<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/624fc05374bc5c0105516772/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/624fc05374bc5c0105516772/bg1.jpg"><div class="c x0 y1 w0 h2"><div class="t m0 x1 h3 y2 ff1 fs0 fc0 sc0 ls0 ws0">Biomedical<span class="_ _0"> </span>Signal<span class="_ _0"> </span>Processing<span class="_ _0"> </span>and<span class="_ _0"> </span>Control<span class="_ _0"> </span>69<span class="_ _0"> </span>(2021)<span class="_ _0"> </span>102903</div><div class="t m0 x2 h3 y3 ff1 fs0 fc1 sc0 ls0 ws0">Available<span class="_ _0"> </span>online<span class="_ _0"> </span>28<span class="_ _0"> </span>June<span class="_ _0"> </span>2021</div><div class="t m0 x2 h3 y4 ff1 fs0 fc1 sc0 ls0 ws0">1746-8094/©<span class="_ _0"> </span>2021<span class="_ _0"> </span>Elsevier<span class="_ _0"> </span>Ltd.<span class="_ _1"> </span>All<span class="_ _0"> </span>rights<span class="_ _0"> </span>reserved.</div></div><div class="t m0 x2 h4 y5 ff2 fs1 fc1 sc0 ls0 ws0">A <span class="_ _2"></span>denoising <span class="_ _2"></span>performance <span class="_ _2"></span>comparison <span class="_ _2"></span>based <span class="_ _2"></span>on <span class="_ _2"></span>ECG <span class="_ _2"></span>Signal <span class="_ _2"></span>Decomposition </div><div class="t m0 x2 h4 y6 ff2 fs1 fc1 sc0 ls0 ws0">and <span class="_ _2"></span>local <span class="_ _2"></span>means <span class="_ _2"></span>ltering </div><div class="t m0 x2 h5 y7 ff2 fs2 fc1 sc0 ls0 ws0">Mohamed <span class="_ _2"></span>Sraitih<span class="_ _3"> </span>, <span class="_ _2"></span>Younes <span class="_ _2"></span>Jabrane</div><div class="t m1 x3 h6 y8 ff2 fs3 fc2 sc0 ls0 ws0">* </div><div class="t m0 x2 h7 y9 ff3 fs4 fc1 sc0 ls0 ws0">MSC <span class="_ _4"></span>Lab, ENSA <span class="_ _2"></span>Cadi Ayyad <span class="_ _2"></span>University, Marrakech, <span class="_ _4"></span>Morocco </div><div class="t m0 x2 h8 ya ff2 fs5 fc1 sc0 ls1 ws0">ARTICLE <span class="_ _5"></span>INFO </div><div class="t m0 x2 h7 yb ff3 fs4 fc1 sc0 ls0 ws0">Keywords: </div><div class="t m0 x2 h7 yc ff2 fs4 fc1 sc0 ls0 ws0">ECG <span class="_ _4"></span>denoising </div><div class="t m0 x2 h7 yd ff2 fs4 fc1 sc0 ls0 ws0">EMD </div><div class="t m0 x2 h7 ye ff2 fs4 fc1 sc0 ls0 ws0">EEMD </div><div class="t m0 x2 h7 yf ff2 fs4 fc1 sc0 ls0 ws0">DWT </div><div class="t m0 x2 h7 y10 ff2 fs4 fc1 sc0 ls0 ws0">SWT </div><div class="t m0 x2 h7 y11 ff2 fs4 fc1 sc0 ls0 ws0">non-local <span class="_ _4"></span>means </div><div class="t m0 x2 h7 y12 ff2 fs4 fc1 sc0 ls0 ws0">local means </div><div class="t m0 x4 h8 ya ff2 fs5 fc1 sc0 ls1 ws0">ABSTRACT </div><div class="t m0 x4 h3 y13 ff2 fs0 fc1 sc0 ls0 ws0">The <span class="_ _2"></span>electrocardiogram <span class="_ _2"></span>(ECG) <span class="_ _6"></span>signal <span class="_ _2"></span>is <span class="_ _2"></span>popular <span class="_ _6"></span>and <span class="_ _2"></span>extensively <span class="_ _2"></span>used <span class="_ _6"></span>as <span class="_ _2"></span>a <span class="_ _2"></span>diagnostic <span class="_ _2"></span>tool <span class="_ _6"></span>for <span class="_ _2"></span>revealing <span class="_ _2"></span>several </div><div class="t m0 x4 h3 y14 ff2 fs0 fc1 sc0 ls0 ws0">diseases <span class="_ _4"></span>related to <span class="_ _4"></span>the <span class="_ _4"></span>heart. <span class="_ _4"></span>Unfortunately, <span class="_ _4"></span>its <span class="_ _4"></span>sensitive <span class="_ _4"></span>to <span class="_ _4"></span>noises <span class="_ _4"></span>from <span class="_ _4"></span>various <span class="_ _4"></span>sources. Denoising <span class="_ _4"></span>these <span class="_ _4"></span>noises </div><div class="t m0 x4 h3 y15 ff2 fs0 fc1 sc0 ls0 ws0">remains a <span class="_ _4"></span>hard <span class="_ _4"></span>and major <span class="_ _4"></span>challenge <span class="_ _4"></span>task, although <span class="_ _4"></span>there <span class="_ _4"></span>are some <span class="_ _4"></span>existing <span class="_ _4"></span>methods for <span class="_ _4"></span>denoising, <span class="_ _4"></span>they <span class="_ _4"></span>remain </div><div class="t m0 x4 h3 y16 ff2 fs0 fc1 sc0 ls0 ws0">limited <span class="_ _4"></span>to <span class="_ _2"></span>a <span class="_ _4"></span>few <span class="_ _2"></span>types <span class="_ _4"></span>of <span class="_ _2"></span>noises <span class="_ _4"></span>with <span class="_ _2"></span>signicant <span class="_ _4"></span>distortion <span class="_ _2"></span>after <span class="_ _2"></span>the <span class="_ _4"></span>ltering <span class="_ _4"></span>process. <span class="_ _2"></span>In <span class="_ _4"></span>this <span class="_ _2"></span>paper, <span class="_ _2"></span>we <span class="_ _4"></span>investi-</div><div class="t m0 x4 h3 y17 ff2 fs0 fc1 sc0 ls0 ws0">gated a <span class="_ _7"></span>hybrid system <span class="_ _7"></span>that can <span class="_ _7"></span>deal <span class="_ _7"></span>with different <span class="_ _7"></span>types of <span class="_ _7"></span>noises, with <span class="_ _7"></span>different levels <span class="_ _7"></span>of SNR, <span class="_ _7"></span>conserving all <span class="_ _7"></span>the </div><div class="t m0 x4 h3 y18 ff2 fs0 fc1 sc0 ls0 ws0">signal features <span class="_ _7"></span>with the minimum <span class="_ _7"></span>distortion. The hybrid <span class="_ _7"></span>system consists <span class="_ _7"></span>of a decomposition <span class="_ _7"></span>method followed by </div><div class="t m0 x4 h3 y19 ff2 fs0 fc1 sc0 ls0 ws0">local <span class="_ _8"> </span>means <span class="_ _8"> </span>(LM) <span class="_ _8"> </span>ltering. <span class="_ _8"> </span>The <span class="_ _8"> </span>best <span class="_ _8"> </span>candidates <span class="_ _9"> </span>used <span class="_ _9"> </span>for <span class="_ _8"> </span>the <span class="_ _8"> </span>signal <span class="_ _8"> </span>decomposition <span class="_ _8"> </span>are <span class="_ _8"> </span>the <span class="_ _8"> </span>Empirical <span class="_ _9"> </span>Mode </div><div class="t m0 x4 h3 y1a ff2 fs0 fc1 sc0 ls0 ws0">Decomposition <span class="_ _4"></span>(EMD), <span class="_ _2"></span>Ensemble <span class="_ _4"></span>Empirical <span class="_ _4"></span>Mode <span class="_ _2"></span>Decomposition <span class="_ _4"></span>(EEMD), <span class="_ _4"></span>Discrete <span class="_ _2"></span>Wavelet <span class="_ _4"></span>Transform <span class="_ _2"></span>(DWT), </div><div class="t m0 x4 h3 y1b ff2 fs0 fc1 sc0 ls0 ws0">and Stationary <span class="_ _7"></span>Wavelet Transform <span class="_ _7"></span>(SWT). To demonstrate <span class="_ _7"></span>the effectiveness <span class="_ _7"></span>of the proposed <span class="_ _7"></span>method, several <span class="_ _7"></span>real </div><div class="t m0 x4 h3 y1c ff2 fs0 fc1 sc0 ls0 ws0">ECG <span class="_ _4"></span>recordings <span class="_ _4"></span>and <span class="_ _4"></span>synthetic <span class="_ _4"></span>ECG <span class="_ _4"></span>infected <span class="_ _4"></span>by <span class="_ _4"></span>a <span class="_ _4"></span>different <span class="_ _4"></span>type <span class="_ _4"></span>of <span class="_ _2"></span>noise <span class="_ _4"></span>(i.e., <span class="_ _4"></span>baseline <span class="_ _4"></span>wander, <span class="_ _4"></span>muscle <span class="_ _4"></span>artifacts, </div><div class="t m0 x4 h3 y1d ff2 fs0 fc1 sc0 ls0 ws0">electrode <span class="_ _7"></span>motion, <span class="_ _7"></span>mix <span class="_ _7"></span>noise, <span class="_ _7"></span>white <span class="_ _7"></span>noise, <span class="_ _7"></span>colored noise) <span class="_ _7"></span>with <span class="_ _7"></span>different <span class="_ _7"></span>levels <span class="_ _7"></span>of <span class="_ _7"></span>signal <span class="_ _7"></span>to <span class="_ _7"></span>noise <span class="_ _7"></span>ratios <span class="_ _7"></span>(24, <span class="_ _7"></span>18, <span class="_ _7"></span>6, <span class="_ _7"></span>0, </div><div class="t m0 x4 h3 y1e ff4 fs0 fc1 sc0 ls0 ws0">−<span class="_ _a"> </span><span class="ff2">6) <span class="_ _7"></span>dB are <span class="_ _7"></span>used <span class="_ _7"></span>in <span class="_ _7"></span>our numerical <span class="_ _7"></span>analysis. <span class="_ _7"></span>The performance <span class="_ _7"></span>evaluation <span class="_ _7"></span>of <span class="_ _7"></span>our proposed <span class="_ _7"></span>system <span class="_ _7"></span>is <span class="_ _7"></span>made using <span class="_ _7"></span>the </span></div><div class="t m0 x4 h3 y1f ff2 fs0 fc1 sc0 ls0 ws0">following <span class="_ _7"></span>metrics: SNR <span class="_ _7"></span>improvement, signal-to-noise <span class="_ _7"></span>and <span class="_ _7"></span>distortion ratio <span class="_ _7"></span>(SINAD), the <span class="_ _7"></span>approximate <span class="_ _7"></span>entropy, and </div><div class="t m0 x4 h3 y20 ff2 fs0 fc1 sc0 ls0 ws0">the <span class="_ _8"> </span>fuzzy <span class="_ _8"> </span>entropy. <span class="_ _8"> </span>The <span class="_ _8"> </span>experimental <span class="_ _8"> </span>results <span class="_ _8"> </span>emphasized <span class="_ _8"> </span>that <span class="_ _8"> </span>the <span class="_ _8"> </span>Ensemble <span class="_ _8"> </span>Empirical <span class="_ _8"> </span>Mode <span class="_ _8"> </span>Decomposition </div><div class="t m0 x4 h3 y21 ff2 fs0 fc1 sc0 ls0 ws0">(EEMD) followed by <span class="_ _7"></span>local means (LM) outperforms all <span class="_ _7"></span>the comparison methods, in <span class="_ _7"></span>terms of all the <span class="_ _7"></span>metrics used, </div><div class="t m0 x4 h3 y22 ff2 fs0 fc1 sc0 ls0 ws0">with <span class="_ _7"></span>few exceptions <span class="_ _7"></span>where <span class="_ _7"></span>the <span class="_ _7"></span>Empirical Mode <span class="_ _7"></span>Decomposition <span class="_ _7"></span>(EMD) <span class="_ _7"></span>followed by <span class="_ _7"></span>local <span class="_ _7"></span>means <span class="_ _7"></span>(LM) and <span class="_ _7"></span>Discrete </div><div class="t m0 x4 h3 y23 ff2 fs0 fc1 sc0 ls0 ws0">Wavelet <span class="_ _4"></span>Transform <span class="_ _4"></span>(DWT) <span class="_ _4"></span>followed <span class="_ _4"></span>by <span class="_ _4"></span>local <span class="_ _4"></span>means <span class="_ _4"></span>(LM) <span class="_ _4"></span>performed <span class="_ _4"></span>well. </div><div class="t m0 x2 h9 y24 ff5 fs6 fc1 sc0 ls0 ws0">1.