6d433640.zip

  • aalitao77
    了解作者
  • matlab
    开发工具
  • 2KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 1 积分
    下载积分
  • 3
    下载次数
  • 2021-04-24 19:01
    上传日期
生成一个多边形,输出按顺指针方向输出顶点
6d433640.zip
  • 6d433640
  • HalpinTsai.m
    3.1KB
  • 6d433640.m
    1.3KB
  • GSC.m
    2.4KB
内容介绍
function [ C ] = HalpinTsai(AR,E_matrix,PR_matrix,E_fiber,PR_fiber,vf_fiber,vf_fiber_max,G_matrix,G_fiber_AB,flag_fld,fld,fibre_diameter) % HalpinTsai Halpin Tsai micromechanics model % Halpin Tsai micromechanics model for unidirectional fibre composite if flag_fld==1 for i=1:length(fld) A_1=2*fld(i,1)/fibre_diameter; psi=1+(1-vf_fiber_max)/vf_fiber_max^2*vf_fiber; B_1=(E_fiber/E_matrix-1)/(E_fiber/E_matrix+A_1); E_1=E_matrix*(1+A_1*B_1*vf_fiber)/(1-B_1*psi*vf_fiber); A_12=1; B_12=(G_fiber_AB/G_matrix-1)/(G_fiber_AB/G_matrix+A_12); G_12=G_matrix*(1+A_12*B_12*vf_fiber)/(1-B_12*psi*vf_fiber); PR_12=vf_fiber*PR_fiber+(1-vf_fiber)*PR_matrix; A_G_23=1; B_G_23=(G_fiber_AB*0.7/1.3/G_matrix-1)/(G_fiber_AB*0.7/1.3/G_matrix+A_G_23); G_23=G_matrix*(1+A_G_23*B_G_23*vf_fiber)/(1-B_G_23*psi*vf_fiber); % Bulk modulus of the matrix under plane strain km=E_matrix/2/(1-2*PR_matrix)/(1+PR_matrix); % Bulk modulus of the fiber under plane strain (longitudinal direction) kf=E_fiber/2/(1-2*PR_fiber)/(1+PR_fiber); k=km+vf_fiber/(1/(kf-km)+(1-vf_fiber)/(km+G_matrix)); % Stiffness tensor Q(1,1)=E_1+4*PR_12^2*k; Q(1,2)=2*k*PR_12; Q(2,2)=G_23+k; Q(2,3)=-G_23+k; Q(6,6)=G_12; Cfld(:,:,i)=[Q(1,1) Q(1,2) Q(1,2) 0 0 0; Q(1,2) Q(2,2) Q(2,3) 0 0 0; Q(1,2) Q(2,3) Q(2,2) 0 0 0; 0 0 0 (Q(2,2)-Q(2,3))/2 0 0; 0 0 0 0 Q(6,6) 0; 0 0 0 0 0 Q(6,6)]; end for j=1:6 for k=1:6 for l=1:length(fld) Cfld_temp(l)=Cfld(j,k,l); end C(j,k)=trapz(fld(:,1),Cfld_temp'.*fld(:,2))/trapz(fld(:,1),fld(:,2)); end end else A_1=2*AR; psi=1+(1-vf_fiber_max)/vf_fiber_max^2*vf_fiber; B_1=(E_fiber/E_matrix-1)/(E_fiber/E_matrix+A_1); E_1=E_matrix*(1+A_1*B_1*vf_fiber)/(1-B_1*psi*vf_fiber); A_12=1; B_12=(G_fiber_AB/G_matrix-1)/(G_fiber_AB/G_matrix+A_12); G_12=G_matrix*(1+A_12*B_12*vf_fiber)/(1-B_12*psi*vf_fiber); PR_12=vf_fiber*PR_fiber+(1-vf_fiber)*PR_matrix; A_G_23=1; B_G_23=(G_fiber_AB*0.7/1.3/G_matrix-1)/(G_fiber_AB*0.7/1.3/G_matrix+A_G_23); G_23=G_matrix*(1+A_G_23*B_G_23*vf_fiber)/(1-B_G_23*psi*vf_fiber); % Bulk modulus of the matrix under plane strain km=E_matrix/2/(1-2*PR_matrix)/(1+PR_matrix); % Bulk modulus of the fiber under plane strain (longitudinal direction) kf=E_fiber/2/(1-2*PR_fiber)/(1+PR_fiber); k=km+vf_fiber/(1/(kf-km)+(1-vf_fiber)/(km+G_matrix)); % Stiffness tensor Q(1,1)=E_1+4*PR_12^2*k; Q(1,2)=2*k*PR_12; Q(2,2)=G_23+k; Q(2,3)=-G_23+k; Q(6,6)=G_12; C=[Q(1,1) Q(1,2) Q(1,2) 0 0 0; Q(1,2) Q(2,2) Q(2,3) 0 0 0; Q(1,2) Q(2,3) Q(2,2) 0 0 0; 0 0 0 (Q(2,2)-Q(2,3))/2 0 0; 0 0 0 0 Q(6,6) 0; 0 0 0 0 0 Q(6,6)]; end end
评论
    相关推荐