>ossible<span class="_ _9"> </span>w<span class="_ _1"></span>a<span class="_ _1"></span>y<span class="_ _0"> </span>to<span class="_ _0"> </span>signi<span class="_ _1"></span>fican<span class="_ _1"></span>tly<span class="_ _0"> </span>reduce<span class="_ _9"> </span>the<span class="_ _9"> </span>num<span class="_ _3"></span>b<span class="_ _6"></span>er<span class="_ _0"> </span>of<span class="_ _9"> </span>phase<span class="_ _0"> </span>shifte<span class="_ _1"></span>rs,<span class="_ _0"> </span>in<span class="_ _0"> </span>whic<span class="_ _3"></span>h<span class="_"> </span>e<span class="_ _1"></span>ac<span class="_ _1"></span>h</div><div class="t m0 x1 h7 y37 ff6 fs2 fc0 sc0 ls23 ws0">RF<span class="_"> </span>c<span class="_ _3"></span>hain<span class="_"> </span>is<span class="_"> </span>only<span class="_ _0"> </span>connec<span class="_ _1"></span>ted<span class="_"> </span>to<span class="_"> </span>a<span class="_"> </span>subse<span class="_ _1"></span>t<span class="_"> </span>of<span class="_"> </span>an<span class="_ _3"></span>tennas.</div><div class="t m0 xf h7 y38 ff6 fs2 fc0 sc0 ls24 ws0">In<span class="_ _14"> </span>[15,<span class="_ _13"> </span>16],<span class="_ _a"> </span>a<span class="_ _c"> </span>co<span class="_ _6"></span>deb<span class="_ _6"></span>o<span class="_ _6"></span>ok-b<span class="_ _6"></span>ased<span class="_ _14"> </span>d<span class="_ _6"></span>esign<span class="_ _c"> </span>of<span class="_ _c"> </span>hybrid<span class="_ _c"> </span>pr<span class="_ _6"></span>ecod<span class="_ _6"></span>ers<span class="_ _14"> </span>f<span class="_ _6"></span>or<span class="_ _14"> </span>PC<span class="_ _6"></span>-PSs<span class="_ _14"> </span>is<span class="_ _c"> </span>p<span class="_ _6"></span>rop<span class="_ _6"></span>osed<span class="_ _c"> </span>for<span class="_ _c"> </span>n<span class="_ _6"></span>arro<span class="_ _1"></span>w-<span class="_ _6"></span>band</div><div class="t m0 x1 h7 y39 ff6 fs2 fc0 sc0 ls15 ws0">and<span class="_ _c"> </span>orth<span class="_ _6"></span>ogonal<span class="_ _c"> </span>f<span class="_ _6"></span>requency<span class="_ _c"> </span>d<span class="_ _6"></span>ivision<span class="_ _c"> </span>m<span class="_ _1"></span>u<span class="_ _6"></span>ltiplexing<span class="_ _a"> </span>systems<span class="_ _6"></span>,<span class="_ _c"> </span>resp<span class="_ _11"></span>ectiv<span class="_ _1"></span>ely<span class="_ _3"></span>.<span class="_ _15"> </span>The<span class="_ _14"> </span>d<span class="_ _6"></span>esign<span class="_ _c"> </span>complexity<span class="_ _c"> </span>of<span class="_ _c"> </span>th<span class="_ _6"></span>ese</div><div class="t m0 x1 h7 y3a ff6 fs2 fc0 sc0 ls25 ws0">algorithm<span class="_ _6"></span>s<span class="_ _a"> </span>is<span class="_ _d"> </span>lo<span class="_ _1"></span>w<span class="_ _6"></span>;<span class="_ _5"> </span>ho<span class="_ _1"></span>wev<span class="_ _1"></span>er,<span class="_ _5"> </span>the<span class="_ _a"> </span>limited<span class="_ _5"> </span>size<span class="_ _a"> </span>of<span class="_ _d"> </span>the<span class="_ _d"> </span>co<span class="_ _6"></span>deb<span class="_ _6"></span>o<span class="_ _6"></span>ok<span class="_ _d"> </span>giv<span class="_ _1"></span>es<span class="_ _d"> </span>rise<span class="_ _d"> </span>to<span class="_ _d"> </span>an<span class="_ _a"> </span>in<span class="_ _6"></span>evitable<span class="_ _d"> </span>p<span class="_ _6"></span>erfor<span class="_ _6"></span>mance</div><div class="t m0 x1 h7 y3b ff6 fs2 fc0 sc0 ls26 ws0">loss.<span class="_ _e"> </span>In<span class="_ _5"> </span>[17],<span class="_ _4"> </span>a<span class="_ _5"> </span>semidefi<span class="_ _6"></span>nite<span class="_ _5"> </span>relaxation<span class="_ _5"> </span>(SDR</div><div class="t m0 x14 h7 y3c ff6 fs2 fc0 sc0 ls19 ws0">AltMin)<span class="_ _5"> </span>algorithm<span class="_ _5"> </span>is<span class="_ _5"> </span>intro<span class="_ _6"></span>duced<span class="_ _5"> </span>b<span class="_ _1"></span>y<span class="_ _5"> </span>utilizing<span class="_ _5"> </span>the<span class="_ _5"> </span>idea</div><div class="t m0 x1 h7 y3d ff6 fs2 fc0 sc0 ls27 ws0">of<span class="_ _a"> </span>alternatin<span class="_ _6"></span>g<span class="_ _a"> </span>minim<span class="_ _6"></span>ization,<span class="_ _d"> </span>which<span class="_ _c"> </span>can<span class="_ _a"> </span>p<span class="_ _6"></span>ro<span class="_ _1"></span>vide<span class="_ _a"> </span>su<span class="_ _6"></span>bstantial<span class="_ _c"> </span>p<span class="_ _6"></span>er<span class="_ _6"></span>formance<span class="_ _a"> </span>gains<span class="_ _d"> </span>for<span class="_ _a"> </span>PC-PSs.<span class="_ _17"> </span>Based<span class="_ _d"> </span>on</div><div class="t m0 x1 h7 y3e ff6 fs2 fc0 sc0 ls28 ws0">realistic<span class="_ _c"> </span>PC-PS<span class="_ _6"></span>s<span class="_ _14"> </span>with<span class="_ _c"> </span>low<span class="_ _14"> </span>complexity<span class="_ _8"></span>,<span class="_ _a"> </span>an<span class="_ _c"> </span>iterative<span class="_ _c"> </span>h<span class="_ _1"></span>yb<span class="_ _6"></span>rid<span class="_ _14"> </span>preco<span class="_ _6"></span>d<span class="_ _6"></span>ing<span class="_ _14"> </span>algorith<span class="_ _6"></span>m<span class="_ _14"> </span>is<span class="_ _c"> </span>stud<span class="_ _6"></span>ied<span class="_ _14"> </span>in<span class="_ _c"> </span>[8],<span class="_ _c"> </span>wh<span class="_ _6"></span>ere</div><div class="t m0 x1 h7 y3f ff6 fs2 fc0 sc0 ls26 ws0">success<span class="_ _6"></span>iv<span class="_ _1"></span>e<span class="_"> </span>interference<span class="_"> </span>cancellation<span class="_ _14"> </span>is<span class="_"> </span>exploited<span class="_"> </span>to<span class="_"> </span>obtain<span class="_"> </span>the<span class="_"> </span>analog<span class="_"> </span>RF<span class="_"> </span>preco<span class="_ _6"></span>din<span class="_ _6"></span>g<span class="_ _0"> </span>matrix.<span class="_ _d"> </span>I<span class="_ _6"></span>n<span class="_ _0"> </span>addition,</div><div class="t m0 x1 h7 y40 ff6 fs2 fc0 sc0 ls16 ws0">to<span class="_ _14"> </span>impro<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _c"> </span>the<span class="_ _14"> </span>system<span class="_ _c"> </span>p<span class="_ _6"></span>erforma<span class="_ _1"></span>nce<span class="_ _14"> </span>for<span class="_ _c"> </span>PC-PSs,<span class="_ _14"> </span>a<span class="_ _c"> </span>greedy<span class="_ _14"> </span>hybrid<span class="_"> </span>precoding<span class="_ _c"> </span>algo<span class="_ _1"></span>rithm<span class="_ _14"> </span>and<span class="_ _c"> </span>a<span class="_ _c"> </span>mo<span class="_ _6"></span>dified</div><div class="t m0 x1 h7 y41 ff6 fs2 fc0 sc0 lse ws0">K-mean<span class="_ _6"></span>s-based<span class="_ _9"> </span>hybrid<span class="_ _9"> </span>preco<span class="_ _6"></span>d<span class="_ _6"></span>ing<span class="_ _10"> </span>algor<span class="_ _6"></span>ithm<span class="_ _9"> </span>ar<span class="_ _6"></span>e<span class="_ _9"> </span>dev<span class="_ _1"></span>elop<span class="_ _6"></span>ed<span class="_ _9"> </span>to<span class="_ _9"> </span>d<span class="_ _6"></span>ynamically<span class="_ _9"> </span>op<span class="_ _6"></span>timize<span class="_ _9"> </span>the<span class="_ _9"> </span>su<span class="_ _6"></span>b-arr<span class="_ _6"></span>a<span class="_ _1"></span>ys<span class="_ _9"> </span>in<span class="_ _10"> </span>[18]</div><div class="t m0 x1 h7 y42 ff6 fs2 fc0 sc0 lse ws0">and<span class="_"> </span>[19],<span class="_ _14"> </span>r<span class="_ _6"></span>esp<span class="_ _6"></span>ectiv<span class="_ _1"></span>ely<span class="_ _3"></span>.</div><div class="t m0 xf h7 y43 ff6 fs2 fc0 sc0 ls29 ws0">Ho<span class="_ _1"></span>wev<span class="_ _3"></span>er,<span class="_ _a"> </span>while<span class="_ _14"> </span>the<span class="_ _14"> </span>PC<span class="_ _6"></span>-PSs<span class="_"> </span>are<span class="_ _c"> </span>studied<span class="_ _14"> </span>su<span class="_ _6"></span>bstantially<span class="_ _8"></span>,<span class="_ _c"> </span>th<span class="_ _6"></span>ere<span class="_"> </span>still<span class="_ _c"> </span>exist<span class="_ _14"> </span>an<span class="_ _14"> </span>inevitab<span class="_ _6"></span>le<span class="_ _14"> </span>gap<span class="_ _c"> </span>compared</div><div class="t m0 x1 h7 y44 ff6 fs2 fc0 sc0 ls14 ws0">with<span class="_ _c"> </span>the<span class="_ _a"> </span>p<span class="_ _6"></span>erformance<span class="_ _c"> </span>of<span class="_ _a"> </span>FC<span class="_ _1"></span>-PSs<span class="_ _a"> </span>[17]<span class="_ _1"></span>.