<span class="_ _b"> </span>Introduction </div><div class="t m0 x5 h9 y25 ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _2"></span>electrical <span class="_ _2"></span>activity <span class="_ _2"></span>generated <span class="_ _2"></span>during <span class="_ _2"></span>and <span class="_ _6"></span>after <span class="_ _2"></span>activation <span class="_ _2"></span>of <span class="_ _2"></span>the </div><div class="t m0 x2 h9 y26 ff2 fs6 fc1 sc0 ls0 ws0">different <span class="_ _7"></span>parts <span class="_ _c"></span>of <span class="_ _c"></span>the <span class="_ _7"></span>heart <span class="_ _c"></span>is <span class="_ _7"></span>measured <span class="_ _c"></span>by <span class="_ _7"></span>electrodes <span class="_ _c"></span>attached <span class="_ _7"></span>to <span class="_ _c"></span>the <span class="_ _7"></span>skin </div><div class="t m0 x2 h9 y27 ff2 fs6 fc1 sc0 ls0 ws0">and <span class="_ _2"></span>transformed <span class="_ _6"></span>into <span class="_ _2"></span>a <span class="_ _6"></span>signal. <span class="_ _2"></span>The <span class="_ _6"></span>recording <span class="_ _2"></span>of <span class="_ _6"></span>the <span class="_ _2"></span>electrical <span class="_ _6"></span>activity </div><div class="t m0 x2 h9 y28 ff2 fs6 fc1 sc0 ls0 ws0">presented as <span class="_ _7"></span>an electrocardiogram (ECG). <span class="_ _7"></span>This technique <span class="_ _7"></span>is well known </div><div class="t m0 x2 h9 y29 ff2 fs6 fc1 sc0 ls0 ws0">and <span class="_ _4"></span>extremely <span class="_ _2"></span>used <span class="_ _4"></span>for <span class="_ _2"></span>diagnosing <span class="_ _4"></span>various <span class="_ _2"></span>types <span class="_ _4"></span>of <span class="_ _2"></span>diseases <span class="_ _4"></span>related <span class="_ _2"></span>to </div><div class="t m0 x2 h9 y2a ff2 fs6 fc1 sc0 ls0 ws0">the <span class="_ _c"></span>heart. <span class="_ _7"></span>The <span class="_ _c"></span>signal <span class="_ _7"></span>is <span class="_ _c"></span>formed <span class="_ _7"></span>in <span class="_ _c"></span>PQRST <span class="_ _7"></span>waves <span class="_ _c"></span>representing <span class="_ _7"></span>each <span class="_ _c"></span>part <span class="_ _c"></span>of </div><div class="t m0 x2 h9 y2b ff2 fs6 fc1 sc0 ls0 ws0">the activity inside the heart. Hence, <span class="_ _4"></span>the morphology and heart rate got </div><div class="t m0 x2 h9 y2c ff2 fs6 fc1 sc0 ls0 ws0">from <span class="_ _4"></span>the <span class="_ _4"></span>ECG <span class="_ _2"></span>signal <span class="_ _4"></span>reveals <span class="_ _4"></span>the <span class="_ _2"></span>cardiac <span class="_ _4"></span>health <span class="_ _4"></span>of <span class="_ _2"></span>the <span class="_ _4"></span>body. <span class="_ _4"></span>Badly, <span class="_ _4"></span>the </div><div class="t m0 x2 h9 y2d ff2 fs6 fc1 sc0 ls0 ws0">signal <span class="_ _6"></span>is <span class="_ _6"></span>sensitive <span class="_ _6"></span>to <span class="_ _6"></span>noises <span class="_ _9"> </span>that <span class="_ _6"></span>come <span class="_ _6"></span>basically <span class="_ _6"></span>from <span class="_ _6"></span>certain <span class="_ _6"></span>types <span class="_ _6"></span>of </div><div class="t m0 x2 h9 y2e ff2 fs6 fc1 sc0 ls0 ws0">equipment <span class="_ _8"> </span>or <span class="_ _9"> </span>the <span class="_ _8"> </span>patient. <span class="_ _8"> </span>The <span class="_ _8"> </span>noises <span class="_ _8"> </span>presented <span class="_ _9"> </span>in <span class="_ _8"> </span>the <span class="_ _8"> </span>literature <span class="_ _8"> </span>are </div><div class="t m0 x2 h9 y2f ff2 fs6 fc1 sc0 ls0 ws0">classied <span class="_ _4"></span>as; baseline <span class="_ _4"></span>wander <span class="_ _4"></span>which <span class="_ _4"></span>makes <span class="_ _4"></span>noises <span class="_ _4"></span>at <span class="_ _4"></span>0<span class="ff6">–</span>0.5 <span class="_ _4"></span>Hz <span class="_ _4"></span>with <span class="_ _4"></span>an </div><div class="t m0 x2 h9 y30 ff2 fs6 fc1 sc0 ls0 ws0">amplitude <span class="_ _3"> </span>of <span class="_ _3"> </span>15% <span class="_ _0"> </span>of <span class="_ _8"> </span>overall <span class="_ _3"> </span>ECG <span class="_ _0"> </span>amplitude <span class="_ _8"> </span>due <span class="_ _3"> </span>to <span class="_ _0"> </span>the <span class="_ _8"> </span>respiratory </div><div class="t m0 x2 h9 y31 ff2 fs6 fc1 sc0 ls0 ws0">movement, power line interference <span class="_ _7"></span>that performs a random <span class="_ _7"></span>component </div><div class="t m0 x2 h9 y32 ff2 fs6 fc1 sc0 ls0 ws0">at 60 <span class="_ _4"></span>Hz or <span class="_ _4"></span>50 Hz <span class="_ _4"></span><span class="ff4">±<span class="_ _1"> </span></span>0.2 Hz produced <span class="_ _4"></span>by the <span class="_ _4"></span>power supply, <span class="_ _4"></span>electromy-</div><div class="t m0 x2 h9 y33 ff2 fs6 fc1 sc0 ls0 ws0">ography <span class="_ _c"></span>(EMG) <span class="_ _7"></span>produce <span class="_ _c"></span>a <span class="_ _c"></span>noise <span class="_ _c"></span>up <span class="_ _7"></span>to <span class="_ _c"></span>10% <span class="_ _c"></span>of <span class="_ _7"></span>a <span class="_ _c"></span>regular <span class="_ _c"></span>peak-to-peak <span class="_ _7"></span>ECG </div><div class="t m0 x6 h9 y24 ff2 fs6 fc1 sc0 ls0 ws0">amplitude <span class="_ _6"></span>and <span class="_ _6"></span>frequency <span class="_ _6"></span>up <span class="_ _6"></span>to <span class="_ _6"></span>10 <span class="_ _6"></span>kHz <span class="_ _9"> </span>around <span class="_ _6"></span>50 <span class="_ _6"></span>ms <span class="_ _6"></span>because <span class="_ _6"></span>of <span class="_ _6"></span>the </div><div class="t m0 x6 h9 y34 ff2 fs6 fc1 sc0 ls0 ws0">electrical <span class="_ _4"></span>activity <span class="_ _4"></span>from <span class="_ _4"></span>the <span class="_ _4"></span>muscle <span class="_ _4"></span>contractions, <span class="_ _2"></span>Electrode <span class="_ _4"></span>motion <span class="_ _4"></span>arti-</div><div class="t m0 x6 h9 y25 ff2 fs6 fc1 sc0 ls0 ws0">facts <span class="_ _2"></span>causes <span class="_ _6"></span>long <span class="_ _6"></span>distortions <span class="_ _6"></span>at <span class="_ _2"></span>100<span class="ff6">–</span>500 <span class="_ _6"></span>ms <span class="_ _6"></span>due <span class="_ _6"></span>to <span class="_ _2"></span>the <span class="_ _6"></span>patient <span class="_ _6"></span>move-</div><div class="t m0 x6 h9 y26 ff2 fs6 fc1 sc0 ls0 ws0">ments that <span class="_ _4"></span>affect <span class="_ _4"></span>the electrode <span class="_ _4"></span>skin <span class="_ _4"></span>impedance, and <span class="_ _4"></span>Electrodes <span class="_ _4"></span>contact </div><div class="t m0 x6 h9 y27 ff2 fs6 fc1 sc0 ls0 ws0">noise manifest <span class="_ _7"></span>1 Hz frequency <span class="_ _7"></span>noise because of the <span class="_ _7"></span>improper contact <span class="_ _7"></span>of </div><div class="t m0 x6 h9 y28 ff2 fs6 fc1 sc0 ls0 ws0">electrodes <span class="_ _6"></span>with <span class="_ _6"></span>skin. <span class="_ _6"></span>These <span class="_ _6"></span>noises <span class="_ _6"></span>can <span class="_ _6"></span>change <span class="_ _6"></span>the <span class="_ _2"></span>morphology <span class="_ _9"> </span>of <span class="_ _6"></span>the </div><div class="t m0 x6 h9 y29 ff2 fs6 fc1 sc0 ls0 ws0">signal <span class="_ _7"></span>and <span class="_ _7"></span>make <span class="_ _c"></span>the diagnosis <span class="_ _c"></span>and <span class="_ _7"></span>the <span class="_ _7"></span>interpretation <span class="_ _7"></span>of <span class="_ _7"></span>the <span class="_ _c"></span>signal a <span class="_ _c"></span>hard </div><div class="t m0 x6 h9 y2a ff2 fs6 fc1 sc0 ls0 ws0">task. <span class="_ _8"> </span>Consequently, <span class="_ _8"> </span>a <span class="_ _8"> </span>pre-processing <span class="_ _3"> </span>technique <span class="_ _8"> </span>should <span class="_ _8"> </span>be <span class="_ _8"> </span>performed </div><div class="t m0 x6 h9 y2b ff2 fs6 fc1 sc0 ls0 ws0">before analyzing <span class="_ _4"></span>the <span class="_ _4"></span>signal and <span class="_ _4"></span>extracting <span class="_ _4"></span>features for <span class="_ _4"></span>diagnosis <span class="_ _4"></span>or de-</div><div class="t m0 x6 h9 y2c ff2 fs6 fc1 sc0 ls0 ws0">cision making. </div><div class="t m0 x7 h9 y2d ff2 fs6 fc1 sc0 ls0 ws0">The remains <span class="_ _4"></span>of <span class="_ _4"></span>this <span class="_ _4"></span>paper <span class="_ _4"></span>are <span class="_ _4"></span>organized <span class="_ _4"></span>as <span class="_ _4"></span>follows: in <span class="_ _4"></span>the <span class="_ _4"></span>next <span class="_ _4"></span>sec-</div><div class="t m0 x6 h9 y2e ff2 fs6 fc1 sc0 ls0 ws0">tion, <span class="_ _4"></span>a <span class="_ _2"></span>literature <span class="_ _2"></span>review <span class="_ _2"></span>is <span class="_ _2"></span>presented. <span class="_ _2"></span>Section <span class="_ _4"></span><span class="fc2">3</span>, <span class="_ _2"></span>we <span class="_ _2"></span>describe <span class="_ _2"></span>the <span class="_ _2"></span>theo-</div><div class="t m0 x6 h9 y2f ff2 fs6 fc1 sc0 ls0 ws0">retical <span class="_ _8"> </span>foundation. <span class="_ _3"> </span>Then <span class="_ _3"> </span>in <span class="_ _3"> </span>Section <span class="_ _3"> </span><span class="fc2">4</span>, <span class="_ _3"> </span>the <span class="_ _3"> </span>proposed <span class="_ _3"> </span>methodology <span class="_ _8"> </span>is </div><div class="t m0 x6 h9 y30 ff2 fs6 fc1 sc0 ls0 ws0">detailed. In Section <span class="fc2">5 <span class="_ _7"></span><span class="fc1">a Proof of concept is explained. <span class="_ _7"></span>Section <span class="fc2">6 </span>spreads </span></span></div><div class="t m0 x6 h9 y31 ff2 fs6 fc1 sc0 ls0 ws0">The conducted experiments and results. Finally, we conclude the <span class="_ _7"></span>paper </div><div class="t m0 x6 h9 y32 ff2 fs6 fc1 sc0 ls0 ws0">in Section <span class="fc2">7</span>. </div><div class="c x0 y35 w2 h0"><div class="t m0 x8 h3 y36 ff2 fs0 fc1 sc0 ls0 ws0">*<span class="_ _d"> </span>Corresponding <span class="_ _4"></span>author. </div><div class="t m0 x5 h3 y37 ff3 fs0 fc1 sc0 ls0 ws0">E-mail <span class="_ _4"></span>addresses: <span class="_ _4"></span><span class="ff2 fc2">mohamed.sraitih@ced.uca.ma <span class="_ _4"></span><span class="fc1">(M. <span class="_ _4"></span>Sraitih), <span class="_ _4"></span></span>y.jabrane@uca.ma <span class="_ _4"></span><span class="fc1">(Y. <span class="_ _4"></span>Jabrane). </span></span></div><div class="t m0 x9 h9 y38 ff2 fs6 fc1 sc0 ls0 ws0">Contents lists available at <span class="fc2">ScienceDirect </span></div></div><div class="t m0 xa ha y39 ff2 fs7 fc1 sc0 ls0 ws0">Biomedical <span class="_ _2"></span>Signal <span class="_ _2"></span>Processing <span class="_ _2"></span>and <span class="_ _2"></span>Control </div><div class="t m0 xb hb y3a ff7 fs6 fc1 sc0 ls0 ws0">journal <span class="_ _4"></span>homepage: <span class="_ _4"></span><span class="fc2">www.elsevier.com/locate/bspc </span></div><div class="c x0 y35 w2 h0"><div class="t m0 x2 h3 y3b ff2 fs0 fc2 sc0 ls0 ws0">https://doi.org/10.1016/j.bspc.2021.102903 </div><div class="t m0 x2 h3 y3c ff2 fs0 fc1 sc0 ls0 ws0">Received <span class="_ _4"></span>27 <span class="_ _4"></span>April <span class="_ _4"></span>2021; <span class="_ _4"></span>Received <span class="_ _4"></span>in <span class="_ _4"></span>revised <span class="_ _4"></span>form <span class="_ _4"></span>6 <span class="_ _2"></span>June <span class="_ _4"></span>2021; <span class="_ _4"></span>Accepted <span class="_ _4"></span>19 <span class="_ _4"></span>June <span class="_ _4"></span>2021 </div></div><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a></div><div class="pi" data-data='{"ctm":[1.612697,0.000000,0.000000,1.612697,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/624fc05374bc5c0105516772/bg2.jpg"><div class="c x0 y1 w0 h2"><div class="t m0 xc hc y3d ff8 fs8 fc1 sc0 ls0 ws0">Biomedical<span class="_ _3"> </span>Signal<span class="_ _0"> </span>Processing<span class="_ _3"> </span>and<span class="_ _0"> </span>Control<span class="_ _3"> </span>69<span class="_ _0"> </span>(2021)<span class="_ _3"> </span>102903</div><div class="t m0 xd hc y3e ff1 fs8 fc1 sc0 ls0 ws0">2</div></div><div class="t m0 x2 h9 y3f ff5 fs6 fc1 sc0 ls0 ws0">2.