<span class="_ _1a"> </span>T<span class="_ _3"></span>o<span class="_ _c"> </span>ac<span class="_ _1"></span>hiev<span class="_ _1"></span>e<span class="_ _d"> </span>the<span class="_ _c"> </span>tradeoff<span class="_ _a"> </span>amo<span class="_ _1"></span>ng<span class="_ _d"> </span>p<span class="_ _6"></span>o<span class="_ _3"></span>we<span class="_ _1"></span>r<span class="_ _d"> </span>consumpt<span class="_ _1"></span>ion,<span class="_ _a"> </span>hardw<span class="_ _1"></span>are</div><div class="t m0 x1 h7 y45 ff6 fs2 fc0 sc0 ls18 ws0">compl<span class="_ _1"></span>exit<span class="_ _3"></span>y<span class="_ _14"> </span>and<span class="_"> </span>sp<span class="_ _6"></span>ec<span class="_ _1"></span>tral<span class="_"> </span>e<span class="_ _1"></span>fficiency<span class="_ _0"> </span>of<span class="_"> </span>the<span class="_ _0"> </span>h<span class="_ _1"></span>ybrid<span class="_"> </span>prec<span class="_ _1"></span>o<span class="_ _6"></span>der,<span class="_ _0"> </span>in<span class="_"> </span>this<span class="_ _0"> </span>pap<span class="_ _6"></span>er,<span class="_ _0"> </span>w<span class="_ _1"></span>e<span class="_"> </span>focus<span class="_"> </span>on<span class="_ _0"> </span>a<span class="_"> </span>no<span class="_ _1"></span>v<span class="_ _1"></span>el<span class="_"> </span>hardw<span class="_ _1"></span>are-</div><div class="t m0 x1 h7 y46 ff6 fs2 fc0 sc0 lsd ws0">efficient<span class="_ _9"> </span>hybrid<span class="_ _9"> </span>p<span class="_ _6"></span>reco<span class="_ _6"></span>ding<span class="_ _0"> </span>arc<span class="_ _1"></span>hitectur<span class="_ _6"></span>e<span class="_ _0"> </span>with<span class="_ _0"> </span>switc<span class="_ _1"></span>h<span class="_"> </span>net<span class="_ _1"></span>w<span class="_ _1"></span>ork<span class="_"> </span>instead<span class="_ _0"> </span>of<span class="_ _9"> </span>p<span class="_ _6"></span>hase<span class="_ _9"> </span>s<span class="_ _6"></span>hifters<span class="_ _0"> </span>in<span class="_ _9"> </span>mm<span class="_ _6"></span>W<span class="_ _8"></span>av<span class="_ _1"></span>e<span class="_ _0"> </span>MIMO</div><div class="t m0 x1 h7 y47 ff6 fs2 fc0 sc0 ls13 ws0">systems<span class="_ _6"></span>.<span class="_ _d"> </span>The<span class="_"> </span>main<span class="_ _14"> </span>contributions<span class="_ _14"> </span>of<span class="_"> </span>th<span class="_ _6"></span>is<span class="_"> </span>pap<span class="_ _6"></span>er<span class="_ _2"> </span>can<span class="_ _14"> </span>b<span class="_ _6"></span>e<span class="_"> </span>su<span class="_ _6"></span>mmarized<span class="_ _2"> </span>as<span class="_ _14"> </span>follo<span class="_ _1"></span>ws<span class="_ _6"></span>.</div><div class="t m0 x15 h9 y48 ffb fs2 fc0 sc0 ls5 ws0">•<span class="_ _5"> </span><span class="ff6 lse">Firs<span class="_ _6"></span>tly<span class="_ _3"></span>,<span class="_ _a"> </span>a<span class="_ _c"> </span>n<span class="_ _6"></span>ew<span class="_ _c"> </span>hybrid<span class="_ _a"> </span>arc<span class="_ _1"></span>h<span class="_ _6"></span>itecture<span class="_ _d"> </span>based<span class="_ _a"> </span>on<span class="_ _a"> </span>switc<span class="_ _1"></span>h<span class="_ _a"> </span>n<span class="_ _6"></span>et<span class="_ _1"></span>w<span class="_ _1"></span>or<span class="_ _6"></span>k<span class="_ _a"> </span>is<span class="_ _a"> </span>prop<span class="_ _11"></span>osed<span class="_ _c"> </span>in<span class="_ _a"> </span>th<span class="_ _6"></span>e<span class="_ _c"> </span>an<span class="_ _6"></span>alog<span class="_ _a"> </span>pro<span class="_ _6"></span>cessi<span class="_ _6"></span>ng</span></div><div class="t m0 xf h7 y49 ff6 fs2 fc0 sc0 ls14 ws0">stag<span class="_ _1"></span>e.<span class="_ _1b"> </span>The<span class="_ _5"> </span>ob<span class="_ _6"></span>jecti<span class="_ _1"></span>ve<span class="_ _5"> </span>of<span class="_ _4"> </span>the<span class="_ _5"> </span>proposed<span class="_ _5"> </span>arc<span class="_ _1"></span>hite<span class="_ _1"></span>cture<span class="_ _4"> </span>is<span class="_ _5"> </span>to<span class="_ _5"> </span>further<span class="_ _5"> </span>reduc<span class="_ _1"></span>e<span class="_ _4"> </span>p<span class="_ _6"></span>o<span class="_ _1"></span>w<span class="_ _1"></span>er<span class="_ _5"> </span>consumpti<span class="_ _1"></span>on<span class="_ _4"> </span>of</div><div class="t m0 xf h7 y4a ff6 fs2 fc0 sc0 ls2a ws0">mmW<span class="_ _8"></span>av<span class="_ _3"></span>e<span class="_ _d"> </span>MIMO<span class="_ _a"> </span>systems.<span class="_ _16"> </span>Compared<span class="_ _c"> </span>with<span class="_ _d"> </span>the<span class="_ _a"> </span>exist<span class="_ _1"></span>ing<span class="_ _d"> </span>F<span class="_ _1"></span>C-PSs<span class="_ _a"> </span>and<span class="_ _a"> </span>PC-PSs,<span class="_ _d"> </span>a<span class="_ _a"> </span>dynamic<span class="_ _a"> </span>switc<span class="_ _3"></span>h</div><div class="t m0 xf h7 y4b ff6 fs2 fc0 sc0 ls15 ws0">net<span class="_ _1"></span>work<span class="_ _9"> </span>is<span class="_ _9"> </span>add<span class="_ _6"></span>ed<span class="_ _9"> </span>to<span class="_ _9"> </span>connect<span class="_"> </span>the<span class="_ _10"> </span>p<span class="_ _6"></span>hase<span class="_ _9"> </span>shif<span class="_ _6"></span>ters<span class="_ _9"> </span>and<span class="_ _9"> </span>antenna<span class="_ _9"> </span>elements<span class="_ _9"> </span>in<span class="_ _0"> </span>the<span class="_ _9"> </span>prop<span class="_ _6"></span>osed<span class="_ _9"> </span>scheme,<span class="_ _0"> </span>which</div><div class="t m0 xf h7 y4c ff6 fs2 fc0 sc0 ls14 ws0">can<span class="_ _14"> </span>significa<span class="_ _1"></span>nt<span class="_ _1"></span>ly<span class="_ _c"> </span>reduce<span class="_ _c"> </span>the<span class="_ _c"> </span>n<span class="_ _1"></span>um<span class="_ _1"></span>b<span class="_ _6"></span>er<span class="_ _c"> </span>of<span class="_ _c"> </span>phase<span class="_ _14"> </span>shifters<span class="_ _14"> </span>and<span class="_ _c"> </span>ac<span class="_ _3"></span>h<span class="_ _6"></span>ie<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _a"> </span>substan<span class="_ _1"></span>tial<span class="_ _14"> </span>hardwa<span class="_ _1"></span>re<span class="_ _c"> </span>efficie<span class="_ _1"></span>ncy</div><div class="t m0 xf h7 y4d ff6 fs2 fc0 sc0 ls2b ws0">gain.</div><div class="t m0 x15 h9 y4e ffb fs2 fc0 sc0 ls5 ws0">•<span class="_ _5"> </span><span class="ff6 ls18">Secondl<span class="_ _1"></span>y<span class="_ _3"></span>,<span class="_ _0"> </span>b<span class="_ _6"></span>eca<span class="_ _1"></span>use<span class="_ _0"> </span>it<span class="_ _0"> </span>is<span class="_ _9"> </span>cha<span class="_ _1"></span>llengi<span class="_ _1"></span>ng<span class="_"> </span>to<span class="_ _9"> </span>join<span class="_ _1"></span>tly<span class="_ _0"> </span>opti<span class="_ _1"></span>mize<span class="_"> </span>t<span class="_ _1"></span>he<span class="_ _0"> </span>switc<span class="_ _3"></span>h<span class="_"> </span>net<span class="_ _3"></span>w<span class="_ _1"></span>ork<span class="_"> </span>ma<span class="_ _1"></span>trix,<span class="_ _0"> </span>digi<span class="_ _1"></span>tal<span class="_ _0"> </span>precoding</span></div><div class="t m0 xf h7 y4f ff6 fs2 fc0 sc0 ls27 ws0">matrix,<span class="_ _d"> </span>and<span class="_ _a"> </span>RF<span class="_ _a"> </span>pr<span class="_ _6"></span>eco<span class="_ _6"></span>ding<span class="_ _c"> </span>m<span class="_ _6"></span>atrix,<span class="_ _d"> </span>a<span class="_ _a"> </span>t<span class="_ _1"></span>wo-stage<span class="_ _a"> </span>alternatin<span class="_ _6"></span>g<span class="_ _a"> </span>min<span class="_ _6"></span>imization<span class="_ _d"> </span>algorithm<span class="_ _a"> </span>is<span class="_ _a"> </span>intro<span class="_ _6"></span>duced</div><div class="t m0 xf h7 y50 ff6 fs2 fc0 sc0 ls19 ws0">to<span class="_"> </span>f<span class="_ _6"></span>acilitate<span class="_ _14"> </span>th<span class="_ _6"></span>e<span class="_"> </span>solution<span class="_ _c"> </span>of<span class="_ _14"> </span>each<span class="_"> </span>p<span class="_ _6"></span>art<span class="_"> </span>of<span class="_ _14"> </span>the<span class="_ _c"> </span>prop<span class="_ _11"></span>osed<span class="_"> </span>sc<span class="_ _1"></span>h<span class="_ _6"></span>eme<span class="_ _14"> </span>in<span class="_ _2"> </span>th<span class="_ _6"></span>is<span class="_"> </span>p<span class="_ _6"></span>ap<span class="_ _6"></span>er.<span class="_ _5"> </span>In<span class="_ _14"> </span>the<span class="_ _14"> </span>fi<span class="_ _6"></span>rst<span class="_"> </span>stage,<span class="_ _c"> </span>the</div><div class="t m0 xf h7 y51 ff6 fs2 fc0 sc0 lsa ws0">binary<span class="_ _14"> </span>switc<span class="_ _1"></span>h<span class="_ _a"> </span>net<span class="_ _1"></span>w<span class="_ _1"></span>ork<span class="_ _c"> </span>matrix<span class="_ _a"> </span>is<span class="_ _c"> </span>deriv<span class="_ _1"></span>ed<span class="_ _a"> </span>ana<span class="_ _1"></span>lytic<span class="_ _1"></span>ally<span class="_ _8"></span>,<span class="_ _5"> </span>and<span class="_ _14"> </span>then,<span class="_ _a"> </span>the<span class="_ _a"> </span>deco<span class="_ _1"></span>mp<span class="_ _6"></span>ositio<span class="_ _1"></span>n<span class="_ _a"> </span>of<span class="_ _a"> </span>the<span class="_ _c"> </span>digita<span class="_ _1"></span>l</div><div class="t m0 xf h7 y52 ff6 fs2 fc0 sc0 ls15 ws0">preco<span class="_ _6"></span>d<span class="_ _6"></span>ing<span class="_"> </span>matrix<span class="_"> </span>an<span class="_ _6"></span>d<span class="_"> </span>RF<span class="_"> </span>p<span class="_ _6"></span>reco<span class="_ _6"></span>ding<span class="_"> </span>m<span class="_ _6"></span>atrix<span class="_"> </span>is<span class="_ _2"> </span>con<span class="_ _6"></span>sidered<span class="_ _14"> </span>in<span class="_"> </span>the<span class="_ _14"> </span>second<span class="_ _14"> </span>stage.