<span class="_ _b"> </span>Literature <span class="_ _4"></span>review </div><div class="t m0 x5 h9 y40 ff2 fs6 fc1 sc0 ls0 ws0">At <span class="_ _4"></span>present, <span class="_ _4"></span>there <span class="_ _4"></span>are <span class="_ _4"></span>numerous <span class="_ _2"></span>techniques <span class="_ _4"></span>to <span class="_ _4"></span>lter <span class="_ _4"></span>and <span class="_ _4"></span>pre-process </div><div class="t m0 x2 h9 y41 ff2 fs6 fc1 sc0 ls0 ws0">ECG <span class="_ _9"> </span>signals. <span class="_ _9"> </span>The <span class="_ _9"> </span>basic <span class="_ _8"> </span>lters <span class="_ _9"> </span>in <span class="_ _9"> </span>the <span class="_ _8"> </span>literature <span class="_ _9"> </span>are <span class="_ _9"> </span>the <span class="_ _8"> </span>high-pass <span class="_ _9"> </span>and </div><div class="t m0 x2 h9 y42 ff2 fs6 fc1 sc0 ls0 ws0">low-pass <span class="_ _6"></span>lters, <span class="_ _6"></span>it <span class="_ _6"></span>uses <span class="_ _6"></span>approximation <span class="_ _6"></span>functions <span class="_ _9"> </span>such <span class="_ _6"></span>as; <span class="_ _6"></span>Butterworth </div><div class="t m0 x2 h9 y43 ff2 fs6 fc1 sc0 ls0 ws0">lter <span class="_ _2"></span><span class="fc2">[1<span class="ff6">–</span>3]</span>, <span class="_ _2"></span>Elliptic <span class="_ _2"></span>lter <span class="_ _2"></span>(Cauer), <span class="_ _2"></span>The <span class="_ _6"></span>Chebyshev <span class="_ _2"></span>type <span class="_ _2"></span>1 <span class="_ _2"></span>and <span class="_ _2"></span>2 <span class="_ _2"></span>lters </div><div class="t m0 x2 h9 y44 ff2 fs6 fc2 sc0 ls0 ws0">[4]<span class="fc1">, Bessel <span class="_ _4"></span>lter <span class="_ _4"></span></span>[5] <span class="_ _4"></span><span class="fc1">and <span class="_ _4"></span>recommended especially <span class="_ _4"></span>for <span class="_ _4"></span>baseline <span class="_ _4"></span>wander. </span></div><div class="t m0 x2 h9 y45 ff2 fs6 fc1 sc0 ls0 ws0">Above and <span class="_ _7"></span>beyond these basic methods, <span class="_ _7"></span>other techniques are <span class="_ _7"></span>used such </div><div class="t m0 x2 h9 y46 ff2 fs6 fc1 sc0 ls0 ws0">as <span class="_ _3"> </span>adaptive <span class="_"> </span>lters <span class="_ _3"> </span><span class="fc2">[6<span class="ff6">–</span>9]</span>, <span class="_ _3"> </span>Wiener <span class="_"> </span>lter <span class="_ _8"> </span><span class="fc2">[10]</span>, <span class="_"> </span>Kalman <span class="_ _3"> </span>lter <span class="_ _3"> </span><span class="fc2">[11,12]</span>, </div><div class="t m0 x2 h9 y47 ff2 fs6 fc1 sc0 ls0 ws0">moving <span class="_ _c"></span>average <span class="_ _7"></span><span class="fc2">[13,14]<span class="fc1">, <span class="_ _c"></span>and <span class="_ _7"></span>quadratic <span class="_ _c"></span>lter <span class="_ _c"></span><span class="fc2">[15]<span class="fc1">, <span class="_ _7"></span>and <span class="_ _c"></span>other <span class="_ _c"></span>techniques. </span></span></span></span></div><div class="t m0 x2 h9 y48 ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _2"></span>adaptive <span class="_ _2"></span>lters <span class="_ _2"></span>are <span class="_ _2"></span>described <span class="_ _2"></span>as <span class="_ _2"></span>self-designing <span class="_ _4"></span>lters <span class="_ _6"></span>based <span class="_ _4"></span>on <span class="_ _2"></span>al-</div><div class="t m0 x2 h9 y49 ff2 fs6 fc1 sc0 ls0 ws0">gorithms <span class="_ _8"> </span>(Least <span class="_ _3"> </span>Mean <span class="_ _8"> </span>Square <span class="_ _3"> </span>(LMS)) <span class="_ _3"> </span>that <span class="_ _8"> </span>adjust <span class="_ _3"> </span>the <span class="_ _3"> </span>weights <span class="_ _8"> </span>of <span class="_ _3"> </span>the </div><div class="t m0 x2 h9 y4a ff2 fs6 fc1 sc0 ls0 ws0">adaptive <span class="_ _2"></span>lter <span class="_ _6"></span>to <span class="_ _6"></span>minimize <span class="_ _2"></span>the <span class="_ _6"></span>error. <span class="_ _6"></span>Wiener <span class="_ _2"></span>lter <span class="_ _6"></span>uses <span class="_ _6"></span>the <span class="_ _2"></span>statistical </div><div class="t m0 x2 h9 y4b ff2 fs6 fc1 sc0 ls0 ws0">components <span class="_ _c"></span>for <span class="_ _7"></span>noise <span class="_ _c"></span>removing <span class="_ _c"></span>processes <span class="_ _c"></span>like <span class="_ _7"></span>source <span class="_ _c"></span>signal <span class="_ _c"></span>or <span class="_ _7"></span>secondary </div><div class="t m0 x2 h9 y4c ff2 fs6 fc1 sc0 ls0 ws0">recorded <span class="_ _7"></span>ECG <span class="_ _c"></span>signal. <span class="_ _7"></span>The <span class="_ _c"></span>Kalman <span class="_ _7"></span>lter <span class="_ _c"></span>predicts <span class="_ _7"></span>the <span class="_ _c"></span>state <span class="_ _7"></span>with <span class="_ _c"></span>a <span class="_ _7"></span>dynamic </div><div class="t m0 x2 h9 y4d ff2 fs6 fc1 sc0 ls0 ws0">model <span class="_ _8"> </span>and <span class="_ _8"> </span>regulates <span class="_ _9"> </span>the <span class="_ _8"> </span>ltering <span class="_ _8"> </span>with <span class="_ _8"> </span>an <span class="_ _8"> </span>observation <span class="_ _8"> </span>model, <span class="_ _8"> </span>which </div><div class="t m0 x2 h9 y4e ff2 fs6 fc1 sc0 ls0 ws0">reduces <span class="_ _6"></span>the <span class="_ _6"></span>error <span class="_ _6"></span>covariance <span class="_ _9"> </span>of <span class="_ _6"></span>the <span class="_ _6"></span>estimator. <span class="_ _6"></span>The <span class="_ _9"> </span>median <span class="_ _6"></span>lter <span class="_ _6"></span>or <span class="_ _6"></span>a </div><div class="t m0 x2 h9 y4f ff2 fs6 fc1 sc0 ls0 ws0">moving <span class="_ _3"> </span>average <span class="_ _0"> </span>lter <span class="_ _3"> </span>comprises <span class="_ _3"> </span>a <span class="_ _0"> </span>shifting <span class="_ _3"> </span>time <span class="_ _0"> </span>window <span class="_ _3"> </span>where <span class="_ _3"> </span>the </div><div class="t m0 x2 h9 y50 ff2 fs6 fc1 sc0 ls0 ws0">central <span class="_ _7"></span>sample <span class="_ _7"></span>of <span class="_ _7"></span>each <span class="_ _c"></span>time <span class="_ _7"></span>window <span class="_ _7"></span>is <span class="_ _7"></span>changed <span class="_ _7"></span>by <span class="_ _7"></span>the <span class="_ _c"></span>median of <span class="_ _c"></span>sample </div><div class="t m0 x2 h9 y51 ff2 fs6 fc1 sc0 ls0 ws0">values in the window. These lters are <span class="_ _7"></span>used to remove the white noise, </div><div class="t m0 x2 h9 y52 ff2 fs6 fc1 sc0 ls0 ws0">baseline <span class="_ _7"></span>wander, <span class="_ _7"></span>and <span class="_ _c"></span>in <span class="_ _7"></span>some <span class="_ _7"></span>cases <span class="_ _7"></span>the <span class="_ _c"></span>EMG <span class="_ _7"></span>components <span class="_ _7"></span>and <span class="_ _7"></span>electrodes </div><div class="t m0 x2 h9 y53 ff2 fs6 fc1 sc0 ls0 ws0">motion <span class="_ _c"></span>artifacts. <span class="_ _7"></span>A <span class="_ _c"></span>notch <span class="_ _c"></span>lter <span class="_ _c"></span>is <span class="_ _7"></span>recommended <span class="_ _c"></span>to <span class="_ _c"></span>remove <span class="_ _7"></span>the <span class="_ _c"></span>power <span class="_ _c"></span>line </div><div class="t m0 x2 h9 y54 ff2 fs6 fc1 sc0 ls0 ws0">interference <span class="fc2">[16]</span>. <span class="_ _7"></span>These <span class="_ _7"></span>methods revealed <span class="_ _7"></span>can be <span class="_ _7"></span>implemented directly </div><div class="t m0 x2 h9 y55 ff2 fs6 fc1 sc0 ls0 ws0">or <span class="_ _8"> </span>in <span class="_ _8"> </span>form <span class="_ _3"> </span>of <span class="_ _8"> </span>nite <span class="_ _8"> </span>impulse <span class="_ _3"> </span>response <span class="_ _8"> </span>FIR <span class="_ _3"> </span><span class="fc2">[17] <span class="_ _8"> </span></span>and <span class="_ _8"> </span>innite <span class="_ _3"> </span>impulse </div><div class="t m0 x2 h9 y56 ff2 fs6 fc1 sc0 ls0 ws0">response <span class="_ _7"></span>IIR <span class="fc2">[18<span class="ff6">–</span>21]</span>. <span class="_ _7"></span>Furthermore, the <span class="_ _7"></span>signal <span class="_ _7"></span>can be <span class="_ _7"></span>pre-processed and </div><div class="t m0 x2 h9 y57 ff2 fs6 fc1 sc0 ls0 ws0">ltered <span class="_ _7"></span>in <span class="_ _7"></span>the <span class="_ _7"></span>time <span class="_ _c"></span>domain <span class="_ _7"></span>as <span class="_ _7"></span>well <span class="_ _7"></span>as <span class="_ _7"></span>in <span class="_ _7"></span>the <span class="_ _7"></span>frequency <span class="_ _c"></span>domain, <span class="_ _7"></span>using <span class="_ _7"></span>the </div><div class="t m0 x2 h9 y58 ff2 fs6 fc1 sc0 ls0 ws0">Fourier <span class="_ _4"></span>transforms but <span class="_ _2"></span>it provides <span class="_ _4"></span>only <span class="_ _4"></span>spectral <span class="_ _4"></span>information <span class="_ _4"></span>in <span class="_ _4"></span>the <span class="_ _4"></span>fre-</div><div class="t m0 x2 h9 y59 ff2 fs6 fc1 sc0 ls0 ws0">quency <span class="_ _4"></span>domain <span class="_ _2"></span><span class="fc2">[22]</span>, <span class="_ _4"></span>causing <span class="_ _2"></span>losses <span class="_ _4"></span>in <span class="_ _2"></span>the <span class="_ _2"></span>information <span class="_ _4"></span>about <span class="_ _2"></span>the <span class="_ _4"></span>time </div><div class="t m0 x2 h9 y5a ff2 fs6 fc1 sc0 ls0 ws0">domain <span class="_ _4"></span>proprieties <span class="_ _4"></span>and <span class="_ _4"></span>vice <span class="_ _4"></span>versa. <span class="_ _4"></span>To <span class="_ _4"></span>overcome <span class="_ _4"></span>this <span class="_ _4"></span>issue, <span class="_ _4"></span>Short <span class="_ _4"></span>Time </div><div class="t m0 x2 h9 y5b ff2 fs6 fc1 sc0 ls0 ws0">Fourier <span class="_ _7"></span>Transform <span class="_ _7"></span>(STFT) <span class="_ _c"></span>provides <span class="_ _7"></span>a <span class="_ _7"></span>representation <span class="_ _7"></span>of <span class="_ _c"></span>the <span class="_ _7"></span>signal <span class="_ _7"></span>in <span class="_ _7"></span>both </div><div class="t m0 x2 h9 y5c ff2 fs6 fc1 sc0 ls0 ws0">time <span class="_ _7"></span>and <span class="_ _7"></span>frequency <span class="_ _7"></span>domains <span class="_ _c"></span>using <span class="_ _7"></span>the <span class="_ _7"></span>moving <span class="_ _7"></span>window <span class="_ _7"></span>function <span class="_ _7"></span><span class="fc2">[23]<span class="fc1">. <span class="_ _7"></span>In </span></span></div><div class="t m0 x2 h9 y5d ff2 fs6 fc1 sc0 ls0 ws0">this technique, it is needed to <span class="_ _7"></span>operate with a stable window size on the </div><div class="t m0 x2 h9 y5e ff2 fs6 fc1 sc0 ls0 ws0">other <span class="_ _7"></span>hand; <span class="_ _7"></span>it <span class="_ _7"></span>does <span class="_ _7"></span>not <span class="_ _7"></span>allow <span class="_ _7"></span>multi-resolution <span class="_ _7"></span>information <span class="_ _7"></span>on <span class="_ _7"></span>the <span class="_ _7"></span>signal. </div><div class="t m0 x2 h9 y5f ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _9"> </span>wavelet <span class="_ _9"> </span>transform <span class="_ _9"> </span>serves <span class="_ _9"> </span>a <span class="_ _9"> </span>multi-resolution <span class="_ _9"> </span>property <span class="_ _9"> </span>to <span class="_ _9"> </span>produce </div><div class="t m0 x2 h9 y60 ff2 fs6 fc1 sc0 ls0 ws0">both <span class="_ _7"></span>time <span class="_ _7"></span>and <span class="_ _c"></span>frequency <span class="_ _7"></span>domain <span class="_ _7"></span>information, <span class="_ _7"></span>together <span class="_ _7"></span>through <span class="_ _7"></span>variable </div><div class="t m0 x2 h9 y61 ff2 fs6 fc1 sc0 ls0 ws0">window <span class="_"> </span>size. <span class="_"> </span>This <span class="_"> </span>approach <span class="_ _1"> </span>of <span class="_"> </span>decomposing <span class="_"> </span>the <span class="_"> </span>signals <span class="_"> </span>into <span class="_ _1"> </span>sub- </div><div class="t m0 x2 h9 y62 ff2 fs6 fc1 sc0 ls0 ws0">elements <span class="_ _9"> </span>have <span class="_ _9"> </span>become <span class="_ _8"> </span>popular <span class="_ _9"> </span>for <span class="_ _8"> </span>noise <span class="_ _9"> </span>ltering <span class="_ _8"> </span>and <span class="_ _9"> </span>reduction <span class="_ _9"> </span>and </div><div class="t m0 x2 h9 y63 ff2 fs6 fc1 sc0 ls0 ws0">successfully <span class="_ _4"></span>used <span class="_ _2"></span>for <span class="_ _2"></span>the <span class="_ _4"></span>ECG <span class="_ _2"></span>signals <span class="_ _2"></span>ltering <span class="_ _4"></span>process <span class="_ _2"></span>from <span class="_ _4"></span>noises <span class="_ _2"></span>like </div><div class="t m0 x2 h9 y64 ff2 fs6 fc1 sc0 ls0 ws0">power <span class="_ _4"></span>line <span class="_ _4"></span>interference, <span class="_ _4"></span>baseline <span class="_ _4"></span>wandering, <span class="_ _4"></span>and <span class="_ _4"></span>high-frequency <span class="_ _4"></span>noise </div><div class="t m0 x2 h9 y65 ff2 fs6 fc2 sc0 ls0 ws0">[24<span class="ff6">–</span>26]<span class="fc1">, in <span class="_ _4"></span>addition <span class="_ _4"></span>to <span class="_ _4"></span>its extension <span class="_ _4"></span>such <span class="_ _4"></span>as <span class="_ _4"></span>continuous wavelet <span class="_ _4"></span>trans-</span></div><div class="t m0 x2 h9 y66 ff2 fs6 fc1 sc0 ls0 ws0">form <span class="_ _4"></span>(CWT) <span class="_ _2"></span><span class="fc2">[27,28]</span>, <span class="_ _4"></span>discrete <span class="_ _2"></span>wavelet <span class="_ _2"></span>transform <span class="_ _4"></span>(DWT), <span class="_ _2"></span>which <span class="_ _4"></span>is <span class="_ _2"></span>usu-</div><div class="t m0 x2 h9 y67 ff2 fs6 fc1 sc0 ls0 ws0">ally <span class="_ _7"></span>handled <span class="_ _c"></span>by <span class="_ _7"></span>implementing <span class="_ _c"></span>soft <span class="_ _7"></span>or <span class="_ _7"></span>hard <span class="_ _c"></span>thresholds <span class="_ _7"></span>on <span class="_ _c"></span>the <span class="_ _7"></span>gotten <span class="_ _7"></span>DWT </div><div class="t m0 x2 h9 y68 ff2 fs6 fc1 sc0 ls0 ws0">coefcients, <span class="_ _6"></span><span class="fc2">[29,28]</span>, <span class="_ _6"></span>Stationary <span class="_ _6"></span>Wavelet <span class="_ _6"></span>Transform <span class="_ _6"></span>(SWT) <span class="_ _6"></span><span class="fc2">[30]</span>. <span class="_ _6"></span><span class="fc2">[31] </span></div><div class="t m0 x2 h9 y69 ff2 fs6 fc1 sc0 ls0 ws0">introduced <span class="_ _d"> </span>a <span class="_ _d"> </span>new <span class="_ _e"> </span>signal <span class="_ _e"> </span>analysis <span class="_ _d"> </span>method <span class="_ _e"> </span>called <span class="_ _d"> </span>empirical <span class="_ _d"> </span>mode </div><div class="t m0 x2 h9 y6a ff2 fs6 fc1 sc0 ls0 ws0">decomposition <span class="_ _6"></span>(EMD), <span class="_ _6"></span>the <span class="_ _6"></span>EMD <span class="_ _6"></span>was <span class="_ _6"></span>effectively <span class="_ _6"></span>used <span class="_ _6"></span>for <span class="_ _6"></span>cleaning <span class="_ _6"></span>the </div><div class="t m0 x2 h9 y6b ff2 fs6 fc1 sc0 ls0 ws0">ECG <span class="_ _0"> </span>signal <span class="_ _3"> </span><span class="fc2">[32<span class="ff6">–</span>36]</span>, <span class="_"> </span>as <span class="_ _3"> </span>well <span class="_"> </span>as <span class="_ _3"> </span>its <span class="_"> </span>extension <span class="_ _3"> </span>named <span class="_ _0"> </span>The <span class="_ _0"> </span>ensemble </div><div class="t m0 x2 h9 y6c ff2 fs6 fc1 sc0 ls0 ws0">empirical <span class="_ _7"></span>mode <span class="_ _c"></span>decomposition <span class="_ _7"></span>(EEMD) <span class="_ _7"></span>which <span class="_ _7"></span>resolves <span class="_ _c"></span>the <span class="_ _7"></span>mode <span class="_ _7"></span>mixing </div><div class="t m0 x2 h9 y6d ff2 fs6 fc1 sc0 ls0 ws0">issue in EMD, <span class="fc2">[37,38]</span>. </div><div class="t m0 x2 h9 y6e ff5 fs6 fc1 sc0 ls0 ws0">3.<span class="_ _b"> </span>Theoretical <span class="_ _4"></span>foundation </div><div class="t m0 x5 h9 y6f ff2 fs6 fc1 sc0 ls0 ws0">In <span class="_ _2"></span>recent <span class="_ _6"></span>times, <span class="_ _2"></span>the <span class="_ _6"></span>hybrid <span class="_ _2"></span>schemes <span class="_ _6"></span>especially <span class="_ _2"></span>those <span class="_ _6"></span>using <span class="_ _2"></span>decom-</div><div class="t m0 x2 h9 y70 ff2 fs6 fc1 sc0 ls0 ws0">position <span class="_ _7"></span>methods have <span class="_ _7"></span>been <span class="_ _7"></span>anticipated <span class="_ _7"></span>and used <span class="_ _7"></span>for <span class="_ _7"></span>denoising the <span class="_ _7"></span>ECG </div><div class="t m0 x2 h9 y71 ff2 fs6 fc1 sc0 ls0 ws0">signals <span class="_ _8"> </span>as <span class="_ _8"> </span>well <span class="_ _8"> </span>as <span class="_ _8"> </span>to <span class="_ _8"> </span>lter <span class="_ _8"> </span>multi-types <span class="_ _8"> </span>of <span class="_ _8"> </span>noises <span class="_ _8"> </span>and <span class="_ _8"> </span>to <span class="_ _8"> </span>improve <span class="_ _8"> </span>the </div><div class="t m0 x2 h9 y72 ff2 fs6 fc1 sc0 ls0 ws0">denoising <span class="_ _c"></span>performance <span class="_ _7"></span><span class="fc2">[39,40,7,3]<span class="fc1">. <span class="_ _c"></span>A <span class="_ _c"></span>various <span class="_ _c"></span>hybrid <span class="_ _7"></span>schemes <span class="_ _c"></span>have <span class="_ _c"></span>been </span></span></div><div class="t m0 x2 h9 y73 ff2 fs6 fc1 sc0 ls0 ws0">proposed <span class="_ _4"></span><span class="fc2">[41,42,40] <span class="_ _4"></span></span>proposed <span class="_ _4"></span>a <span class="_ _4"></span>combination <span class="_ _4"></span>of <span class="_ _4"></span>DWT <span class="_ _2"></span>and <span class="_ _4"></span>Neural <span class="_ _4"></span>Net-</div><div class="t m0 x2 h9 y74 ff2 fs6 fc1 sc0 ls0 ws0">works (NN) <span class="_ _4"></span>to minimize <span class="_ _4"></span>the noise <span class="_ _4"></span>in ECG, <span class="_ _4"></span>in other <span class="_ _4"></span>scheme, <span class="fc2">[8] <span class="_ _4"></span></span>a com-</div><div class="t m0 x2 h9 y75 ff2 fs6 fc1 sc0 ls0 ws0">bination <span class="_ _7"></span>of WT <span class="_ _7"></span>decomposition <span class="_ _7"></span>with adaptive <span class="_ _7"></span>ltering <span class="_ _7"></span>as <span class="_ _7"></span>well as <span class="_ _7"></span>in <span class="_ _7"></span><span class="fc2">[43]<span class="fc1">, </span></span></div><div class="t m0 x2 h9 y76 ff2 fs6 fc1 sc0 ls0 ws0">by <span class="_ _9"> </span>using <span class="_ _9"> </span>the <span class="_ _9"> </span>EMD <span class="_ _9"> </span>with <span class="_ _8"> </span>adaptive <span class="_ _9"> </span>switching <span class="_ _9"> </span>mean <span class="_ _9"> </span>ltering. <span class="_ _9"> </span><span class="fc2">[39] <span class="_ _9"> </span></span>sug-</div><div class="t m0 x2 h9 y77 ff2 fs6 fc1 sc0 ls0 ws0">gested <span class="_ _4"></span>a <span class="_ _4"></span>combination <span class="_ _2"></span>of <span class="_ _4"></span>the <span class="_ _2"></span>EMD <span class="_ _4"></span>decomposition <span class="_ _4"></span>method <span class="_ _2"></span>with <span class="_ _4"></span>moving </div><div class="t m0 x2 h9 y78 ff2 fs6 fc1 sc0 ls0 ws0">average <span class="_ _7"></span>lter, <span class="_ _7"></span>as <span class="_ _7"></span>well <span class="_ _7"></span>as <span class="_ _7"></span>in <span class="_ _7"></span><span class="fc2">[38] <span class="_ _7"></span><span class="fc1">where <span class="_ _7"></span>the <span class="_ _7"></span>authors <span class="_ _7"></span>used <span class="_ _7"></span>EMD <span class="_ _7"></span>and <span class="_ _7"></span>EEMD </span></span></div><div class="t m0 x2 h9 y79 ff2 fs6 fc1 sc0 ls0 ws0">with <span class="_ _6"></span>improved <span class="_ _6"></span>adaptive <span class="_ _6"></span>lter <span class="_ _9"> </span>and <span class="_ _6"></span>in <span class="_ _6"></span><span class="fc2">[40] <span class="_ _6"></span></span>with <span class="_ _6"></span>BLMS <span class="_ _9"> </span>adaptive <span class="_ _6"></span>lter. </div><div class="t m0 x2 h9 y7a ff2 fs6 fc1 sc0 ls0 ws0">These <span class="_ _7"></span>methods <span class="_ _c"></span>have <span class="_ _7"></span>been <span class="_ _c"></span>shown <span class="_ _7"></span>to <span class="_ _c"></span>be <span class="_ _7"></span>a <span class="_ _c"></span>powerful <span class="_ _7"></span>tool <span class="_ _7"></span>for <span class="_ _c"></span>denoising <span class="_ _7"></span>ECG </div><div class="t m0 x2 h9 y7b ff2 fs6 fc1 sc0 ls0 ws0">signals and provide better <span class="_ _4"></span>performances than conventional methods. </div><div class="t m0 x5 h9 y7c ff2 fs6 fc1 sc0 ls0 ws0">The Non local means (NLM) was originally used in image denoising </div><div class="t m0 x2 h9 y7d ff2 fs6 fc1 sc0 ls0 ws0">to <span class="_ _7"></span>address <span class="_ _7"></span>the <span class="_ _7"></span>problem of <span class="_ _c"></span>images degradation <span class="_ _7"></span>by <span class="_ _7"></span>Buades <span class="_ _7"></span>et <span class="_ _7"></span>al. <span class="_ _7"></span><span class="fc2">[44]<span class="fc1">. <span class="_ _7"></span>The </span></span></div><div class="t m0 x6 h9 y3f ff2 fs6 fc1 sc0 ls0 ws0">method denoised <span class="_ _4"></span>the image <span class="_ _4"></span>by averaging <span class="_ _4"></span>patches from <span class="_ _4"></span>various regions </div><div class="t m0 x6 h9 y7e ff2 fs6 fc1 sc0 ls0 ws0">in images that <span class="_ _4"></span>have similar <span class="_ _4"></span>spatial structures, <span class="_ _4"></span>and this process <span class="_ _4"></span>is based </div><div class="t m0 x6 h9 y40 ff2 fs6 fc1 sc0 ls0 ws0">on the <span class="_ _4"></span>fact <span class="_ _4"></span>that <span class="_ _4"></span>the images <span class="_ _4"></span>usually <span class="_ _4"></span>have <span class="_ _4"></span>repeated patterns. <span class="_ _4"></span>Tracey <span class="_ _4"></span>and </div><div class="t m0 x6 h9 y41 ff2 fs6 fc1 sc0 ls0 ws0">Miller <span class="_ _7"></span><span class="fc2">[45] <span class="_ _7"></span><span class="fc1">adopted <span class="_ _7"></span>the <span class="_ _7"></span>NLM <span class="_ _7"></span>method <span class="_ _7"></span>to <span class="_ _7"></span>the <span class="_ _7"></span>ECG <span class="_ _7"></span>signal <span class="_ _7"></span>denoising <span class="_ _7"></span>by <span class="_ _7"></span>the </span></span></div><div class="t m0 x6 h9 y42 ff2 fs6 fc1 sc0 ls0 ws0">same <span class="_ _7"></span>concepts. <span class="_ _c"></span>The <span class="_ _7"></span>experiment <span class="_ _7"></span>results <span class="_ _7"></span>established <span class="_ _7"></span>that <span class="_ _c"></span>the <span class="_ _7"></span>NLM <span class="_ _7"></span>method </div><div class="t m0 x6 h9 y43 ff2 fs6 fc1 sc0 ls0 ws0">has improved the <span class="_ _4"></span>signal-to-noise ratio, which <span class="_ _4"></span>was highly <span class="_ _4"></span>similar to <span class="_ _4"></span>the </div><div class="t m0 x6 h9 y44 ff2 fs6 fc1 sc0 ls0 ws0">wavelet-based <span class="_ _d"> </span>methods <span class="_ _d"> </span>denoising, <span class="_ _d"> </span>besides <span class="_ _d"> </span>a <span class="_ _d"> </span>signicant <span class="_ _d"> </span>distortion </div><div class="t m0 x6 h9 y45 ff2 fs6 fc1 sc0 ls0 ws0">reduction of the denoised waveform. The computation cost of the <span class="_ _4"></span>NLM </div><div class="t m0 x6 h9 y46 ff2 fs6 fc1 sc0 ls0 ws0">method is <span class="_ _4"></span>high <span class="_ _4"></span>because <span class="_ _4"></span>of <span class="_ _4"></span>its <span class="_ _4"></span>complexity, <span class="_ _4"></span>but <span class="_ _4"></span>it <span class="_ _4"></span>is <span class="_ _4"></span>easier <span class="_ _4"></span>to <span class="_ _4"></span>implement </div><div class="t m0 x6 h9 y47 ff2 fs6 fc1 sc0 ls0 ws0">than <span class="_ _9"> </span>the <span class="_ _8"> </span>Wavelet <span class="_ _8"> </span>transform <span class="_ _9"> </span>and <span class="_ _8"> </span>EMD <span class="_ _8"> </span>denoising <span class="_ _9"> </span>methods. <span class="_ _8"> </span><span class="fc2">[46] <span class="_ _8"> </span></span>used </div><div class="t m0 x6 h9 y48 ff2 fs6 fc1 sc0 ls0 ws0">neighborhood <span class="_ _4"></span>ltering <span class="_ _2"></span>implementations <span class="_ _4"></span>instead <span class="_ _2"></span>of <span class="_ _2"></span>the <span class="_ _4"></span>sliding <span class="_ _2"></span>window </div><div class="t m0 x6 h9 y49 ff2 fs6 fc1 sc0 ls0 ws0">scheme <span class="_ _7"></span>in <span class="_ _7"></span>a <span class="_ _c"></span>way <span class="_ _7"></span>to <span class="_ _7"></span>improve <span class="_ _7"></span>the <span class="_ _7"></span>performance <span class="_ _c"></span>of <span class="_ _7"></span>the <span class="_ _7"></span>NLM <span class="_ _7"></span>method <span class="_ _7"></span>as <span class="_ _c"></span>well </div><div class="t m0 x6 h9 y4a ff2 fs6 fc1 sc0 ls0 ws0">as <span class="_ _7"></span>in <span class="fc2">[47]</span>, <span class="_ _7"></span>where the <span class="_ _7"></span>authors <span class="_ _7"></span>used principal <span class="_ _7"></span>components <span class="_ _7"></span>analysis (PCA) </div><div class="t m0 x6 h9 y4b ff2 fs6 fc1 sc0 ls0 ws0">to achieve dimensionality reduction. </div><div class="t m0 x7 h9 y4c ff2 fs6 fc1 sc0 ls0 ws0">More recently, Qian et al. <span class="_ _4"></span><span class="fc2">[48] </span>introduced a new approach <span class="_ _4"></span>as a fast </div><div class="t m0 x6 h9 y4d ff2 fs6 fc1 sc0 ls0 ws0">ECG <span class="_ _3"> </span>signal <span class="_ _3"> </span>denoising <span class="_ _3"> </span>method, <span class="_ _0"> </span>called <span class="_ _8"> </span>as <span class="_ _3"> </span>Local <span class="_ _0"> </span>Means <span class="_ _8"> </span>(LM) <span class="_ _3"> </span>method, </div><div class="t m0 x6 h9 y4e ff2 fs6 fc1 sc0 ls0 ws0">which is basically a <span class="ff6">“</span>local search<span class="ff6">” <span class="_ _4"></span></span>or local form of the NLM method, in </div><div class="t m0 x6 h9 y4f ff2 fs6 fc1 sc0 ls0 ws0">addition <span class="_ _9"> </span>to <span class="_ _8"> </span>a <span class="_ _9"> </span>simple <span class="_ _8"> </span>method <span class="_ _9"> </span>to <span class="_ _8"> </span>determine <span class="_ _9"> </span>the <span class="_ _8"> </span>standard <span class="_ _9"> </span>deviation <span class="_ _8"> </span>of </div><div class="t m0 x6 h9 y50 ff2 fs6 fc1 sc0 ls0 ws0">additive <span class="_ _2"></span>white <span class="_ _2"></span>Gaussian <span class="_ _4"></span>noise <span class="_ _2"></span>in <span class="_ _2"></span>the <span class="_ _2"></span>ECG <span class="_ _2"></span>signal. <span class="_ _2"></span>The <span class="_ _2"></span>author <span class="_ _2"></span>also <span class="_ _2"></span>sug-</div><div class="t m0 x6 h9 y51 ff2 fs6 fc1 sc0 ls0 ws0">gested that <span class="_ _7"></span>the neighborhood half-width <span class="_ _7"></span>M which is <span class="_ _7"></span>a key parameter <span class="_ _7"></span>of </div><div class="t m0 x6 h9 y52 ff2 fs6 fc1 sc0 ls0 ws0">the <span class="_ _2"></span>NLM <span class="_ _2"></span>method <span class="_ _2"></span>is <span class="_ _2"></span>considered <span class="_ _2"></span>not <span class="_ _2"></span>to <span class="_ _2"></span>be <span class="_ _2"></span>limited <span class="_ _2"></span>to <span class="_ _2"></span>more <span class="_ _2"></span>than <span class="_ _2"></span>several </div><div class="t m0 x6 h9 y53 ff2 fs6 fc1 sc0 ls0 ws0">heartbeats <span class="_ _4"></span>which <span class="_ _4"></span>means <span class="_ _4"></span>a <span class="_ _2"></span><span class="ff6">“</span>non-local<span class="ff6">” <span class="_ _2"></span></span>search, <span class="_ _4"></span>and <span class="_ _4"></span>less <span class="_ _2"></span>than <span class="_ _4"></span>one <span class="_ _4"></span>heart-</div><div class="t m0 x6 h9 y54 ff2 fs6 fc1 sc0 ls0 ws0">beat <span class="_ _8"> </span>that <span class="_ _9"> </span>means <span class="_ _8"> </span>a <span class="_ _8"> </span><span class="ff6">“</span>local <span class="_ _8"> </span>search<span class="ff6">”</span>, <span class="_ _8"> </span>and <span class="_ _8"> </span>the <span class="_ _8"> </span>authors <span class="_ _8"> </span>reported <span class="_ _9"> </span>that <span class="_ _8"> </span>the </div><div class="t m0 x6 h9 y55 ff2 fs6 fc1 sc0 ls0 ws0">computation <span class="_ _4"></span>cost <span class="_ _2"></span>will <span class="_ _2"></span>be <span class="_ _4"></span>reduced <span class="_ _2"></span>as <span class="_ _4"></span>M <span class="_ _2"></span>decreases. <span class="_ _2"></span>Interestingly, <span class="_ _4"></span>as <span class="_ _2"></span>the </div><div class="t m0 x6 h9 y56 ff2 fs6 fc1 sc0 ls0 ws0">neighborhood <span class="_ _4"></span>width <span class="_ _4"></span>M <span class="_ _2"></span>is <span class="_ _4"></span>less <span class="_ _2"></span>than <span class="_ _4"></span>one <span class="_ _4"></span>heartbeat <span class="_ _2"></span>in <span class="_ _4"></span>ECG <span class="_ _2"></span>signal <span class="_ _4"></span>which </div><div class="t m0 x6 h9 y57 ff2 fs6 fc1 sc0 ls0 ws0">means <span class="_"> </span><span class="ff6">“</span>local <span class="_"> </span>search<span class="ff6">”</span>, <span class="_"> </span>the <span class="_"> </span>approach <span class="_"> </span>resulted <span class="_ _1"> </span>in <span class="_"> </span>about <span class="_"> </span>2 <span class="_"> </span>orders <span class="_"> </span>of </div><div class="t m0 x6 h9 y58 ff2 fs6 fc1 sc0 ls0 ws0">magnitude <span class="_ _4"></span>lower computational <span class="_ _4"></span>cost <span class="_ _4"></span>than <span class="_ _4"></span>the <span class="_ _4"></span>NLM <span class="_ _4"></span>method <span class="_ _4"></span>because <span class="_ _4"></span>of </div><div class="t m0 x6 h9 y59 ff2 fs6 fc1 sc0 ls0 ws0">the <span class="ff6">“</span>local <span class="_ _4"></span>search<span class="ff6">” <span class="_ _2"></span></span>and <span class="_ _4"></span>successfully denoised <span class="_ _4"></span>the <span class="_ _4"></span>ECG signal. <span class="_ _4"></span>Currently, </div><div class="t m0 x6 h9 y5a ff2 fs6 fc1 sc0 ls0 ws0">The Local Means (LM) has been successfully applied to denoise an ECG </div><div class="t m0 x6 h9 y5b ff2 fs6 fc1 sc0 ls0 ws0">signal <span class="_ _6"></span>with <span class="_ _6"></span>Additive <span class="_ _9"> </span>White <span class="_ _6"></span>Gaussian <span class="_ _9"> </span>noise <span class="_ _6"></span><span class="fc2">[48]</span>. <span class="_ _9"> </span>However, <span class="_ _6"></span>Results <span class="_ _6"></span>of </div><div class="t m0 x6 h9 y5c ff2 fs6 fc1 sc0 ls0 ws0">denoising <span class="_ _4"></span>performance <span class="_ _4"></span>demonstrate <span class="_ _4"></span>that <span class="_ _4"></span>the <span class="_ _4"></span>LM <span class="_ _4"></span>method <span class="_ _4"></span>is <span class="_ _4"></span>better <span class="_ _4"></span>than </div><div class="t m0 x6 h9 y5d ff2 fs6 fc1 sc0 ls0 ws0">the NLM method especially in <span class="_ _4"></span>low SNR condition. </div><div class="t m0 x7 h9 y5e ff2 fs6 fc1 sc0 ls0 ws0">In <span class="_ _3"> </span>this <span class="_ _0"> </span>paper, <span class="_ _8"> </span>in <span class="_ _0"> </span>light <span class="_ _3"> </span>of <span class="_ _3"> </span>the <span class="_ _0"> </span>above <span class="_ _3"> </span>factors <span class="_ _3"> </span>and <span class="_ _0"> </span>inspired <span class="_ _3"> </span>by <span class="_ _3"> </span>the </div><div class="t m0 x6 h9 y5f ff2 fs6 fc1 sc0 ls0 ws0">advantage <span class="_ _7"></span>of <span class="_ _7"></span>LM <span class="_ _c"></span>over <span class="_ _7"></span>NLM, <span class="_ _7"></span>we <span class="_ _7"></span>propose <span class="_ _7"></span>an <span class="_ _7"></span>hybrid <span class="_ _7"></span>denoising <span class="_ _c"></span>strategy <span class="_ _7"></span>for </div><div class="t m0 x6 h9 y60 ff2 fs6 fc1 sc0 ls0 ws0">the <span class="_ _6"></span>ECG <span class="_ _9"></span>signal <span class="_ _6"></span>based <span class="_ _6"></span>on <span class="_ _9"> </span>the <span class="_ _6"></span>decomposition <span class="_ _9"> </span>method <span class="_ _6"></span>and <span class="_ _9"> </span>local <span class="_ _6"></span>means </div><div class="t m0 x6 h9 y61 ff2 fs6 fc1 sc0 ls0 ws0">(LM). <span class="_ _4"></span>The <span class="_ _4"></span>proposed <span class="_ _2"></span>method <span class="_ _4"></span>starts <span class="_ _4"></span>by <span class="_ _4"></span>decomposing <span class="_ _2"></span>a <span class="_ _4"></span>noisy <span class="_ _4"></span>ECG <span class="_ _4"></span>signal </div><div class="t m0 x6 h9 y62 ff2 fs6 fc1 sc0 ls0 ws0">into <span class="_ _2"></span>a <span class="_ _6"></span>series <span class="_ _2"></span>of <span class="_ _6"></span>intrinsic <span class="_ _2"></span>mode <span class="_ _6"></span>functions <span class="_ _2"></span>(IMFs) <span class="_ _6"></span>using <span class="_ _2"></span>the <span class="_ _6"></span>EMD <span class="_ _2"></span>or <span class="_ _6"></span>the </div><div class="t m0 x6 h9 y63 ff2 fs6 fc1 sc0 ls0 ws0">EEMD, <span class="_ _4"></span>or <span class="_ _2"></span>into <span class="_ _4"></span>a <span class="_ _4"></span>set <span class="_ _2"></span>of <span class="_ _4"></span>detailed <span class="_ _2"></span>components <span class="_ _4"></span>and <span class="_ _2"></span>approximates <span class="_ _4"></span>compo-</div><div class="t m0 x6 h9 y64 ff2 fs6 fc1 sc0 ls0 ws0">nents <span class="_ _4"></span>of <span class="_ _2"></span>different <span class="_ _4"></span>scales <span class="_ _4"></span>using <span class="_ _2"></span>the <span class="_ _4"></span>DWT <span class="_ _2"></span>or <span class="_ _4"></span>the <span class="_ _2"></span>SWT. <span class="_ _4"></span>Then, <span class="_ _2"></span>the <span class="_ _4"></span>decom-</div><div class="t m0 x6 h9 y65 ff2 fs6 fc1 sc0 ls0 ws0">posed <span class="_ _2"></span>signal <span class="_ _4"></span>is <span class="_ _2"></span>ltered <span class="_ _2"></span>by <span class="_ _2"></span>the <span class="_ _2"></span>local <span class="_ _2"></span>means <span class="_ _2"></span>(LM). <span class="_ _2"></span>Finally, <span class="_ _2"></span>the <span class="_ _2"></span>denoised </div><div class="t m0 x6 h9 y66 ff2 fs6 fc1 sc0 ls0 ws0">ECG <span class="_ _2"></span>signal <span class="_ _6"></span>can <span class="_ _6"></span>be <span class="_ _2"></span>restored <span class="_ _6"></span>by <span class="_ _6"></span>reconstructing <span class="_ _6"></span>the <span class="_ _2"></span>ltered <span class="_ _6"></span>IMFs <span class="_ _6"></span>or <span class="_ _2"></span>the </div><div class="t m0 x6 h9 y67 ff2 fs6 fc1 sc0 ls0 ws0">detailed components and <span class="_ _7"></span>approximates components. Both <span class="_ _7"></span>the synthetic </div><div class="t m0 x6 h9 y68 ff2 fs6 fc1 sc0 ls0 ws0">and experimental <span class="_ _4"></span>ECG signals <span class="_ _4"></span>of the <span class="_ _4"></span>MIT-BIH database <span class="_ _4"></span>from physionet </div><div class="t m0 x6 h9 y69 ff2 fs6 fc1 sc0 ls0 ws0">have <span class="_ _2"></span>established <span class="_ _6"></span>the <span class="_ _2"></span>performance <span class="_ _2"></span>of <span class="_ _6"></span>the <span class="_ _2"></span>suggested <span class="_ _6"></span>approach <span class="_ _2"></span>on <span class="_ _6"></span>noise </div><div class="t m0 x6 h9 y6a ff2 fs6 fc1 sc0 ls0 ws0">reduction <span class="_ _6"></span>for <span class="_ _9"> </span>ECG <span class="_ _9"> </span>signals <span class="_ _9"> </span>by <span class="_ _6"></span>measuring <span class="_ _9"> </span>several <span class="_ _9"> </span>metrics <span class="_ _9"> </span>such <span class="_ _9"> </span>as <span class="_ _6"></span>SNR </div><div class="t m0 x6 