</div><div class="t m0 x15 h9 y53 ffb fs2 fc0 sc0 ls5 ws0">•<span class="_ _5"> </span><span class="ff6 ls2c">Finall<span class="_ _1"></span>y<span class="_ _3"></span>,<span class="_ _9"> </span>w<span class="_ _1"></span>e<span class="_ _9"> </span>ev<span class="_ _3"></span>alua<span class="_ _1"></span>te<span class="_ _9"> </span>the<span class="_ _9"> </span>p<span class="_ _6"></span>erfo<span class="_ _1"></span>rmance<span class="_ _10"> </span>of<span class="_ _9"> </span>the<span class="_ _10"> </span>prop<span class="_ _6"></span>osed<span class="_ _10"> </span>h<span class="_ _1"></span>ybrid<span class="_ _10"> </span>precoding<span class="_ _9"> </span>arc<span class="_ _3"></span>hitect<span class="_ _1"></span>ure<span class="_ _9"> </span>based<span class="_ _10"> </span>on<span class="_ _9"> </span>switc<span class="_ _3"></span>h</span></div><div class="t m0 xf h7 y54 ff6 fs2 fc0 sc0 ls23 ws0">net<span class="_ _3"></span>work<span class="_ _10"> </span>in<span class="_ _10"> </span>compariso<span class="_ _1"></span>n<span class="_ _9"> </span>with<span class="_ _10"> </span>F<span class="_ _1"></span>C-PSs<span class="_ _10"> </span>and<span class="_ _10"> </span>PC-PSs.<span class="_ _a"> </span>Sim<span class="_ _1"></span>ulat<span class="_ _1"></span>ion<span class="_ _9"> </span>result<span class="_ _1"></span>s<span class="_ _9"> </span>sho<span class="_ _3"></span>w<span class="_ _9"> </span>that<span class="_ _10"> </span>the<span class="_ _10"> </span>prop<span class="_ _6"></span>osed<span class="_ _10"> </span>h<span class="_ _1"></span>ybrid</div><div class="t m0 xf h7 y55 ff6 fs2 fc0 sc0 lsf ws0">precoding<span class="_ _13"> </span>sc<span class="_ _1"></span>heme<span class="_ _10"> </span>based<span class="_ _13"> </span>on<span class="_ _10"> </span>swit<span class="_ _1"></span>c<span class="_ _1"></span>h<span class="_ _10"> </span>net<span class="_ _3"></span>wo<span class="_ _1"></span>rk<span class="_ _10"> </span>can<span class="_ _10"> </span>yie<span class="_ _1"></span>ld<span class="_ _10"> </span>reasona<span class="_ _1"></span>ble<span class="_ _10"> </span>reduct<span class="_ _1"></span>ion<span class="_ _13"> </span>in<span class="_ _10"> </span>the<span class="_ _10"> </span>pow<span class="_ _3"></span>er<span class="_ _10"> </span>co<span class="_ _1"></span>nsumption.</div><div class="t m0 xf h7 y56 ff6 fs2 fc0 sc0 ls26 ws0">The<span class="_ _a"> </span>rest<span class="_ _a"> </span>of<span class="_ _a"> </span>this<span class="_ _a"> </span>p<span class="_ _6"></span>ap<span class="_ _6"></span>er<span class="_ _a"> </span>is<span class="_ _a"> </span>organized<span class="_ _d"> </span>as<span class="_ _a"> </span>follows.<span class="_ _17"> </span>Section<span class="_ _d"> </span>2<span class="_ _a"> </span>briefly<span class="_ _a"> </span>intro<span class="_ _6"></span>duces<span class="_ _a"> </span>the<span class="_ _d"> </span>mmW<span class="_ _3"></span>a<span class="_ _3"></span>ve<span class="_ _a"> </span>system</div><div class="t m0 x1 h7 y57 ff6 fs2 fc0 sc0 ls11 ws0">model<span class="_ _a"> </span>and<span class="_ _a"> </span>prop<span class="_ _6"></span>ose<span class="_ _1"></span>d<span class="_ _a"> </span>h<span class="_ _1"></span>ybrid<span class="_ _c"> </span>precoding<span class="_ _a"> </span>impleme<span class="_ _1"></span>nt<span class="_ _1"></span>atio<span class="_ _1"></span>n.<span class="_ _16"> </span>The<span class="_ _a"> </span>prop<span class="_ _6"></span>ose<span class="_ _1"></span>d<span class="_ _a"> </span>h<span class="_ _1"></span>ybrid<span class="_ _a"> </span>precoding<span class="_ _c"> </span>algori<span class="_ _1"></span>thm<span class="_ _a"> </span>is</div><div class="t m0 x1 h7 y58 ff6 fs2 fc0 sc0 lsd ws0">developed<span class="_ _a"> </span>in<span class="_ _a"> </span>detail<span class="_ _a"> </span>and<span class="_ _a"> </span>follo<span class="_ _1"></span>wed<span class="_ _a"> </span>by<span class="_ _14"> </span>th<span class="_ _6"></span>e<span class="_ _c"> </span>pr<span class="_ _6"></span>oblem<span class="_ _c"> </span>for<span class="_ _6"></span>m<span class="_ _1"></span>ulation<span class="_ _a"> </span>in<span class="_ _a"> </span>Section<span class="_ _d"> </span>3.<span class="_ _15"> </span>Section<span class="_ _a"> </span>4<span class="_ _a"> </span>presents<span class="_ _c"> </span>seve<span class="_ _1"></span>r<span class="_ _6"></span>al</div><div class="t m0 x1 h7 y59 ff6 fs2 fc0 sc0 ls19 ws0">sim<span class="_ _1"></span>ulation<span class="_ _a"> </span>r<span class="_ _6"></span>esults<span class="_ _c"> </span>to<span class="_ _a"> </span>v<span class="_ _1"></span>erify<span class="_ _a"> </span>the<span class="_ _a"> </span>p<span class="_ _6"></span>erfor<span class="_ _6"></span>mance<span class="_ _c"> </span>of<span class="_ _a"> </span>the<span class="_ _c"> </span>pr<span class="_ _6"></span>op<span class="_ _6"></span>osed<span class="_ _c"> </span>algorith<span class="_ _6"></span>m.<span class="_ _15"> </span>Finally<span class="_ _3"></span>,<span class="_ _a"> </span>S<span class="_ _6"></span>ection<span class="_ _c"> </span>5<span class="_ _a"> </span>provides<span class="_ _c"> </span>a</div><div class="t m0 x1 h7 y5a ff6 fs2 fc0 sc0 ls10 ws0">conc<span class="_ _1"></span>luding<span class="_"> </span>re<span class="_ _1"></span>mark<span class="_"> </span>to<span class="_"> </span>summari<span class="_ _1"></span>ze<span class="_"> </span>the<span class="_ _0"> </span>pap<span class="_ _6"></span>er.</div><div class="t m0 xf h7 y5b ff6 fs2 fc0 sc0 lse ws0">Thr<span class="_ _6"></span>oughout<span class="_"> </span>this<span class="_"> </span>pap<span class="_ _6"></span>er,<span class="_ _0"> </span>b<span class="_ _6"></span>old<span class="_"> </span>upp<span class="_ _6"></span>er<span class="_ _6"></span>-case<span class="_ _0"> </span>letters<span class="_"> </span>and<span class="_"> </span>b<span class="_ _6"></span>old<span class="_"> </span>lo<span class="_ _3"></span>wer-case<span class="_"> </span>l<span class="_ _6"></span>etters<span class="_"> </span>are<span class="_"> </span>used<span class="_"> </span>for<span class="_"> </span>matrix<span class="_"> </span>and</div><div class="t m0 x1 h7 y5c ff6 fs2 fc0 sc0 lsb ws0">v<span class="_ _1"></span>ector,<span class="_"> </span>res<span class="_ _6"></span>p<span class="_ _6"></span>ectiv<span class="_ _1"></span>ely<span class="_ _3"></span>.<span class="_ _d"> </span>F<span class="_ _3"></span>or<span class="_ _0"> </span>example,<span class="_"> </span><span class="ff3 ls5">a<span class="_ _9"> </span></span><span class="ls2d">an<span class="_ _6"></span>d<span class="_ _9"> </span><span class="ff3 ls5">A<span class="_ _0"> </span></span><span class="lse">stan<span class="_ _6"></span>d<span class="_ _9"> </span>f<span class="_ _6"></span>or<span class="_ _9"> </span>a<span class="_"> </span>column<span class="_ _0"> </span>v<span class="_ _1"></span>ector<span class="_"> </span>and<span class="_ _0"> </span>a<span class="_"> </span>matrix,<span class="_"> </span>resp<span class="_ _6"></span>ectiv<span class="_ _1"></span>ely<span class="_ _3"></span>.<span class="_ _d"> </span><span class="ff3 ls5">A</span></span></span></div><div class="t m0 x16 ha y5d ffc fs3 fc0 sc0 ls2e ws0">i,j</div><div class="t m0 x17 h7 y5e ff6 fs2 fc0 sc0 ls2f ws0">is</div><div class="t m0 x1 h7 y5f ff6 fs2 fc0 sc0 lsb ws0">the<span class="_"> </span>elem<span class="_ _6"></span>en<span class="_ _1"></span>t<span class="_ _14"> </span>(<span class="ffd ls19">i,<span class="_ _12"> </span>j<span class="_ _11"></span></span><span class="ls2b">)th<span class="_ _14"> </span>of<span class="_ _14"> </span><span class="ff3 ls5">A</span><span class="ls30">.<span class="_ _5"> </span>The<span class="_"> </span>tra<span class="_ _1"></span>nsp<span class="_ _6"></span>ose,<span class="_"> </span>conjug<span class="_ _1"></span>ate<span class="_"> </span>transp<span class="_ _6"></span>ose<span class="_ _0"> </span>and<span class="_"> </span>Mo<span class="_ _6"></span>ore<span class="_ _1"></span>-P<span class="_ _1"></span>enrose<span class="_"> </span>pseudo-in<span class="_ _1"></span>v<span class="_ _1"></span>erse<span class="_"> </span>of<span class="_"> </span><span class="ff3 ls5">A</span></span></span></div><div class="t m0 x1 h7 y60 ff6 fs2 fc0 sc0 ls31 ws0">are<span class="_"> </span>rep<span class="_ _6"></span>resented<span class="_"> </span>by<span class="_"> </span><span class="ff3 ls5">A</span></div><div class="t m0 x18 ha y61 ffc fs3 fc0 sc0 ls5 ws0">T</div><div class="t m0 x19 h7 y62 ff6 fs2 fc0 sc0 ls5 ws0">,<span class="_"> </span><span class="ff3">A</span></div><div class="t m0 x1a ha y61 ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x1b h7 y62 ff6 fs2 fc0 sc0 ls2d ws0">and<span class="_"> </span><span class="ff3 ls5">A</span></div><div class="t m0 x1c h5 y61 ffe fs3 fc0 sc0 ls5 ws0">†</div><div class="t m0 x1d h9 y62 ff6 fs2 fc0 sc0 ls5 ws0">.<span class="_ _d"> </span><span class="ffb">|<span class="ff3">A</span>|<span class="_ _0"> </span></span><span class="ls2d">an<span class="_ _6"></span>d<span class="_"> </span></span><span class="ffb"><span class="ff3">A</span></span></div><div class="t m0 x1e ha y63 ffc fs3 fc0 sc0 ls5 ws0">F</div><div class="t m0 x1f h7 y62 ff6 fs2 fc0 sc0 ls32 ws0">denot<span class="_ _1"></span>e<span class="_"> </span>the<span class="_"> </span>de<span class="_ _1"></span>termina<span class="_ _1"></span>nt<span class="_"> </span>a<span class="_ _1"></span>nd<span class="_"> </span>F<span class="_ _8"></span>rob<span class="_ _6"></span>enius<span class="_ _0"> </span>norm<span class="_ _0"> </span>of<span class="_"> </span><span class="ff3 ls5">A<span class="ff6">.