h9 y6b ff2 fs6 fc1 sc0 ls0 ws0">improvement, <span class="_ _c"></span>signal <span class="_ _7"></span>to <span class="_ _c"></span>noise <span class="_ _7"></span>and <span class="_ _c"></span>distortion <span class="_ _7"></span>ratio <span class="_ _c"></span>(SINAD), <span class="_ _c"></span>in <span class="_ _7"></span>addition <span class="_ _c"></span>to </div><div class="t m0 x6 h9 y6c ff2 fs6 fc1 sc0 ls0 ws0">the <span class="_ _7"></span>ltered <span class="_ _7"></span>ECG <span class="_ _c"></span>signal <span class="_ _7"></span>quality <span class="_ _7"></span>measurement <span class="_ _7"></span>using <span class="_ _7"></span>Approximate <span class="_ _7"></span>entropy </div><div class="t m0 x6 h9 y6d ff2 fs6 fc1 sc0 ls0 ws0">(ApEn) <span class="_ _4"></span>and <span class="_ _4"></span>Fuzzy <span class="_ _4"></span>entropy <span class="_ _4"></span>(fuzzyEnp), <span class="_ _2"></span>in <span class="_ _4"></span>form <span class="_ _4"></span>of <span class="_ _4"></span>extensive <span class="_ _2"></span>simulation </div><div class="t m0 x6 h9 y7f ff2 fs6 fc1 sc0 ls0 ws0">studies <span class="_ _4"></span>on <span class="_ _4"></span>real <span class="_ _2"></span>and <span class="_ _4"></span>random <span class="_ _4"></span>noise <span class="_ _2"></span>corrupted <span class="_ _4"></span>ECG <span class="_ _2"></span>signals <span class="_ _4"></span>as <span class="_ _4"></span>detailed <span class="_ _4"></span>in </div><div class="t m0 x6 h9 y80 ff2 fs6 fc2 sc0 ls0 ws0">Fig. <span class="_ _c"></span>1<span class="fc1">. <span class="_ _7"></span>The <span class="_ _c"></span>methods <span class="_ _7"></span>we <span class="_ _c"></span>used <span class="_ _7"></span>for <span class="_ _c"></span>decomposition <span class="_ _c"></span>are <span class="_ _7"></span>the <span class="_ _c"></span>DWT, <span class="_ _7"></span>SWT, <span class="_ _c"></span>EMD, </span></div><div class="t m0 x6 h9 y81 ff2 fs6 fc1 sc0 ls0 ws0">and the best candidate <span class="_ _4"></span>is the EEMD. </div><div class="t m0 x6 h9 y82 ff5 fs6 fc1 sc0 ls0 ws0">4.<span class="_ _b"> </span>Proposed methodology </div><div class="t m0 x7 h9 y83 ff2 fs6 fc1 sc0 ls0 ws0">For <span class="_ _7"></span>a <span class="_ _7"></span>given <span class="_ _7"></span>signal <span class="_ _7"></span>x <span class="_ _7"></span>with <span class="_ _7"></span>a <span class="_ _7"></span>set of <span class="_ _c"></span>additive noise <span class="_ _7"></span>n <span class="_ _7"></span>we <span class="_ _7"></span>have; <span class="_ _7"></span>v <span class="_ _7"></span><span class="ff4">=<span class="_ _3"> </span><span class="ff2">x </span>+<span class="_ _3"></span><span class="ff2">n. </span></span></div><div class="t m0 x6 h9 y74 ff3 fs6 fc1 sc0 ls0 ws0">4.1.<span class="_ _b"> </span>Discrete <span class="_ _4"></span>Wavelet <span class="_ _4"></span>Transform <span class="_ _4"></span>(DWT) <span class="_ _4"></span>and <span class="_ _4"></span>Stationary <span class="_ _2"></span>Wavelet </div><div class="t m0 x6 h9 y75 ff3 fs6 fc1 sc0 ls0 ws0">Transform <span class="_ _4"></span>(SWT) </div><div class="t m0 x7 h9 y77 ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _4"></span>DWT <span class="_ _4"></span>operates <span class="_ _4"></span>on <span class="_ _4"></span>wavelets <span class="_ _2"></span>that <span class="_ _4"></span>are <span class="_ _4"></span>discretely <span class="_ _4"></span>sampled <span class="_ _4"></span>and <span class="_ _4"></span>are </div><div class="t m0 x6 h9 y78 ff2 fs6 fc1 sc0 ls0 ws0">calculated, <span class="_ _0"> </span>after <span class="_ _3"> </span>choosing <span class="_"> </span>the <span class="_ _3"> </span>mother <span class="_"> </span>wavelet <span class="_ _3"> </span>(Morlet, <span class="_ _0"> </span>Daubechies, </div><div class="t m0 x6 h9 y79 ff2 fs6 fc1 sc0 ls0 ws0">Haar, <span class="_ _7"></span>etc), <span class="_ _c"></span>by-passing <span class="_ _7"></span>a <span class="_ _c"></span>signal <span class="_ _7"></span>through <span class="_ _7"></span>a <span class="_ _c"></span>collection <span class="_ _7"></span>of <span class="_ _7"></span>low-pass <span class="_ _c"></span>and <span class="_ _7"></span>high- </div><div class="t m0 x6 h9 y7a ff2 fs6 fc1 sc0 ls0 ws0">pass <span class="_ _4"></span>lters <span class="_ _4"></span>followed <span class="_ _4"></span>by <span class="_ _4"></span>down-sampling <span class="_ _2"></span>(by <span class="_ _4"></span>the <span class="_ _4"></span>factor <span class="_ _4"></span>of <span class="_ _4"></span>2) <span class="_ _2"></span>in <span class="_ _4"></span>order <span class="_ _4"></span>to </div><div class="t m0 x6 h9 y7b ff2 fs6 fc1 sc0 ls0 ws0">decompose <span class="_ _6"></span>a <span class="_ _6"></span>signal <span class="_ _6"></span>into <span class="_ _9"> </span>a <span class="_ _6"></span>set <span class="_ _6"></span>of <span class="_ _9"> </span>detailed <span class="_ _6"></span>components <span class="_ _6"></span>produced <span class="_ _6"></span>by <span class="_ _9"> </span>a </div><div class="t m0 x6 h9 y7c ff2 fs6 fc1 sc0 ls0 ws0">high-pass <span class="_ _7"></span>lter <span class="_ _7"></span>and <span class="_ _c"></span>approximates <span class="_ _7"></span>components <span class="_ _7"></span>produced <span class="_ _7"></span>by <span class="_ _7"></span>the <span class="_ _c"></span>low-pass </div><div class="t m0 x6 h9 y7d ff2 fs6 fc1 sc0 ls0 ws0">lter <span class="_ _2"></span>of <span class="_ _6"></span>different <span class="_ _6"></span>scales. <span class="_ _6"></span>The <span class="_ _6"></span>approximation <span class="_ _6"></span>coefcients <span class="_ _6"></span>represent <span class="_ _6"></span>the </div><div class="t m0 x2 h7 y84 ff3 fs4 fc1 sc0 ls0 ws0">M. <span class="_ _4"></span>Sraitih <span class="_ _4"></span>and Y. <span class="_ _4"></span>Jabrane </div><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a></div><div class="pi" data-data='{"ctm":[1.612697,0.000000,0.000000,1.612697,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/624fc05374bc5c0105516772/bg3.jpg"><div class="c x0 y1 w0 h2"><div class="t m0 xc hc y3d ff8 fs8 fc1 sc0 ls0 ws0">Biomedical<span class="_ _3"> </span>Signal<span class="_ _0"> </span>Processing<span class="_ _3"> </span>and<span class="_ _0"> </span>Control<span class="_ _3"> </span>69<span class="_ _0"> </span>(2021)<span class="_ _3"> </span>102903</div><div class="t m0 xd hc y3e ff1 fs8 fc1 sc0 ls0 ws0">3</div></div><div class="t m0 x2 h9 y85 ff2 fs6 fc1 sc0 ls0 ws0">low-frequency <span class="_ _2"></span>part <span class="_ _6"></span>of <span class="_ _2"></span>the <span class="_ _6"></span>signal <span class="_ _6"></span>containing <span class="_ _2"></span>the <span class="_ _6"></span>main <span class="_ _2"></span>features <span class="_ _6"></span>and <span class="_ _6"></span>in-</div><div class="t m0 x2 h9 y86 ff2 fs6 fc1 sc0 ls0 ws0">formation. <span class="_ _0"> </span>Detail <span class="_ _3"> </span>coefcients <span class="_"> </span>are <span class="_ _3"> </span>important <span class="_"> </span>to <span class="_ _3"> </span>preserve <span class="_ _0"> </span>the <span class="_ _3"> </span>perfect </div><div class="t m0 x2 h9 y87 ff2 fs6 fc1 sc0 ls0 ws0">shape <span class="_ _6"></span>when <span class="_ _6"></span>reconstruction <span class="_ _6"></span>is <span class="_ _6"></span>processed. <span class="_ _9"> </span>To <span class="_ _6"></span>achieve <span class="_ _6"></span>the <span class="_ _6"></span>multilevel <span class="_ _6"></span>of </div><div class="t m0 x2 h9 y88 ff2 fs6 fc1 sc0 ls0 ws0">decomposition, <span class="_ _7"></span>the <span class="_ _7"></span>output <span class="_ _7"></span>of <span class="_ _7"></span>the <span class="_ _7"></span>approximation <span class="_ _7"></span>coefcients are <span class="_ _c"></span>divided </div><div class="t m0 x2 h9 y89 ff2 fs6 fc1 sc0 ls0 ws0">into <span class="_ _7"></span>new <span class="_ _c"></span>approximation <span class="_ _7"></span>and <span class="_ _7"></span>details <span class="_ _c"></span>coefcients <span class="_ _7"></span>by <span class="_ _7"></span>the <span class="_ _c"></span>same <span class="_ _7"></span>process, <span class="_ _c"></span>the </div><div class="t m0 x2 h9 y8a ff2 fs6 fc1 sc0 ls0 ws0">outputs <span class="_ _6"></span>then <span class="_ _2"></span>used <span class="_ _6"></span>for <span class="_ _6"></span>signal <span class="_ _6"></span>ltering. <span class="_ _2"></span>The <span class="_ _6"></span>inverse <span class="_ _6"></span>wavelet <span class="_ _6"></span>transforms </div><div class="t m0 x2 h9 y8b ff2 fs6 fc1 sc0 ls0 ws0">(IDWT) <span class="_ _7"></span>or <span class="_ _7"></span>discrete <span class="_ _7"></span>wavelet <span class="_ _7"></span>rebuilding has <span class="_ _c"></span>an identical <span class="_ _7"></span>construction, <span class="_ _7"></span>but </div><div class="t m0 x2 h9 y8c ff2 fs6 fc1 sc0 ls0 ws0">the <span class="_ _7"></span>down-sampling <span class="_ _7"></span>is <span class="_ _7"></span>replaced <span class="_ _7"></span>by <span class="_ _7"></span>an <span class="_ _7"></span>up-sampling. <span class="_ _7"></span>The <span class="_ _7"></span>SWT <span class="_ _7"></span>is <span class="_ _7"></span>similar <span class="_ _7"></span>to </div><div class="t m0 x2 h9 y8d ff2 fs6 fc1 sc0 ls0 ws0">the <span class="_ _c"></span>classical <span class="_ _7"></span>discrete <span class="_ _c"></span>wavelet <span class="_ _7"></span>(DWT) <span class="_ _c"></span>except <span class="_ _7"></span>the <span class="_ _c"></span>signal <span class="_ _7"></span>is <span class="_ _c"></span>not <span class="_ _c"></span>sub-sampled </div><div class="t m0 x2 h9 y8e ff2 fs6 fc1 sc0 ls0 ws0">and <span class="_ _4"></span>instead; <span class="_ _4"></span>the <span class="_ _4"></span>lters <span class="_ _2"></span>are <span class="_ _4"></span>up-sampled <span class="_ _4"></span>at <span class="_ _4"></span>each <span class="_ _2"></span>level <span class="_ _4"></span>of <span class="_ _4"></span>decomposition. </div><div class="t m0 x2 h9 y8f ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _6"></span>choice <span class="_ _9"> </span>of <span class="_ _6"></span>a <span class="_ _9"> </span>wavelet <span class="_ _6"></span>basis <span class="_ _9"> </span>function <span class="_ _9"></span>represents <span class="_ _6"></span>a <span class="_ _6"></span>critical <span class="_ _9"> </span>aspect <span class="_ _6"></span>in </div><div class="t m0 x2 h9 y90 ff2 fs6 fc1 sc0 ls0 ws0">denoising <span class="_"> </span>performance <span class="_ _0"> </span><span class="fc2">[49]</span>. <span class="_ _0"> </span>Daubechies <span class="_ _3"> </span>6 <span class="_"> </span>(D6) <span class="_"> </span>of <span class="_ _3"> </span>the <span class="_"> </span>Daubechies </div><div class="t m0 x2 h9 y91 ff2 fs6 fc1 sc0 ls0 ws0">family <span class="_ _4"></span>are <span class="_ _4"></span>similar <span class="_ _4"></span>in <span class="_ _4"></span>shape <span class="_ _4"></span>to <span class="_ _2"></span>the <span class="_ _4"></span>QRS <span class="_ _4"></span>complex <span class="_ _4"></span>and <span class="_ _4"></span>their <span class="_ _4"></span>energy <span class="_ _4"></span>spec-</div><div class="t m0 x2 h9 y92 ff2 fs6 fc1 sc0 ls0 ws0">trum <span class="_ _7"></span>is <span class="_ _c"></span>concentrated <span class="_ _7"></span>around <span class="_ _c"></span>low <span class="_ _7"></span>frequencies <span class="_ _c"></span>Therefore, <span class="_ _7"></span>we <span class="_ _c"></span>selected <span class="_ _7"></span>Db6 </div><div class="t m0 x2 h9 y93 ff2 fs6 fc1 sc0 ls0 ws0">as <span class="_ _4"></span>a <span class="_ _4"></span>wavelet <span class="_ _4"></span>function <span class="_ _2"></span>for <span class="_ _4"></span>both <span class="_ _4"></span>methods <span class="_ _4"></span>DWT <span class="_ _2"></span>and <span class="_ _4"></span>SWT <span class="_ _4"></span>with <span class="_ _4"></span>decompo-</div><div class="t m0 x2 h9 y94 ff2 fs6 fc1 sc0 ls0 ws0">sition <span class="_ _4"></span>levels <span class="_ _2"></span>12 <span class="_ _4"></span>and <span class="_ _2"></span>4 <span class="_ _4"></span>respectively, <span class="_ _2"></span>in <span class="_ _2"></span>decomposing <span class="_ _4"></span>the <span class="_ _2"></span>ECG <span class="_ _4"></span>signal <span class="_ _2"></span>for </div><div class="t m0 x2 h9 y95 ff2 fs6 fc1 sc0 ls0 ws0">the ltering process in this <span class="_ _4"></span>paper. </div><div class="t m0 x2 h9 y96 ff3 fs6 fc1 sc0 ls0 ws0">4.2.<span class="_ _b"> </span>Empirical <span class="_ _4"></span>mode <span class="_ _4"></span>decomposition <span class="_ _4"></span>EMD <span class="_ _4"></span>and <span class="_ _2"></span>enesmble <span class="_ _4"></span>EMD </div><div class="t m0 x5 h9 y97 ff2 fs6 fc1 sc0 ls0 ws0">Huang <span class="_ _9"> </span>et <span class="_ _8"> </span>al. <span class="_ _8"> </span><span class="fc2">[31]</span>Proposed <span class="_ _9"> </span>a <span class="_ _8"> </span>new <span class="_ _8"> </span>approach <span class="_ _9"> </span>named <span class="_ _8"> </span>the <span class="_ _8"> </span>empirical </div><div class="t m0 x2 h9 y98 ff2 fs6 fc1 sc0 ls0 ws0">mode <span class="_ _0"> </span>decomposition <span class="_ _0"> </span>(EMD) <span class="_ _0"> </span>to <span class="_ _0"> </span>decompose <span class="_ _0"> </span>the <span class="_ _0"> </span>signal <span class="_ _0"> </span>into <span class="_ _3"> </span>multiple </div><div class="t m0 x2 h9 y99 ff2 fs6 fc1 sc0 ls0 ws0">components. Each <span class="_ _7"></span>component contains noise <span class="_ _7"></span>and effective information. </div><div class="t m0 x2 h9 y9a ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _2"></span>multiple <span class="_ _2"></span>components <span class="_ _4"></span>considered <span class="_ _2"></span>as <span class="_ _2"></span>a <span class="_ _2"></span>sum <span class="_ _2"></span>of <span class="_ _2"></span>intrinsic <span class="_ _2"></span>mode <span class="_ _2"></span>func-</div><div class="t m0 x2 h9 y9b ff2 fs6 fc1 sc0 ls0 ws0">tions <span class="_ _6"></span>(IMFs). <span class="_ _9"></span>All <span class="_ _6"></span>the <span class="_ _6"></span>local <span class="_ _9"> </span>maxima <span class="_ _6"></span>and <span class="_ _6"></span>minima <span class="_ _9"> </span>dene <span class="_ _6"></span>an <span class="_ _9"> </span>IMF, <span class="_ _6"></span>being </div><div class="t m0 x2 h9 y9c ff2 fs6 fc1 sc0 ls0 ws0">symmetrical <span class="_ _6"></span>regarding <span class="_ _9"> </span>zero. <span class="_ _9"> </span>Similar <span class="_ _6"></span>to <span class="_ _9"> </span>the <span class="_ _9"> </span>simple <span class="_ _9"> </span>harmonic <span class="_ _6"></span>function </div><div class="t m0 x2 h9 y9d ff2 fs6 fc1 sc0 ls0 ws0">used in <span class="_ _4"></span>Fourier analysis, <span class="_ _4"></span>the IMF <span class="_ _4"></span>illustrates <span class="_ _4"></span>a basic <span class="_ _4"></span>oscillatory mode <span class="_ _4"></span>in </div><div class="t m0 x2 h9 y9e ff2 fs6 fc1 sc0 ls0 ws0">the EMD <span class="_ _7"></span>analysis. We <span class="_ _7"></span>can summarize the <span class="_ _7"></span>process of <span class="_ _7"></span>the EMD <span class="_ _7"></span>algorithm </div><div class="t m0 x2 h9 y9f ff2 fs6 fc1 sc0 ls0 ws0">as follows: </div><div class="t m0 xe h9 ya0 ff2 fs6 fc1 sc0 ls0 ws0">1. <span class="_ _9"> </span>Identify all extrema of <span class="_ _4"></span>signal v(t); </div><div class="t m0 xe h9 ya1 ff2 fs6 fc1 sc0 ls0 ws0">2. <span class="_ _9"> </span>Interpolate <span class="_ _1"> </span>between <span class="_ _1"> </span>minima <span class="_"> </span>(resp. <span class="_ _1"> </span>maxima) <span class="_ _1"> </span>with <span class="_ _1"> </span>cubic <span class="_"> </span>spline, </div><div class="t m0 x5 h9 ya2 ff2 fs6 fc1 sc0 ls0 ws0">ending <span class="_ _8"> </span>up <span class="_ _3"> </span>with <span class="_ _8"> </span>envelope <span class="_ _8"> </span>emin(t) <span class="_ _3"> </span>(resp. <span class="_ _8"> </span>emax(t)) <span class="_ _3"> </span>(the <span class="_ _8"> </span>lower <span class="_ _3"> </span>and </div><div class="t m0 x5 h9 ya3 ff2 fs6 fc1 sc0 ls0 ws0">upper envelopes); </div><div class="t m0 xe h9 ya4 ff2 fs6 fc1 sc0 ls0 ws0">3. <span class="_ _9"> </span>Compute the mean m(t) <span class="_ _4"></span><span class="ff4">=<span class="_ _f"> </span></span>(emin(t) <span class="ff4">+<span class="_ _f"> </span></span>emax(t))/2; </div><div class="t m0 xe h9 ya5 ff2 fs6 fc1 sc0 ls0 ws0">4. <span class="_ _9"> </span>Extract the detail d(t) <span class="_ _4"></span><span class="ff4">=<span class="_ _f"> </span></span>v(t) - m(t); </div><div class="t m0 xe h9 ya6 ff2 fs6 fc1 sc0 ls0 ws0">5. <span class="_ _9"> </span>Iterate on the <span class="_ _4"></span>residual m(t). </div><div class="t m0 x5 h9 ya7 ff2 fs6 fc1 sc0 ls0 ws0">If <span class="_ _6"></span>m(t) <span class="_ _9"> </span>becomes <span class="_ _9"> </span>a <span class="_ _6"></span>constant <span class="_ _9"> </span>or <span class="_ _9"> </span>monotonic <span class="_ _6"></span>function, <span class="_ _9"> </span>the <span class="_ _9"> </span>process <span class="_ _6"></span>of </div><div class="t m0 x2 h9 ya8 ff2 fs6 fc1 sc0 ls0 ws0">decomposing the <span class="_ _4"></span>signal into <span class="_ _4"></span>IMFs <span class="_ _4"></span>is terminated. <span class="_ _4"></span>At <span class="_ _4"></span>this point <span class="_ _4"></span>a certain </div><div class="t m0 x2 h9 ya9 ff2 fs6 fc1 sc0 ls0 ws0">number <span class="_ _4"></span>of <span class="_ _4"></span>N <span class="_ _4"></span>IMFS <span class="_ _4"></span>have <span class="_ _4"></span>been <span class="_ _4"></span>extracted, <span class="_ _2"></span>and <span class="_ _4"></span>the <span class="_ _4"></span>original <span class="_ _4"></span>signal <span class="_ _4"></span>can <span class="_ _4"></span>be </div><div class="t m0 x2 h9 yaa ff2 fs6 fc1 sc0 ls0 ws0">then reconstructed by superposing the <span class="_ _4"></span>obtained IMFs: </div><div class="t m0 x2 hd yab ff9 fs6 fc1 sc0 ls0 ws0">v<span class="ff4">(</span>t<span class="ff4">)<span class="_ _f"> </span>=</span></div><div class="t m0 xf he yac ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x10 hf yad ff9 fs9 fc1 sc0 ls0 ws0">N</div><div class="t m0 x11 h10 yae ff9 fs9 fc1 sc0 ls0 ws0">i<span class="ff4">=<span class="ff6">1</span></span></div><div class="t m0 x12 h11 yaf ff9 fs6 fc1 sc0 ls0 ws0">IMF</div><div class="t m0 x13 hf yb0 ff9 fs9 fc1 sc0 ls0 ws0">i</div><div class="t m0 x14 hd yaf ff4 fs6 fc1 sc0 ls0 ws0">(<span class="ff9">t</span>)<span class="_ _8"></span>+<span class="_ _9"></span><span class="ff9">r</span></div><div class="t m0 x15 hf yb0 ff9 fs9 fc1 sc0 ls0 ws0">N</div><div class="t m0 x16 h9 yaf ff4 fs6 fc1 sc0 ls0 ws0">(<span class="ff9">t</span>)<span class="ffb">,<span class="_ _10"> </span><span class="ff2">(1) </span></span></div><div class="t m0 x2 h9 yb1 ff2 fs6 fc1 sc0 ls0 ws0">where <span class="_ _9"> </span><span class="ff3">r</span></div><div class="t m0 x17 h12 yb2 ff3 fsa fc1 sc0 ls0 ws0">N</div><div class="t m0 x18 h9 yb3 ff4 fs6 fc1 sc0 ls0 ws0">(<span class="ff3">t</span>)<span class="_ _a"> </span><span class="ff2">is <span class="_ _9"> </span>the <span class="_ _8"> </span>residue <span class="_ _8"> </span>after <span class="_ _9"> </span>the <span class="_ _9"> </span>extraction <span class="_ _8"> </span>of <span class="_ _8"> </span><span class="ff3">IMF</span></span></div><div class="t m0 x19 h12 yb2 ff3 fsa fc1 sc0 ls0 ws0">N </div><div class="t m0 x1a h9 yb3 ff2 fs6 fc1 sc0 ls0 ws0">and <span class="_ _9"> </span>N <span class="_ _8"> </span>is <span class="_ _9"> </span>the </div><div class="t m0 x2 h9 yb4 ff2 fs6 fc1 sc0 ls0 ws0">number of IMFs, i.e. <span class="_ _4"></span>the signal is decomposed into <span class="_ _4"></span>(M-1) IMFs and one </div><div class="t m0 x2 h9 yb5 ff2 fs6 fc1 sc0 ls0 ws0">residual. </div><div class="t m0 x5 h9 yb6 ff2 fs6 fc1 sc0 ls0 ws0">Unfortunately, <span class="_ _2"></span>The <span class="_ _2"></span>EMD <span class="_ _4"></span>decomposition <span class="_ _2"></span>has <span class="_ _2"></span>the <span class="_ _2"></span>weakness <span class="_ _2"></span>of <span class="_ _2"></span>mode </div><div class="t m0 x2 h9 yb7 ff2 fs6 fc1 sc0 ls0 ws0">mixing, <span class="_ _2"></span>presented <span class="_ _2"></span>as <span class="_ _2"></span>a <span class="_ _2"></span>single <span class="_ _4"></span>IMF <span class="_ _2"></span>either <span class="_ _2"></span>containing <span class="_ _2"></span>signals <span class="_ _2"></span>of <span class="_ _2"></span>broadly </div><div class="t m0 x2 h9 yb8 ff2 fs6 fc1 sc0 ls0 ws0">unequal <span class="_ _2"></span>scales, <span class="_ _6"></span>or <span class="_ _6"></span>a <span class="_ _2"></span>signal <span class="_ _6"></span>of <span class="_ _6"></span>a <span class="_ _2"></span>similar <span class="_ _6"></span>scale <span class="_ _2"></span>existing <span class="_ _6"></span>in <span class="_ _6"></span>different <span class="_ _2"></span>IMF </div><div class="t m0 x2 h9 yb9 ff2 fs6 fc1 sc0 ls0 ws0">components. <span class="_ _7"></span>This leads <span class="_ _7"></span>to <span class="_ _7"></span>the mixing <span class="_ _7"></span>of <span class="_ _7"></span>higher-order <span class="_ _7"></span>segments with <span class="_ _7"></span>the </div><div class="t m0 x2 h9 yba ff2 fs6 fc1 sc0 ls0 ws0">lower order components. A <span class="_ _4"></span>new analysis approach called the <span class="_ _4"></span>ensemble </div><div class="t m0 x2 h9 ybb ff2 fs6 fc1 sc0 ls0 ws0">empirical <span class="_"> </span>mode <span class="_ _3"> </span>decomposition <span class="_"> </span>(EEMD) <span class="_ _3"> </span>alleviates <span class="_"> </span>the <span class="_ _0"> </span>mode <span class="_ _0"> </span>mixing </div><div class="t m0 x2 h9 ybc ff2 fs6 fc1 sc0 ls0 ws0">problem, <span class="_ _c"></span>by <span class="_ _7"></span>adding <span class="_ _c"></span>white <span class="_ _7"></span>noise <span class="_ _c"></span>to <span class="_ _c"></span>the <span class="_ _7"></span>signal <span class="_ _c"></span>to <span class="_ _7"></span>cover <span class="_ _c"></span>uniformly <span class="_ _c"></span>different </div><div class="t m0 x2 h9 ybd ff2 fs6 fc1 sc0 ls0 ws0">scales <span class="_"> </span>of <span class="_"> </span>the <span class="_"> </span>signal <span class="_"> </span>during <span class="_"> </span>the <span class="_"> </span>decomposition, <span class="_"> </span>then <span class="_"> </span>calculates <span class="_"> </span>the </div><div class="t m0 x2 h9 ybe ff2 fs6 fc1 sc0 ls0 ws0">average after <span class="_ _7"></span>many times <span class="_ _7"></span>decomposing. We can <span class="_ _7"></span>summarize this <span class="_ _7"></span>process </div><div class="t m0 x2 h9 ybf ff2 fs6 fc1 sc0 ls0 ws0">as: </div><div class="t m0 x1b h9 yc0 ff2 fs6 fc1 sc0 ls0 ws0">1. <span class="_ _9"> </span>White noise <span class="_ _7"></span>is added <span class="_ _7"></span>to the <span class="_ _7"></span>acquired data <span class="_ _7"></span>v(t), <span class="ff3">y</span></div><div class="t m0 x1c h12 yc1 ff3 fsa fc1 sc0 ls0 ws0">n</div><div class="t m0 x1d h9 y85 ff4 fs6 fc1 sc0 ls0 ws0">=<span class="_ _0"> </span><span class="ff3">V</span></div><div class="t m0 x1e h12 yc1 ff3 fsa fc1 sc0 ls0 ws0">n</div><div class="t m0 x1f h9 y85 ff4 fs6 fc1 sc0 ls0 ws0">(<span class="ff3">t</span>)<span class="_ _8"></span>+<span class="ff3">u</span>(<span class="ff3">t<span class="_ _4"></span></span>)<span class="_ _0"> </span><span class="ff2">for n </span></div><div class="t m0 x7 h9 y86 ff4 fs6 fc1 sc0 ls0 ws0">=<span class="_ _f"> </span><span class="ff2">1, 2, <span class="ff6">…</span>,N, with N the <span class="_ _4"></span>ensemble number; </span></div><div class="t m0 x1b h9 