</span></span></div><div class="t m0 x1 h9 y64 ff6 fs2 fc0 sc0 ls26 ws0">tr(<span class="ff3 ls5">A</span><span class="ls24">)<span class="_ _9"> </span>and<span class="_ _9"> </span>vec(<span class="ff3 ls5">A</span><span class="ls2b">)<span class="_ _9"> </span>ind<span class="_ _6"></span>icate<span class="_ _9"> </span>the<span class="_ _9"> </span>trace<span class="_ _9"> </span>an<span class="_ _6"></span>d<span class="_ _9"> </span>v<span class="_ _1"></span>ectorization<span class="_"> </span>of<span class="_ _9"> </span><span class="ff3 ls5">A<span class="ff6">.<span class="_ _a"> </span><span class="ffb"></span></span>a<span class="ffb"></span></span></span></span></div><div class="t m0 x20 h5 y65 ff8 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 x21 h7 y66 ff6 fs2 fc0 sc0 ls33 ws0">denot<span class="_ _1"></span>es<span class="_ _9"> </span>the<span class="_ _10"> </span>2-norm<span class="_ _10"> </span>of<span class="_ _9"> </span><span class="ff3 ls5">a<span class="ff6">.<span class="_ _a"> </span></span>I</span></div><div class="t m0 x22 ha y67 ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x23 h7 y66 ff6 fs2 fc0 sc0 ls34 ws0">stands<span class="_ _10"> </span>for</div><div class="t m0 x1 h9 y68 ff6 fs2 fc0 sc0 ls26 ws0">the<span class="_"> </span><span class="ffd ls5">N<span class="_"> </span><span class="ffb">×<span class="_ _10"> </span></span>N<span class="_ _d"> </span></span><span class="ls27">id<span class="_ _6"></span>en<span class="_ _1"></span>tit<span class="_ _1"></span>y<span class="_ _14"> </span>matrix.<span class="_ _5"> </span>Exp<span class="_ _6"></span>ectation<span class="_ _14"> </span>is<span class="_"> </span>intro<span class="_ _6"></span>duced<span class="_ _2"> </span>by<span class="_"> </span><span class="fff ls5">E<span class="_ _12"> </span><span class="ff6">[<span class="ffb">·</span><span class="ls31">],<span class="_"> </span>and<span class="_ _14"> </span>the<span class="_ _2"> </span>r<span class="_ _6"></span>eal<span class="_"> </span>p<span class="_ _6"></span>art<span class="_"> </span>of<span class="_ _2"> </span>a<span class="_ _14"> </span>compl<span class="_ _6"></span>ex<span class="_"> </span>v<span class="_ _1"></span>ariable</span></span></span></span></div><div class="t m0 x1 h9 y69 ff6 fs2 fc0 sc0 ls26 ws0">is<span class="_ _14"> </span>repr<span class="_ _6"></span>esen<span class="_ _1"></span>ted<span class="_ _14"> </span>by<span class="_"> </span><span class="ffb ls35">{·}</span><span class="ls5">.<span class="_ _5"> </span><span class="ffb ls36">CN<span class="_"> </span></span>(<span class="ffd ls37">μ,<span class="_ _12"> </span>σ</span></span></div><div class="t m0 x24 h5 y6a ff8 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 x25 h7 y6b ff6 fs2 fc0 sc0 ls23 ws0">)<span class="_"> </span>is<span class="_"> </span>the<span class="_"> </span>complex<span class="_"> </span>Ga<span class="_ _1"></span>ussian<span class="_"> </span>distributio<span class="_ _1"></span>n<span class="_"> </span>with<span class="_"> </span>mean<span class="_"> </span><span class="ffd ls5">μ<span class="_"> </span></span><span class="ls31">and<span class="_ _14"> </span>v<span class="_ _1"></span>arian<span class="_ _6"></span>ce<span class="_ _2"> </span><span class="ffd ls5">σ</span></span></div><div class="t m0 x17 h5 y6a ff8 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 x26 h7 y6b ff6 fs2 fc0 sc0 ls5 ws0">,</div><div class="t m0 x1 h9 y6c ff6 fs2 fc0 sc0 ls2d ws0">and<span class="_"> </span><span class="ffb ls5">U<span class="_ _1c"></span><span class="ff6">(<span class="ffd ls38">a,<span class="_ _12"> </span>b</span><span class="ls10">)<span class="_"> </span>repre<span class="_ _1"></span>sen<span class="_ _1"></span>ts<span class="_"> </span>the<span class="_"> </span>uni<span class="_ _1"></span>form<span class="_"> </span>di<span class="_ _1"></span>stribution<span class="_ _0"> </span>b<span class="_ _6"></span>et<span class="_ _1"></span>w<span class="_ _1"></span>een<span class="_"> </span><span class="ffd ls5">a<span class="_"> </span></span><span class="ls2d">and<span class="_"> </span><span class="ffd ls5">b<span class="ff6">.</span></span></span></span></span></span></div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/62572d8560196e4b849cbb18/bg3.jpg"><div class="t m0 x1 h2 y1 ffa fs0 fc0 sc0 ls39 ws0">Progress<span class="_ _2"> </span>In<span class="_ _2"> </span>El<span class="_ _6"></span>ectromagnetics<span class="_ _14"> </span>Research<span class="_ _0"> </span>M,<span class="_ _2"> </span>V<span class="_ _3"></span>ol.<span class="_ _2"> </span>77,<span class="_ _2"> </span>2019<span class="_ _1d"> </span>105</div><div class="t m0 x1 h7 y6d ff3 fs2 fc0 sc0 ls3a ws0">Figure<span class="_"> </span>1.<span class="_ _d"> </span><span class="ff6 ls19">A<span class="_"> </span>s<span class="_ _6"></span>ingle-user<span class="_ _14"> </span>mmW<span class="_ _3"></span>a<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _14"> </span>MIMO<span class="_ _14"> </span>system<span class="_"> </span>w<span class="_ _6"></span>ith<span class="_"> </span>hybrid<span class="_"> </span>preco<span class="_ _6"></span>der<span class="_ _2"> </span>an<span class="_ _6"></span>d<span class="_"> </span>combiner<span class="_"> </span>imp<span class="_ _6"></span>lementation.</span></div><div class="t m0 x1 h4 y6e ff3 fs2 fc0 sc0 ls3b ws0">2.<span class="_ _4"> </span>SYSTEM<span class="_"> </span>MODEL</div><div class="t m0 x1 h7 y6f ff6 fs2 fc0 sc0 ls25 ws0">Consid<span class="_ _6"></span>er<span class="_ _a"> </span>a<span class="_ _d"> </span>single-u<span class="_ _6"></span>ser<span class="_ _d"> </span>mmW<span class="_ _3"></span>a<span class="_ _1"></span>v<span class="_ _1"></span>e<span class="_ _d"> </span>MI<span class="_ _6"></span>MO<span class="_ _a"> </span>sys<span class="_ _6"></span>tem<span class="_ _d"> </span>mo<span class="_ _6"></span>del<span class="_ _a"> </span>as<span class="_ _d"> </span>s<span class="_ _6"></span>ho<span class="_ _1"></span>wn<span class="_ _d"> </span>in<span class="_ _d"> </span>Fig.<span class="_ _d"> </span>1,<span class="_ _d"> </span>in<span class="_ _d"> </span>w<span class="_ _6"></span>hic<span class="_ _1"></span>h<span class="_ _d"> </span><span class="ffd ls5">N</span></div><div class="t m0 x27 ha y70 ffc fs3 fc0 sc0 ls5 ws0">s</div><div class="t m0 x28 h7 y71 ff6 fs2 fc0 sc0 ls3c ws0">independen<span class="_ _1"></span>t</div><div class="t m0 x1 h7 y72 ff6 fs2 fc0 sc0 ls24 ws0">data<span class="_ _c"> </span>stream<span class="_ _6"></span>s<span class="_ _14"> </span>are<span class="_ _c"> </span>sent<span class="_ _14"> </span>and<span class="_ _c"> </span>collected<span class="_ _a"> </span>from<span class="_ _c"> </span><span class="ffd ls5">N</span></div><div class="t m0 x29 ha y73 ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x2a h7 y74 ff6 fs2 fc0 sc0 ls2b ws0">an<span class="_ _1"></span>ten<span class="_ _6"></span>na<span class="_ _14"> </span>elements<span class="_ _c"> </span>at<span class="_ _14"> </span>th<span class="_ _6"></span>e<span class="_ _14"> </span>tran<span class="_ _6"></span>smitter<span class="_ _c"> </span>and<span class="_ _14"> </span><span class="ffd ls5">N</span></div><div class="t m0 x2b ha y75 ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x2c h5 y76 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x2d h7 y74 ff6 fs2 fc0 sc0 ls17 ws0">RF<span class="_"> </span>cha<span class="_ _1"></span>ins</div><div class="t m0 x1 h7 y77 ff6 fs2 fc0 sc0 ls26 ws0">to<span class="_"> </span><span class="ffd ls5">N</span></div><div class="t m0 xf ha y78 ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 x2e h7 y79 ff6 fs2 fc0 sc0 lse ws0">an<span class="_ _1"></span>ten<span class="_ _6"></span>na<span class="_"> </span>elements<span class="_ _2"> </span>at<span class="_ _14"> </span>the<span class="_"> </span>r<span class="_ _6"></span>eceiv<span class="_ _1"></span>er<span class="_ _14"> </span>and<span class="_"> </span><span class="ffd ls5">N</span></div><div class="t m0 x2f ha y7a ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 x30 h5 y7b ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x31 h7 y79 ff6 fs2 fc0 sc0 lsc ws0">RF<span class="_"> </span>c<span class="_ _3"></span>hains.<span class="_ _d"> </span>In<span class="_"> </span>thi<span class="_ _1"></span>s<span class="_"> </span>mo<span class="_ _6"></span>del,<span class="_ _0"> </span>only<span class="_"> </span>a<span class="_ _0"> </span>small<span class="_"> </span>n<span class="_ _3"></span>umber<span class="_"> </span>of<span class="_"> </span>RF</div><div class="t m0 x1 h7 y7c ff6 fs2 fc0 sc0 lsb ws0">c<span class="_ _1"></span>hain<span class="_ _6"></span>s<span class="_ _c"> </span>are<span class="_ _a"> </span>a<span class="_ _1"></span>v<span class="_ _1"></span>ailable,<span class="_ _d"> </span>i.e.,<span class="_ _a"> </span><span class="ffd ls5">N</span></div><div class="t m0 x32 ha y7d ffc fs3 fc0 sc0 ls5 ws0">s</div><div class="t m0 x33 h9 y7e ffb fs2 fc0 sc0 ls5 ws0">≤<span class="_ _14"> </span><span class="ffd">N</span></div><div class="t m0 x34 ha y7f ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x35 h5 y80 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x36 h9 y7e ffb fs2 fc0 sc0 ls5 ws0">≤<span class="_ _14"> </span><span class="ffd">N</span></div><div class="t m0 x9 ha y7d ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x37 h7 y7e ff6 fs2 fc0 sc0 ls2d ws0">and<span class="_ _a"> </span><span class="ffd ls5">N</span></div><div class="t m0 x38 ha y7d ffc fs3 fc0 sc0 ls5 ws0">s</div><div class="t m0 x39 h9 y7e ffb fs2 fc0 sc0 ls5 ws0">≤<span class="_ _14"> </span><span class="ffd">N</span></div><div class="t m0 x3a ha y7f ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xa h5 y80 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x3b h9 y7e ffb fs2 fc0 sc0 ls5 ws0">≤<span class="_ _14"> </span><span class="ffd">N</span></div><div class="t m0 x3c ha y7d ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 x3d h7 y7e ff6 fs2 fc0 sc0 ls33 ws0">.<span class="_ _15"> </span>In<span class="_ _c"> </span>the<span class="_ _c"> </span>prop<span class="_ _6"></span>ose<span class="_ _1"></span>d<span class="_ _c"> </span>imple<span class="_ _1"></span>men<span class="_ _1"></span>tati<span class="_ _1"></span>on,<span class="_ _a"> </span>it</div><div class="t m0 x1 h7 y81 ff6 fs2 fc0 sc0 ls13 ws0">can<span class="_ _a"> </span>b<span class="_ _6"></span>e<span class="_ _a"> </span>seen<span class="_ _a"> </span>that<span class="_ _d"> </span>the<span class="_ _a"> </span>signal<span class="_ _a"> </span>from<span class="_ _a"> </span>each<span class="_ _a"> </span>RF<span class="_ _a"> </span>c<span class="_ _1"></span>hain<span class="_ _d"> </span>is<span class="_ _c"> </span>tr<span class="_ _6"></span>ansmitted<span class="_ _a"> </span>by<span class="_ _a"> </span><span class="ffd ls5">N</span></div><div class="t m0 x3e ha y82 ffc fs3 fc0 sc0 ls5 ws0">c</div><div class="t m0 x3f h7 y83 ff6 fs2 fc0 sc0 ls10 ws0">a<span class="_ _1"></span>v<span class="_ _3"></span>aila<span class="_ _1"></span>ble<span class="_ _d"> </span>phase<span class="_ _14"> </span>shifters,<span class="_ _c"> </span>where</div><div class="t m0 x1 hb y84 ffd fs2 fc0 sc0 ls5 ws0">N</div><div class="t m0 x2 ha y85 ffc fs3 fc0 sc0 ls5 ws0">c</div><div class="t m0 x40 h9 y86 ffb fs2 fc0 sc0 ls5 ws0"><span class="_ _a"> </span><span class="ffd">N</span></div><div class="t m0 x41 ha y85 ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x42 h7 y86 ff6 fs2 fc0 sc0 lsf ws0">,<span class="_ _a"> </span>whic<span class="_ _1"></span>h<span class="_ _a"> </span>can<span class="_ _a"> </span>impro<span class="_ _3"></span>ve<span class="_ _c"> </span>the<span class="_ _a"> </span>energ<span class="_ _1"></span>y<span class="_ _a"> </span>effici<span class="_ _1"></span>ency<span class="_ _a"> </span>effect<span class="_ _1"></span>iv<span class="_ _1"></span>ely<span class="_ _8"></span>.<span class="_ _16"> </span>Compared<span class="_ _c"> </span>with<span class="_ _c"> </span>high-reso<span class="_ _1"></span>lution<span class="_ _c"> </span>phase</div><div class="t m0 x1 h7 y87 ff6 fs2 fc0 sc0 lsf ws0">shifte<span class="_ _1"></span>rs,<span class="_ _5"> </span>the<span class="_ _d"> </span>switc<span class="_ _3"></span>h<span class="_ _5"> </span>net<span class="_ _3"></span>wo<span class="_ _1"></span>rk<span class="_ _5"> </span>o<span class="_ _1"></span>nly<span class="_ _d"> </span>has<span class="_ _d"> </span>binary<span class="_ _d"> </span>on-off<span class="_ _d"> </span>sta<span class="_ _1"></span>tes,<span class="_ _5"> </span>th<span class="_ _1"></span>us,<span class="_ _5"> </span>the<span class="_ _d"> </span>implem<span class="_ _1"></span>en<span class="_ _1"></span>tatio<span class="_ _1"></span>n<span class="_ _5"> </span>of<span class="_ _d"> </span>an<span class="_ _d"> </span>adaptiv<span class="_ _3"></span>e</div><div class="t m0 x1 h7 y88 ff6 fs2 fc0 sc0 lsf ws0">switc<span class="_ _3"></span>h<span class="_ _c"> </span>net<span class="_ _1"></span>w<span class="_ _1"></span>ork<span class="_ _c"> </span>is<span class="_ _c"> </span>m<span class="_ _1"></span>uc<span class="_ _1"></span>h<span class="_ _c"> </span>easier<span class="_ _14"> </span>than<span class="_ _14"> </span>phase<span class="_ _14"> </span>shifters<span class="_ _14"> </span>[20].<span class="_ _1e"> </span>The<span class="_ _14"> </span>transmit<span class="_ _1"></span>ted<span class="_ _c"> </span>signal<span class="_ _14"> </span>v<span class="_ _1"></span>ecto<span class="_ _1"></span>r<span class="_ _a"> </span><span class="ff3 ls5">x<span class="_"> </span></span><span class="ls15">can<span class="_ _c"> </span>b<span class="_ _6"></span>e<span class="_ _c"> </span>given</span></div><div class="t m0 x1 h7 y89 ff6 fs2 fc0 sc0 ls3e ws0">by<span class="_ _d"> </span><span class="ff3 ls5">x<span class="_ _d"> </span><span class="ff6">=<span class="_ _a"> </span></span>F</span></div><div class="t m0 x4 h5 y8a ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 x43 h4 y8b ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 x44 h5 y8a ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x45 h4 y8b ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 x5 h5 y8a ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x46 h7 y8b ff3 fs2 fc0 sc0 ls5 ws0">s<span class="_ _a"> </span><span class="ff6 ls26">[21],<span class="_ _5"> </span>wher<span class="_ _6"></span>e<span class="_ _a"> </span></span>F</div><div class="t m0 x47 h5 y8a ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 x48 h9 y8b ffb fs2 fc0 sc0 ls5 ws0">∈<span class="_ _a"> </span><span class="fff">C</span></div><div class="t m0 x9 ha y8c ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x49 h6 y8d ff10 fs4 fc0 sc0 ls5 ws0">t</div><div class="t m0 x29 h5 y8c ffe fs3 fc0 sc0 ls5 ws0">×<span class="ffc">N</span></div><div class="t m0 x4a h6 y8d ff10 fs4 fc0 sc0 ls5 ws0">c</div><div class="t m0 x4b h7 y8b ff6 fs2 fc0 sc0 ls5 ws0">,<span class="_ _d"> </span><span class="ff3">F</span></div><div class="t m0 x4c h5 y8a ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x4d h9 y8b ffb fs2 fc0 sc0 ls5 ws0">∈<span class="_ _a"> </span><span class="fff">C</span></div><div class="t m0 x4e ha y8c ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x4f h6 y8d ff10 fs4 fc0 sc0 ls5 ws0">c</div><div class="t m0 x50 h5 y8c ffe fs3 fc0 sc0 ls5 ws0">×<span class="ffc">N</span></div><div class="t m0 x13 h6 y8e ff10 fs4 fc0 sc0 ls5 ws0">t</div><div class="t m0 x51 h6 y8f ff9 fs4 fc0 sc0 ls40 ws0">RF</div><div class="t m0 x52 h7 y8b ff6 fs2 fc0 sc0 ls2d ws0">and<span class="_ _d"> </span><span class="ff3 ls5">F</span></div><div class="t m0 x53 h5 y8a ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x54 h9 y8b ffb fs2 fc0 sc0 ls5 ws0">∈<span class="_ _a"> </span><span class="fff">C</span></div><div class="t m0 x55 ha y8c ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x56 h6 y8e ff10 fs4 fc0 sc0 ls5 ws0">t</div><div class="t m0 x57 h6 y8f ff9 fs4 fc0 sc0 ls40 ws0">RF</div><div class="t m0 x58 h5 y8c ffe fs3 fc0 sc0 ls5 ws0">×<span class="ffc">N</span></div><div class="t m0 x59 h6 y8d ff10 fs4 fc0 sc0 ls5 ws0">s</div><div class="t m0 x2b h7 y8b ff6 fs2 fc0 sc0 ls31 ws0">stand<span class="_ _d"> </span>for<span class="_ _d"> </span>the</div><div class="t m0 x1 h7 y90 ff6 fs2 fc0 sc0 lsf ws0">binary<span class="_ _a"> </span>switc<span class="_ _3"></span>h<span class="_ _d"> </span>net<span class="_ _1"></span>w<span class="_ _1"></span>ork<span class="_ _d"> </span>matrix,<span class="_ _d"> </span>anal<span class="_ _1"></span>og<span class="_ _d"> </span>RF<span class="_ _d"> </span>precoding<span class="_ _a"> </span>matrix<span class="_ _d"> </span>and<span class="_ _a"> </span>digita<span class="_ _1"></span>l<span class="_ _d"> </span>baseband<span class="_ _a"> </span>precoding<span class="_ _d"> </span>matri<span class="_ _1"></span>x,</div><div class="t m0 x1 h9 y91 ff6 fs2 fc0 sc0 ls25 ws0">resp<span class="_ _6"></span>ectively<span class="_ _1f"></span>.<span class="_ _d"> </span><span class="ff3 ls5">s<span class="_ _9"> </span><span class="ffb">∈<span class="_ _0"> </span><span class="fff">C</span></span></span></div><div class="t m0 x5a ha y92 ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x5b h6 y93 ff10 fs4 fc0 sc0 ls5 ws0">s</div><div class="t m0 x5c h5 y92 ffe fs3 fc0 sc0 ls5 ws0">×<span class="ff8">1</span></div><div class="t m0 x3 h7 y94 ff6 fs2 fc0 sc0 ls25 ws0">is<span class="_"> </span>the<span class="_"> </span>sym<span class="_ _1"></span>b<span class="_ _6"></span>ol<span class="_"> </span>v<span class="_ _1"></span>ector<span class="_"> </span>su<span class="_ _6"></span>c<span class="_ _1"></span>h<span class="_"> </span>that<span class="_"> </span><span class="fff ls5">E</span></div><div class="t m0 x5d hc y95 ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 x5e h4 y94 ff3 fs2 fc0 sc0 ls41 ws0">ss</div><div class="t m0 x5f ha y92 ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x60 hc y96 ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 x61 h7 y97 ff6 fs2 fc0 sc0 ls5 ws0">=</div><div class="t m0 x62 h5 y98 ff8 fs3 fc0 sc0 ls5 ws0">1</div><div class="t m0 x63 ha y99 ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x64 h6 y9a ff10 fs4 fc0 sc0 ls5 ws0">s</div><div class="t m0 x65 h4 y94 ff3 fs2 fc0 sc0 ls5 ws0">I</div><div class="t m0 x66 ha y9b ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x67 h6 y9c ff10 fs4 fc0 sc0 ls5 ws0">s</div><div class="t m0 xc h7 y94 ff6 fs2 fc0 sc0 ls26 ws0">.<span class="_ _d"> </span>Since<span class="_"> </span>the<span class="_"> </span>analog<span class="_"> </span>RF<span class="_"> </span>preco<span class="_ _6"></span>der</div><div class="t m0 x1 h7 y9d ff6 fs2 fc0 sc0 ls23 ws0">is<span class="_ _d"> </span>impleme<span class="_ _1"></span>nt<span class="_ _1"></span>ed<span class="_ _5"> </span>using<span class="_ _d"> </span>phase<span class="_ _d"> </span>shifters,<span class="_ _d"> </span>whic<span class="_ _1"></span>h<span class="_ _5"> </span>ca<span class="_ _1"></span>n<span class="_ _5"> </span>only<span class="_ _d"> </span>adjust<span class="_ _d"> </span>the<span class="_ _d"> </span>phases<span class="_ _d"> </span>of<span class="_ _d"> </span>the<span class="_ _d"> </span>signals,<span class="_ _5"> </span>all<span class="_ _d"> </span>en<span class="_ _1"></span>tries<span class="_ _d"> </span>of</div><div class="t m0 x1 h4 y9e ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 x68 h5 y9f ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x69 h7 ya0 ff6 fs2 fc0 sc0 ls2b ws0">are<span class="_ _5"> </span>sub<span class="_ _11"></span>jected<span class="_ _d"> </span>to<span class="_ _d"> </span>con<span class="_ _6"></span>stan<span class="_ _1"></span>t<span class="_ _5"> </span>mo<span class="_ _6"></span>dulus<span class="_ _d"> </span>con<span class="_ _6"></span>straint.<span class="_ _18"> </span>T<span class="_ _8"></span>o<span class="_ _5"> </span>reflect<span class="_ _d"> </span>th<span class="_ _6"></span>at,<span class="_ _5"> </span>the<span class="_ _d"> </span>constr<span class="_ _6"></span>ain<span class="_ _1"></span>t<span class="_ _5"> </span>can<span class="_ _d"> </span>b<span class="_ _6"></span>e<span class="_ _d"> </span>giv<span class="_ _1"></span>en<span class="_ _5"> </span>b<span class="_ _1"></span>y</div><div class="t m0 x1 h9 ya1 ffb fs2 fc0 sc0 ls5 ws0">|<span class="ff6">(<span class="ff3">F</span></span></div><div class="t m0 x6a h5 ya2 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x6b h7 ya3 ff6 fs2 fc0 sc0 ls5 ws0">)</div><div class="t m0 x6c ha ya2 ffc fs3 fc0 sc0 ls2e ws0">i,j</div><div class="t m0 x41 h9 ya3 ffb fs2 fc0 sc0 ls5 ws0">|<span class="_ _2"> </span><span class="ff6 ls42">=1<span class="_ _20"></span><span class="ffd ls43">,i<span class="ff6 ls44">=1<span class="_ _20"></span><span class="ffd ls5">,<span class="_ _12"> </span><span class="ff6">2</span>,<span class="_ _12"> </span><span class="ffb ls45">···<span class="_ _13"></span><span class="ffd">,N</span></span></span></span></span></span></div><div class="t m0 x6d ha ya2 ffc fs3 fc0 sc0 ls5 ws0">c</div><div class="t m0 x6e h9 ya3 ffd fs2 fc0 sc0 ls46 ws0">,j<span class="_ _21"></span><span class="ff6 ls42">=1<span class="_ _20"></span><span class="ffd ls5">,<span class="_ _22"> </span><span class="ff6">2</span>,<span class="_ _22"> </span><span class="ffb ls45">···<span class="_ _13"></span><span class="ffd">,N</span></span></span></span></div><div class="t m0 x4b ha ya4 ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x14 h5 ya5 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x38 h7 ya3 ff6 fs2 fc0 sc0 ls16 ws0">.<span class="_ _1e"> </span>The<span class="_ _14"> </span>normali<span class="_ _1"></span>zed<span class="_ _c"> </span>tot<span class="_ _1"></span>al<span class="_ _c"> </span>transmit<span class="_ _14"> </span>p<span class="_ _6"></span>o<span class="_ _1"></span>w<span class="_ _1"></span>er<span class="_ _c"> </span>const<span class="_ _1"></span>rain<span class="_ _1"></span>t<span class="_ _c"> </span>is</div><div class="t m0 x1 h9 ya6 ff6 fs2 fc0 sc0 ls26 ws0">giv<span class="_ _1"></span>en<span class="_ _c"> </span>by<span class="_"> </span><span class="ffb ls5"><span class="ff3">F</span></span></div><div class="t m0 x6f h5 ya7 ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 x70 h4 ya8 ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 x71 h5 ya7 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x72 h4 ya8 ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 x73 h5 ya7 ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x74 h9 ya8 ffb fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 x75 h5 ya9 ff8 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 x75 ha yaa ffc fs3 fc0 sc0 ls5 ws0">F</div><div class="t m0 x76 h7 ya8 ff6 fs2 fc0 sc0 ls5 ws0">=<span class="_"> </span><span class="ffd">N</span></div><div class="t m0 x33 ha ya7 ffc fs3 fc0 sc0 ls5 ws0">s</div><div class="t m0 x77 h7 ya8 ff6 fs2 fc0 sc0 lse ws0">.<span class="_ _5"> </span>F<span class="_ _3"></span>or<span class="_ _14"> </span>sim<span class="_ _6"></span>plicit<span class="_ _1"></span>y<span class="_ _1f"></span>,<span class="_ _a"> </span>a<span class="_"> </span>n<span class="_ _6"></span>arro<span class="_ _1"></span>w<span class="_ _6"></span>-band<span class="_ _14"> </span>blo<span class="_ _6"></span>ck-fading<span class="_ _14"> </span>p<span class="_ _6"></span>ropagation<span class="_ _14"> </span>channel<span class="_ _c"> </span>mo<span class="_ _6"></span>del</div><div class="t m0 x1 h7 yab ff6 fs2 fc0 sc0 ls26 ws0">is<span class="_"> </span>consid<span class="_ _6"></span>ered,<span class="_ _14"> </span>and<span class="_"> </span>the<span class="_ _14"> </span>received<span class="_"> </span>sign<span class="_ _6"></span>al<span class="_"> </span>after<span class="_ _14"> </span>deco<span class="_ _6"></span>din<span class="_ _6"></span>g<span class="_"> </span>pro<span class="_ _6"></span>cessin<span class="_ _6"></span>g<span class="_"> </span>is<span class="_"> </span>expr<span class="_ _6"></span>essed<span class="_"> </span>as<span class="_"> </span>[21]</div><div class="t m0 x75 h7 yac ff3 fs2 fc0 sc0 ls5 ws0">y<span class="_ _0"> </span><span class="ff6">=</span></div><div class="t m0 x78 h9 yad ffb fs2 fc0 sc0 ls5 ws0">√</div><div class="t m0 x33 hb yae ffd fs2 fc0 sc0 ls5 ws0">ρ<span class="ff3">W</span></div><div class="t m0 x25 ha yaf ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x25 h5 yb0 ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x1d h4 yae ff3 fs2 fc0 sc0 ls5 ws0">W</div><div class="t m0 x79 ha yaf ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x79 h5 yb0 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x7a h4 yae ff3 fs2 fc0 sc0 ls5 ws0">W</div><div class="t m0 x29 ha yaf ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x29 h5 yb0 ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 x2a h4 yae ff3 fs2 fc0 sc0 ls47 ws0">HF</div><div class="t m0 x31 h5 yb1 ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 x7b h4 yae ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 x7c h5 yb1 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x4d h4 yae ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 xa h5 yb1 ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x7d h7 yae ff3 fs2 fc0 sc0 ls5 ws0">s<span class="_ _10"> </span><span class="ff6">+<span class="_ _13"> </span></span>W</div><div class="t m0 x7e ha yaf ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x7e h5 yb0 ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x7f h4 yae ff3 fs2 fc0 sc0 ls5 ws0">W</div><div class="t m0 x67 ha yaf ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x67 h5 yb0 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x53 h4 yae ff3 fs2 fc0 sc0 ls5 ws0">W</div><div class="t m0 x80 ha yaf ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x80 h5 yb0 ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 x81 h7 yae ff3 fs2 fc0 sc0 ls5 ws0">n<span class="ffd">,<span class="_ _23"> </span><span class="ff6 ls48">(1)</span></span></div><div class="t m0 x1 h9 yb2 ff6 fs2 fc0 sc0 ls2c ws0">where<span class="_ _9"> </span><span class="ffd ls5">ρ<span class="_ _0"> </span></span><span class="ls2b">repr<span class="_ _6"></span>esen<span class="_ _1"></span>ts<span class="_"> </span>the<span class="_"> </span>a<span class="_ _3"></span>verage<span class="_"> </span>receiv<span class="_ _1"></span>ed<span class="_"> </span>p<span class="_ _11"></span>o<span class="_ _1"></span>wer,<span class="_ _0"> </span>and<span class="_"> </span><span class="ff3 ls5">n<span class="_ _9"> </span></span><span class="lsb">is<span class="_"> </span>the<span class="_ _0"> </span>v<span class="_ _1"></span>ector<span class="_"> </span>of<span class="_"> </span>i.i.d.<span class="_ _0"> </span><span class="ffb ls36">CN<span class="_ _21"></span></span><span class="ls26">(0<span class="ffd ls45">,σ</span></span></span></span></div><div class="t m0 x82 h5 yb3 ff8 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 x82 ha yb4 ffc fs3 fc0 sc0 ls5 ws0">n</div><div class="t m0 x83 h7 yb5 ff6 fs2 fc0 sc0 ls49 ws0">)n<span class="_ _24"></span>o<span class="_ _24"></span>i<span class="_ _24"></span>s<span class="_ _24"></span>e<span class="_ _20"></span>,<span class="_ _6"></span>i<span class="_ _24"></span>nw<span class="_ _24"></span>h<span class="_ _24"></span>i<span class="_ _20"></span>c<span class="_ _20"></span>h<span class="ffd ls5">σ</span></div><div class="t m0 x84 h5 yb3 ff8 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 x84 ha yb4 ffc fs3 fc0 sc0 ls5 ws0">n</div><div class="t m0 x1 h7 yb6 ff6 fs2 fc0 sc0 ls10 ws0">stands<span class="_"> </span>for<span class="_"> </span>the<span class="_ _14"> </span>noise<span class="_ _14"> </span>p<span class="_ _6"></span>o<span class="_ _1"></span>w<span class="_ _1"></span>er.<span class="_ _7"> </span><span class="ff3 ls5">H<span class="_"> </span></span><span class="ls3c">denot<span class="_ _1"></span>es<span class="_ _14"> </span>the<span class="_ _14"> </span><span class="ffd ls5">N</span></span></div><div class="t m0 x2a ha yb7 ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 x85 h9 yb6 ffb fs2 fc0 sc0 ls5 ws0">×<span class="_ _10"> </span><span class="ffd">N</span></div><div class="t m0 x86 ha yb7 ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x87 h7 yb6 ff6 fs2 fc0 sc0 ls4a ws0">c<span class="_ _1"></span>hannel<span class="_"> </span>matrix<span class="_ _1"></span>,<span class="_ _c"> </span><span class="ff3 ls5">W</span></div><div class="t m0 x88 h5 yb7 ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 x89 h9 yb6 ffb fs2 fc0 sc0 ls5 ws0">∈<span class="_ _2"> </span><span class="fff">C</span></div><div class="t m0 x8a ha yb8 ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x8b h6 yb9 ff10 fs4 fc0 sc0 ls5 ws0">r</div><div class="t m0 x8c h5 yb8 ffe fs3 fc0 sc0 ls5 ws0">×<span class="ffc">N</span></div><div class="t m0 x8d h6 yb9 ff10 fs4 fc0 sc0 ls5 ws0">c</div><div class="t m0 x8e h7 yb6 ff6 fs2 fc0 sc0 ls5 ws0">,<span class="_ _c"> </span><span class="ff3">W</span></div><div class="t m0 x8f h5 yb7 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x90 h9 yb6 ffb fs2 fc0 sc0 ls5 ws0">∈<span class="_ _2"> </span><span class="fff">C</span></div><div class="t m0 x91 ha yb8 ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x92 h6 yb9 ff10 fs4 fc0 sc0 ls5 ws0">c</div><div class="t m0 x93 h5 yb8 ffe fs3 fc0 sc0 ls5 ws0">×<span class="ffc">N</span></div><div class="t m0 x94 h6 yba ff10 fs4 fc0 sc0 ls5 ws0">r</div><div class="t m0 x95 h6 ybb ff9 fs4 fc0 sc0 ls40 ws0">RF</div><div class="t m0 x1 h7 ybc ff6 fs2 fc0 sc0 ls2d ws0">and<span class="_ _5"> </span><span class="ff3 ls5">W</span></div><div class="t m0 x96 h5 ybd ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x43 h9 ybc ffb fs2 fc0 sc0 ls5 ws0">∈<span class="_ _5"> </span><span class="fff">C</span></div><div class="t m0 x45 ha ybe ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x5 h6 ybf ff10 fs4 fc0 sc0 ls5 ws0">r</div><div class="t m0 x97 h6 yc0 ff9 fs4 fc0 sc0 ls40 ws0">RF</div><div class="t m0 x73 h5 ybe ffe fs3 fc0 sc0 ls5 ws0">×<span class="ffc">N</span></div><div class="t m0 x98 h6 yc1 ff10 fs4 fc0 sc0 ls5 ws0">s</div><div class="t m0 x99 h7 ybc ff6 fs2 fc0 sc0 ls26 ws0">stand<span class="_ _5"> </span>for<span class="_ _d"> </span>th<span class="_ _6"></span>e<span class="_ _d"> </span>switch<span class="_ _d"> </span>matr<span class="_ _6"></span>ix,<span class="_ _5"> </span>RF<span class="_ _5"> </span>com<span class="_ _1"></span>binin<span class="_ _6"></span>g<span class="_ _d"> </span>matrix<span class="_ _5"> </span>and<span class="_ _d"> </span>b<span class="_ _6"></span>aseband<span class="_ _d"> </span>combining</div><div class="t m0 x1 h7 yc2 ff6 fs2 fc0 sc0 ls26 ws0">matrix,<span class="_ _7"> </span>r<span class="_ _6"></span>esp<span class="_ _6"></span>ectiv<span class="_ _1"></span>ely<span class="_ _3"></span>.<span class="_ _25"> </span>The<span class="_ _5"> </span>RF<span class="_ _5"> </span>combiner<span class="_ _4"> </span>is<span class="_ _5"> </span>also<span class="_ _4"> </span>su<span class="_ _6"></span>b<span class="_ _6"></span>j<span class="_ _6"></span>ected<span class="_ _5"> </span>to<span class="_ _5"> </span>the<span class="_ _4"> </span>constant<span class="_ _5"> </span>mo<span class="_ _6"></span>d<span class="_ _6"></span>ulus<span class="_ _5"> </span>cons<span class="_ _6"></span>train<span class="_ _1"></span>t,<span class="_ _7"> </span>i.e.,</div><div class="t m0 x1 h9 yc3 ffb fs2 fc0 sc0 ls5 ws0">|<span class="ff6">(<span class="ff3">W</span></span></div><div class="t m0 x9a h5 yc4 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x9b h7 yc5 ff6 fs2 fc0 sc0 ls5 ws0">)</div><div class="t m0 x9c ha yc4 ffc fs3 fc0 sc0 ls2e ws0">i,j</div><div class="t m0 x9d h9 yc5 ffb fs2 fc0 sc0 ls5 ws0">|<span class="_ _9"> </span><span class="ff6 ls4b">=1<span class="_ _26"></span><span class="ffd ls43">,i<span class="_ _3"></span><span class="ff6 ls4b">=1<span class="_ _24"></span><span class="ffd ls5">,<span class="_ _12"> </span><span class="ff6">2</span>,<span class="_ _22"> </span><span class="ffb ls45">···<span class="_ _10"> </span><span class="ffd">,N</span></span></span></span></span></span></div><div class="t m0 x9e ha yc4 ffc fs3 fc0 sc0 ls5 ws0">c</div><div class="t m0 x9f h9 yc5 ffd fs2 fc0 sc0 ls43 ws0">,j<span class="ff6 ls4b">=1<span class="_ _24"></span><span class="ffd ls5">,<span class="_ _12"> </span><span class="ff6">2</span>,<span class="_ _22"> </span><span class="ffb ls45">···<span class="_ _13"></span><span class="ffd">,N</span></span></span></span></div><div class="t m0 x4b ha yc6 ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 x14 h5 yc7 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x38 h7 yc5 ff6 fs2 fc0 sc0 ls5 ws0">.</div><div class="t m0 xf h7 yc8 ff6 fs2 fc0 sc0 lsb ws0">Assum<span class="_ _6"></span>e<span class="_ _7"> </span>th<span class="_ _6"></span>at<span class="_ _7"> </span>p<span class="_ _11"></span>erfect<span class="_ _1e"> </span>c<span class="_ _1"></span>han<span class="_ _6"></span>nel<span class="_ _1e"> </span>state<span class="_ _1e"> </span>infor<span class="_ _6"></span>mation<span class="_ _1e"> </span>(CSI)<span class="_ _1e"> </span>is<span class="_ _1e"> </span>known<span class="_ _7"> </span>at<span class="_ _1e"> </span>b<span class="_ _11"></span>oth<span class="_ _1e"> </span>the<span class="_ _1e"> </span>transmitter<span class="_ _1e"> </span>an<span class="_ _6"></span>d</div><div class="t m0 x1 h7 yc9 ff6 fs2 fc0 sc0 lse ws0">receiver<span class="_ _a"> </span>[21].<span class="_ _f"> </span>When<span class="_ _a"> </span>Gau<span class="_ _6"></span>ssian<span class="_ _a"> </span>sy<span class="_ _6"></span>m<span class="_ _1"></span>b<span class="_ _6"></span>ols<span class="_ _a"> </span>are<span class="_ _a"> </span>tran<span class="_ _6"></span>smitted<span class="_ _a"> </span>ov<span class="_ _3"></span>er<span class="_ _d"> </span>the<span class="_ _a"> </span>channel,<span class="_ _d"> </span>and<span class="_ _a"> </span>the<span class="_ _a"> </span>achiev<span class="_ _3"></span>ab<span class="_ _6"></span>le<span class="_ _a"> </span>sp<span class="_ _6"></span>ectr<span class="_ _6"></span>al</div><div class="t m0 x1 h7 yca ff6 fs2 fc0 sc0 lse ws0">efficiency<span class="_ _14"> </span>can<span class="_ _14"> </span>b<span class="_ _6"></span>e<span class="_"> </span>giv<span class="_ _1"></span>en<span class="_ _14"> </span>by</div><div class="t m0 x6c h7 ycb ffd fs2 fc0 sc0 ls5 ws0">R<span class="_ _9"> </span><span class="ff6 ls4b">=l<span class="_ _26"></span>o<span class="_ _24"></span>g</span></div><div class="t m0 xa0 h5 ycc ff8 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 xa1 hc ycd ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 xa2 hc yce ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 xa2 hc ycf ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 xa2 hc yd0 ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 xa2 hc yd1 ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 xa3 h4 yd2 ff3 fs2 fc0 sc0 ls5 ws0">I</div><div class="t m0 xa4 ha yd3 ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 xa5 h6 ycc ff10 fs4 fc0 sc0 ls5 ws0">s</div><div class="t m0 xa6 h7 yd4 ff6 fs2 fc0 sc0 ls5 ws0">+</div><div class="t m0 xa7 hb yd5 ffd fs2 fc0 sc0 ls5 ws0">ρ</div><div class="t m0 xa8 hb yd6 ffd fs2 fc0 sc0 ls5 ws0">σ</div><div class="t m0 xa9 h5 yd7 ff8 fs3 fc0 sc0 ls5 ws0">2</div><div class="t m0 x1a ha yd8 ffc fs3 fc0 sc0 ls5 ws0">n</div><div class="t m0 x78 hb yd6 ffd fs2 fc0 sc0 ls5 ws0">N</div><div class="t m0 xaa ha yd9 ffc fs3 fc0 sc0 ls5 ws0">s</div><div class="t m0 x77 h7 yd4 ff6 fs2 fc0 sc0 ls5 ws0">(<span class="ff3">W</span></div><div class="t m0 x35 h5 yd3 ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 xab h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">W</div><div class="t m0 x48 h5 yd3 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 xac h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">W</div><div class="t m0 xad h5 yd3 ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x2a h7 yd4 ff6 fs2 fc0 sc0 ls5 ws0">)</div><div class="t m0 xae h5 yda ffe fs3 fc0 sc0 ls5 ws0">†</div><div class="t m0 x14 h4 yd4 ff3 fs2 fc0 sc0 ls47 ws0">HF</div><div class="t m0 x86 h5 yd3 ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 xaf h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 xb0 h5 yd3 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x3a h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 xb1 h5 yd3 ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 xb2 h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 xb3 ha yda ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 xb3 h5 ydb ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 x3d h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 xb4 ha yda ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 xb4 h5 ydb ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 x66 h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">F</div><div class="t m0 xb5 ha yda ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 xb5 h5 ydb ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 xb6 h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">H</div><div class="t m0 xb7 ha yda ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 xb8 h7 yd4 ff6 fs2 fc0 sc0 ls5 ws0">(<span class="ff3">W</span></div><div class="t m0 xb9 h5 yd3 ff8 fs3 fc0 sc0 ls5 ws0">S</div><div class="t m0 x55 h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">W</div><div class="t m0 xba h5 yd3 ff8 fs3 fc0 sc0 ls3d ws0">RF</div><div class="t m0 xbb h4 yd4 ff3 fs2 fc0 sc0 ls5 ws0">W</div><div class="t m0 x2c h5 yd3 ff8 fs3 fc0 sc0 ls3f ws0">BB</div><div class="t m0 xbc h7 yd4 ff6 fs2 fc0 sc0 ls5 ws0">)</div><div class="t m0 x2d hc ydc ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 x2d hc ydd ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 x2d hc yde ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 x2d hc ydf ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 xbd hc ye0 ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 x91 h7 yd4 ffd fs2 fc0 sc0 ls5 ws0">.<span class="_ _27"> </span><span class="ff6 ls48">(2)</span></div><div class="t m0 xf h7 ye1 ff6 fs2 fc0 sc0 ls18 ws0">Base<span class="_ _1"></span>d<span class="_"> </span>on<span class="_"> </span>the<span class="_"> </span>Sale<span class="_ _1"></span>h-V<span class="_ _1f"></span>alenz<span class="_ _1"></span>uela<span class="_"> </span>mo<span class="_ _6"></span>del<span class="_"> </span>[<span class="_ _1"></span>7],<span class="_"> </span>the<span class="_"> </span>mmW<span class="_ _8"></span>av<span class="_ _3"></span>e<span class="_ _14"> </span>c<span class="_ _1"></span>hannel<span class="_"> </span>ma<span class="_ _1"></span>trix<span class="_"> </span><span class="ff3 ls5">H<span class="_ _2"> </span></span><span class="ls4c">is<span class="_"> </span>assumed<span class="_"> </span>to<span class="_"> </span>b<span class="_ _6"></span>e<span class="_"> </span>a<span class="_"> </span>sum</span></div><div class="t m0 x1 h7 ye2 ff6 fs2 fc0 sc0 ls2d ws0">of<span class="_ _0"> </span><span class="ffd ls5">N</span></div><div class="t m0 x9a h5 ye3 ff8 fs3 fc0 sc0 ls4d ws0">cl</div><div class="t m0 x2e h7 ye4 ff6 fs2 fc0 sc0 lsc ws0">cluste<span class="_ _1"></span>rs,<span class="_ _0"> </span>eac<span class="_ _3"></span>h<span class="_"> </span>o<span class="_ _1"></span>f<span class="_ _0"> </span>whic<span class="_ _3"></span>h<span class="_ _0"> </span>co<span class="_ _1"></span>nsists<span class="_ _0"> </span>of<span class="_ _9"> </span><span class="ffd ls5">N</span></div><div class="t m0 xbe h5 ye5 ff8 fs3 fc0 sc0 ls4e ws0">ra<span class="_ _1"></span>y</div><div class="t m0 xbf h7 ye4 ff6 fs2 fc0 sc0 ls4f ws0">ra<span class="_ _1"></span>ys.<span class="_ _a"> </span>Let<span class="_ _0"> </span><span class="ffd ls5">L<span class="_ _9"> </span><span class="ff6">=<span class="_ _9"> </span></span>N</span></div><div class="t m0 x60 h5 ye3 ff8 fs3 fc0 sc0 ls4d ws0">cl</div><div class="t m0 xc0 hb ye4 ffd fs2 fc0 sc0 ls5 ws0">N</div><div class="t m0 xc1 h5 ye5 ff8 fs3 fc0 sc0 ls4e ws0">ra<span class="_ _1"></span>y</div><div class="t m0 xc2 h7 ye4 ff6 fs2 fc0 sc0 ls31 ws0">b<span class="_ _6"></span>e<span class="_ _0"> </span>the<span class="_ _9"> </span>total<span class="_"> </span>n<span class="_ _1"></span>u<span class="_ _6"></span>m<span class="_ _1"></span>b<span class="_ _6"></span>er<span class="_ _0"> </span>of<span class="_ _0"> </span>propagation</div><div class="t m0 x1 h7 ye6 ff6 fs2 fc0 sc0 ls18 ws0">paths,<span class="_ _0"> </span>and<span class="_"> </span>t<span class="_ _1"></span>he<span class="_"> </span>c<span class="_ _1"></span>hannel<span class="_ _0"> </span>matrix<span class="_"> </span><span class="ff3 ls5">H<span class="_ _0"> </span></span><span class="ls50">can<span class="_"> </span>b<span class="_ _6"></span>e<span class="_ _0"> </span>expressed<span class="_"> </span>a<span class="_ _1"></span>s</span></div><div class="t m0 xc3 h7 ye7 ff3 fs2 fc0 sc0 ls5 ws0">H<span class="_ _9"> </span><span class="ff6">=</span></div><div class="t m0 x35 hc ye8 ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 x7 hb ye9 ffd fs2 fc0 sc0 ls5 ws0">N</div><div class="t m0 xc4 ha yea ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 xc5 hb ye9 ffd fs2 fc0 sc0 ls5 ws0">N</div><div class="t m0 x8 ha yea ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xc4 hb yeb ffd fs2 fc0 sc0 ls5 ws0">L</div><div class="t m0 xc6 ha yec ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 xc7 h6 yed ff9 fs4 fc0 sc0 ls21 ws0">cl</div><div class="t m0 xc8 hc yee ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 xc6 h5 yef ffc fs3 fc0 sc0 ls5 ws0">i<span class="ff8 ls51">=1</span></div><div class="t m0 x2f ha yf0 ffc fs3 fc0 sc0 ls5 ws0">N</div><div class="t m0 x14 h6 yf1 ff9 fs4 fc0 sc0 ls52 ws0">ra<span class="_ _1"></span>y</div><div class="t m0 xc9 hc yee ff11 fs2 fc0 sc0 ls5 ws0"></div><div class="t m0 xae h5 yf2 ffc fs3 fc0 sc0 ls5 ws0">l<span class="ff8 ls51">=1</span></div><div class="t m0 x1e hb yf3 ffd fs2 fc0 sc0 ls5 ws0">α</div><div class="t m0 x39 ha yf4 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 x87 h4 yf3 ff3 fs2 fc0 sc0 ls5 ws0">a</div><div class="t m0 xca h5 yf5 ff8 fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xcb h7 yf3 ff6 fs2 fc0 sc0 ls5 ws0">(<span class="ffd">φ</span></div><div class="t m0 xcc ha yf6 ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xcc ha yf7 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 xcd hb yf3 ffd fs2 fc0 sc0 ls45 ws0">,θ</div><div class="t m0 xb2 ha yf6 ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xce ha yf7 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 xcf h7 yf3 ff6 fs2 fc0 sc0 ls5 ws0">)<span class="ff3">a</span></div><div class="t m0 x13 ha yf6 ffc fs3 fc0 sc0 ls5 ws0">H</div><div class="t m0 x13 h5 yf7 ff8 fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x63 h7 yf3 ff6 fs2 fc0 sc0 ls5 ws0">(<span class="ffd">φ</span></div><div class="t m0 xc2 ha yf6 ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 xc2 ha yf7 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 x66 hb yf3 ffd fs2 fc0 sc0 ls45 ws0">,θ</div><div class="t m0 xd0 ha yf6 ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 xd0 ha yf7 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 xb6 h7 yf3 ff6 fs2 fc0 sc0 ls5 ws0">)<span class="ffd">,<span class="_ _28"> </span></span><span class="ls48">(3)</span></div><div class="t m0 x1 h7 yf8 ff6 fs2 fc0 sc0 ls2c ws0">where<span class="_ _c"> </span><span class="ffd ls5">α</span></div><div class="t m0 xd1 ha yf9 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 xd2 h7 yfa ff6 fs2 fc0 sc0 ls53 ws0">denot<span class="_ _1"></span>es<span class="_ _d"> </span>the<span class="_ _c"> </span>complex<span class="_ _a"> </span>pat<span class="_ _1"></span>h<span class="_ _d"> </span>gai<span class="_ _1"></span>n<span class="_ _d"> </span>of<span class="_ _a"> </span>the<span class="_ _a"> </span><span class="ffd ls5">l<span class="_ _6"></span></span><span class="ls26">th<span class="_ _a"> </span>ray<span class="_ _a"> </span>in<span class="_ _d"> </span>the<span class="_ _a"> </span><span class="ffd ls5">i</span>th<span class="_ _d"> </span>cluster<span class="_ _6"></span>;<span class="_ _5"> </span><span class="ff3 ls5">a</span></span></div><div class="t m0 xd3 h5 yfb ff8 fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xd4 h7 yfa ff6 fs2 fc0 sc0 ls5 ws0">(<span class="ffd">φ</span></div><div class="t m0 xd5 ha yfc ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xd5 ha yfd ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 x8d hb yfa ffd fs2 fc0 sc0 ls45 ws0">,θ</div><div class="t m0 xd6 ha yfc ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xd6 ha yfd ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 xbb h7 yfa ff6 fs2 fc0 sc0 ls54 ws0">)a<span class="_ _29"></span>n<span class="_ _29"></span>d<span class="ff3 ls5">a</span></div><div class="t m0 xd7 h5 yfb ff8 fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 xd8 h7 yfa ff6 fs2 fc0 sc0 ls5 ws0">(<span class="ffd">φ</span></div><div class="t m0 xd9 ha yfc ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 xd9 ha yfd ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 x16 hb yfa ffd fs2 fc0 sc0 ls45 ws0">,θ</div><div class="t m0 x94 ha yfc ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x94 ha yfd ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 xda h7 yfa ff6 fs2 fc0 sc0 ls5 ws0">)</div><div class="t m0 x1 h7 yfe ff6 fs2 fc0 sc0 ls13 ws0">repr<span class="_ _6"></span>esen<span class="_ _1"></span>t<span class="_ _2"> </span>ar<span class="_ _6"></span>ra<span class="_ _1"></span>y<span class="_ _2"> </span>r<span class="_ _6"></span>esp<span class="_ _6"></span>ons<span class="_ _6"></span>e<span class="_"> </span>v<span class="_ _1"></span>ectors<span class="_ _14"> </span>of<span class="_ _14"> </span>the<span class="_ _14"> </span>receiver<span class="_"> </span>an<span class="_ _6"></span>d<span class="_"> </span>transm<span class="_ _6"></span>itter,<span class="_ _14"> </span>resp<span class="_ _6"></span>ectively<span class="_ _1f"></span>,<span class="_ _14"> </span>wh<span class="_ _6"></span>ere<span class="_"> </span><span class="ffd ls5">φ</span></div><div class="t m0 xdb ha yff ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xdb ha y100 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 x59 h7 y101 ff6 fs2 fc0 sc0 ls5 ws0">,<span class="_"> </span><span class="ffd">θ</span></div><div class="t m0 xdc ha yff ffc fs3 fc0 sc0 ls5 ws0">r</div><div class="t m0 xdc ha y100 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 xdd h7 y101 ff6 fs2 fc0 sc0 ls5 ws0">,<span class="_"> </span><span class="ffd">φ</span></div><div class="t m0 x10 ha yff ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 x10 ha y100 ffc fs3 fc0 sc0 ls2e ws0">il</div><div class="t m0 xde h7 y101 ff6 fs2 fc0 sc0 ls2d ws0">and<span class="_"> </span><span class="ffd ls5">θ</span></div><div class="t m0 x84 ha yff ffc fs3 fc0 sc0 ls5 ws0">t</div><div class="t m0 xdf ha y100 ffc fs3 fc0 sc0 ls2e ws0">il</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div>