y87 ff2 fs6 fc1 sc0 ls0 ws0">2. <span class="_ _9"> </span>The data with <span class="_ _4"></span>added white noise is <span class="_ _4"></span>decomposed into IMFs; </div><div class="t m0 x1b h9 y88 ff2 fs6 fc1 sc0 ls0 ws0">3. <span class="_ _9"> </span>Step 1 and step 2 are repeated many times with <span class="_ _7"></span>various white noise </div><div class="t m0 x7 h9 y89 ff2 fs6 fc1 sc0 ls0 ws0">set every time; </div><div class="t m0 x1b h9 y8a ff2 fs6 fc1 sc0 ls0 ws0">4. <span class="_ _9"> </span>The <span class="_ _7"></span>(ensemble) average <span class="_ _7"></span>of <span class="_ _7"></span>corresponding <span class="_ _7"></span>IMFs <span class="_ _7"></span>of <span class="_ _7"></span>the <span class="_ _7"></span>decomposition </div><div class="t m0 x7 h9 y8b ff2 fs6 fc1 sc0 ls0 ws0">are <span class="_ _c"></span>obtained <span class="_ _7"></span>at <span class="_ _c"></span>the <span class="_ _c"></span>end <span class="_ _7"></span>by <span class="_ _c"></span>averaging <span class="_ _c"></span>the <span class="_ _7"></span>total <span class="_ _c"></span>i <span class="_ _c"></span>IMF <span class="_ _7"></span>related <span class="_ _c"></span>to <span class="_ _c"></span>K <span class="_ _7"></span>trials: </div><div class="t m0 x20 h11 yc2 ff9 fs6 fc1 sc0 ls0 ws0">IMF</div><div class="t m0 x21 hf yc3 ff9 fs9 fc1 sc0 ls0 ws0">aver</div><div class="t m0 x21 hf yc4 ff9 fs9 fc1 sc0 ls0 ws0">m</div><div class="t m0 x22 hd yc5 ff4 fs6 fc1 sc0 ls0 ws0">(<span class="ff9">t</span>)<span class="_ _f"> </span>=</div><div class="t m0 x23 h11 yc6 ff6 fs6 fc1 sc0 ls0 ws0">1</div><div class="t m0 x24 h11 yc7 ff9 fs6 fc1 sc0 ls0 ws0">N</div><div class="t m0 x25 he yc8 ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x26 hf yc9 ff9 fs9 fc1 sc0 ls0 ws0">N</div><div class="t m0 x27 h10 yca ff9 fs9 fc1 sc0 ls0 ws0">i<span class="ff4">=<span class="ff6">1</span></span></div><div class="t m0 x28 h11 yc5 ff9 fs6 fc1 sc0 ls0 ws0">IMF</div><div class="t m0 x29 hf yc3 ff9 fs9 fc1 sc0 ls0 ws0">n</div><div class="t m0 x29 hf yc4 ff9 fs9 fc1 sc0 ls0 ws0">m</div><div class="t m0 x2a h9 yc5 ff4 fs6 fc1 sc0 ls0 ws0">(<span class="ff9">t</span>)<span class="ffb">.<span class="_ _11"> </span><span class="ff2">(2) </span></span></div><div class="t m0 x7 h9 ycb ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _9"> </span>original <span class="_ _9"> </span>signal <span class="_ _9"> </span>can <span class="_ _9"> </span>be <span class="_ _9"> </span>then <span class="_ _9"> </span>reconstructed <span class="_ _9"> </span>by <span class="_ _9"> </span>superposing <span class="_ _9"> </span>the </div><div class="t m0 x6 h9 ycc ff2 fs6 fc1 sc0 ls0 ws0">extracted <span class="_ _c"></span>IMFs <span class="_ _7"></span>as <span class="_ _c"></span>previously. <span class="_ _7"></span>The <span class="_ _c"></span>results <span class="_ _7"></span>generated <span class="_ _c"></span>by <span class="_ _7"></span>the <span class="_ _c"></span>EEMD <span class="_ _c"></span>depend </div><div class="t m0 x6 h9 ycd ff2 fs6 fc1 sc0 ls0 ws0">on the decision of the <span class="_ _7"></span>ensemble quantity N and the amplitude of <span class="_ _7"></span>added </div><div class="t m0 x6 h9 yce ff2 fs6 fc1 sc0 ls0 ws0">noise A. The following relation <span class="_ _4"></span>should be satised as <span class="_ _4"></span>shown by <span class="fc2">[50]</span>: </div><div class="t m0 x6 hd ycf ffc fs6 fc1 sc0 ls0 ws0">∊<span class="_"> </span><span class="ff4">=</span></div><div class="t m0 x2b h11 yd0 ff9 fs6 fc1 sc0 ls0 ws0">A</div><div class="t m0 x2c he yd1 ffa fs6 fc1 sc0 ls0 ws0"><span class="_ _c"></span></div><div class="t m0 x2c h11 yd2 ff9 fs6 fc1 sc0 ls0 ws0">N</div><div class="t m0 x2d hd yd1 ff4 fs6 fc1 sc0 ls0 ws0">√</div><div class="t m0 x2e h9 yd3 ffb fs6 fc1 sc0 ls0 ws0">,<span class="_ _12"> </span><span class="ff2">(3) </span></div><div class="t m0 x6 h9 yd4 ff2 fs6 fc1 sc0 ls0 ws0">where <span class="ffc">∊ <span class="_ _4"></span></span>is <span class="_ _4"></span>the <span class="_ _4"></span>nal standard <span class="_ _4"></span>deviation of <span class="_ _4"></span>error measured <span class="_ _4"></span>as <span class="_ _4"></span>the differ-</div><div class="t m0 x6 h9 yd5 ff2 fs6 fc1 sc0 ls0 ws0">ence <span class="_ _7"></span>between the <span class="_ _7"></span>original <span class="_ _7"></span>signal and <span class="_ _7"></span>the <span class="_ _7"></span>sum of <span class="_ _7"></span>the <span class="_ _7"></span>IMFs <span class="_ _7"></span>resulting from </div><div class="t m0 x6 h9 yd6 ff2 fs6 fc1 sc0 ls0 ws0">the EEMD. <span class="_ _4"></span>Unlike <span class="_ _4"></span>the <span class="_ _4"></span>wavelet transforms, <span class="_ _4"></span>the <span class="_ _4"></span>EMD and <span class="_ _4"></span>EEMD <span class="_ _4"></span>decom-</div><div class="t m0 x6 h9 yd7 ff2 fs6 fc1 sc0 ls0 ws0">position <span class="_ _9"> </span>does <span class="_ _9"> </span>not <span class="_ _9"> </span>require <span class="_ _8"> </span>a <span class="_ _9"> </span>selection <span class="_ _9"> </span>of <span class="_ _9"> </span>a <span class="_ _8"> </span>basis <span class="_ _9"> </span>function, <span class="_ _9"> </span>except <span class="_ _9"> </span>two </div><div class="t m0 x6 h9 yd8 ff2 fs6 fc1 sc0 ls0 ws0">parameters for EEMD, which are <span class="ffc">∊ </span>equals 0.2 as a ratio of the standard </div><div class="t m0 x6 h9 yd9 ff2 fs6 fc1 sc0 ls0 ws0">deviation, and the ensemble number <span class="_ _4"></span>N equals 70. </div><div class="t m0 x6 h9 yda ff3 fs6 fc1 sc0 ls0 ws0">4.3.<span class="_ _b"> </span>Denoising <span class="_ _4"></span>method: <span class="_ _4"></span>non-local <span class="_ _4"></span>means <span class="_ _4"></span>ltering </div><div class="t m0 x7 h9 ydb ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _2"></span>non-local <span class="_ _6"></span>means <span class="_ _6"></span>ltering <span class="_ _2"></span>has <span class="_ _6"></span>been <span class="_ _2"></span>adopted <span class="_ _6"></span>by <span class="_ _6"></span>several <span class="_ _2"></span>studies </div><div class="t m0 x6 h9 ydc ff2 fs6 fc2 sc0 ls0 ws0">[46,44,51,45] <span class="fc1">to increase the cleaning of the <span class="_ _4"></span>signal disturbed by noise. </span></div><div class="t m0 x6 h9 ydd ff2 fs6 fc1 sc0 ls0 ws0">The <span class="_ _7"></span>value <span class="_ _7"></span>of <span class="_ _7"></span>the <span class="_ _7"></span>estimated <span class="_ _c"></span>signal x <span class="_ _c"></span>at <span class="_ _7"></span>a <span class="_ _7"></span>site <span class="_ _7"></span>s <span class="_ _7"></span>is <span class="_ _7"></span>a <span class="_ _7"></span>weighted <span class="_ _7"></span>sum <span class="_ _7"></span>of <span class="_ _7"></span>values </div><div class="t m0 x6 h9 yde ff2 fs6 fc1 sc0 ls0 ws0">at other <span class="_ _4"></span>points t <span class="_ _4"></span>that are within <span class="_ _4"></span>the interval <span class="_ _4"></span>of some <span class="_ _4"></span><span class="ff6">“</span>search <span class="_ _4"></span>neighbor-</div><div class="t m0 x6 h9 ydf ff2 fs6 fc1 sc0 ls0 ws0">hood<span class="ff6">” <span class="_ _4"></span></span>N (s). </div><div class="t m0 x6 hd ye0 ffa fs6 fc1 sc0 ls0 ws0"><span class="_ _13"></span><span class="ff9">x<span class="_ _4"></span><span class="ff4">(</span>s<span class="ff4">)<span class="_ _f"> </span>=</span></span></div><div class="t m0 x2f h11 ye1 ff6 fs6 fc1 sc0 ls0 ws0">1</div><div class="t m0 x30 hd ye2 ff9 fs6 fc1 sc0 ls0 ws0">Z<span class="_ _4"></span><span class="ff4">(</span>s<span class="ff4">)</span></div><div class="t m0 x31 he ye3 ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x32 h10 ye4 ff9 fs9 fc1 sc0 ls0 ws0">t<span class="ff4">∈</span>N<span class="_ _4"></span><span class="ff4">(</span>s<span class="ff4">)</span></div><div class="t m0 x33 h9 ye5 ff9 fs6 fc1 sc0 ls0 ws0">w<span class="ff4">(</span>s<span class="ffb">,<span class="_ _9"> </span></span>t<span class="ff4">)</span>v<span class="_ _4"></span><span class="ff4">(</span>t<span class="ff4">)<span class="ffb">,<span class="_ _14"> </span><span class="ff2">(4) </span></span></span></div><div class="t m0 x6 h9 ye6 ff2 fs6 fc1 sc0 ls0 ws0">where <span class="ff3">Z<span class="ff4">(</span>s<span class="ff4">)<span class="_ _0"> </span>=</span></span></div><div class="t m0 x34 he ye7 ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x35 h12 ye8 ff3 fsa fc1 sc0 ls0 ws0">t</div><div class="t m0 x24 h9 ye9 ff3 fs6 fc1 sc0 ls0 ws0">w<span class="ff4">(</span>s<span class="ffb">,<span class="_ _9"> </span></span>t<span class="_ _4"></span><span class="ff4">)</span>v<span class="ff4">(</span>t<span class="_ _4"></span><span class="ff4">)<span class="_ _f"> </span><span class="ff2">and the weights <span class="_ _4"></span>are <span class="fc2">[52]</span>; </span></span></div><div class="t m0 x6 hd yea ff9 fs6 fc1 sc0 ls0 ws0">w<span class="ff4">(</span>s<span class="ffb">,<span class="_ _9"> </span></span>t<span class="_ _4"></span><span class="ff4">)<span class="_ _0"> </span>=<span class="_ _f"> </span><span class="ff6">exp</span></span></div><div class="t m0 x36 he yeb ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x34 he yec ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x35 h10 yed ff9 fs9 fc1 sc0 ls0 ws0">δ<span class="ff4">∈<span class="ff6">Δ</span></span></div><div class="t m0 x37 hd yee ff4 fs6 fc1 sc0 ls0 ws0">(<span class="ff9">v</span>(<span class="ff9">s<span class="_ _3"> </span></span>+<span class="_ _3"> </span><span class="ff9">δ</span>)<span class="_ _0"> </span>−<span class="_ _15"> </span><span class="ff9">v</span>(<span class="ff9">t<span class="_"> </span></span>+<span class="_ _3"></span><span class="ff9">δ</span>))</div><div class="t m0 x38 hf yef ff6 fs9 fc1 sc0 ls0 ws0">2</div><div class="t m0 x39 h11 yf0 ff6 fs6 fc1 sc0 ls0 ws0">2<span class="ff9">L</span></div><div class="t m0 x3a hf yf1 ff6 fs9 fc1 sc0 ls0 ws0">Δ</div><div class="t m0 x3b h11 yf0 ff9 fs6 fc1 sc0 ls0 ws0">λ</div><div class="t m0 x2a hf yf2 ff6 fs9 fc1 sc0 ls0 ws0">2</div><div class="t m0 x3c he yf3 ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x3d hd yf4 ff4 fs6 fc1 sc0 ls0 ws0">≡<span class="_ _0"> </span><span class="ff6">exp</span></div><div class="t m0 x3e he yf3 ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x3f h11 yf5 ff9 fs6 fc1 sc0 ls0 ws0">d</div><div class="t m0 x40 hf yf6 ff6 fs9 fc1 sc0 ls0 ws0">2</div><div class="t m0 x41 hd yf5 ff4 fs6 fc1 sc0 ls0 ws0">(<span class="ff9">s<span class="ffb">,<span class="_ _9"> </span></span>t<span class="_ _4"></span></span>)</div><div class="t m0 x42 h11 yf7 ff6 fs6 fc1 sc0 ls0 ws0">2<span class="ff9">L</span></div><div class="t m0 x1c hf yf1 ff6 fs9 fc1 sc0 ls0 ws0">Δ</div><div class="t m0 x43 h11 yf0 ff9 fs6 fc1 sc0 ls0 ws0">λ</div><div class="t m0 x44 hf yf2 ff6 fs9 fc1 sc0 ls0 ws0">2</div><div class="t m0 x45 he yf3 ffa fs6 fc1 sc0 ls0 ws0"></div><div class="t m0 x1e h9 yf4 ffb fs6 fc1 sc0 ls0 ws0">,<span class="_ _16"> </span><span class="ff2">(5) </span></div><div class="t m0 x6 h9 yf8 ff9 fs6 fc1 sc0 ls0 ws0">λ <span class="ff2">is a <span class="_ _7"></span>bandwidth parameter, <span class="_ _7"></span>while <span class="ff6">Δ </span>represents <span class="_ _7"></span>a local <span class="_ _7"></span>patch <span class="_ _7"></span>of samples </span></div><div class="t m0 x6 h9 yf9 ff2 fs6 fc1 sc0 ls0 ws0">surrounding <span class="_ _2"></span>s, <span class="_ _2"></span>containing <span class="_ _6"></span><span class="ff3">L</span></div><div class="t m0 x2a h13 yfa ff6 fsa fc1 sc0 ls0 ws0">Δ </div><div class="t m0 x46 h9 yfb ff2 fs6 fc1 sc0 ls0 ws0">samples; <span class="_ _2"></span>a <span class="_ _2"></span>patch <span class="_ _6"></span>of <span class="_ _2"></span>the <span class="_ _2"></span>same <span class="_ _6"></span>shape <span class="_ _2"></span>also </div><div class="t m0 x6 h9 yfc ff2 fs6 fc1 sc0 ls0 ws0">surrounds t. <span class="_ _4"></span><span class="ff3">d</span></div><div class="t m0 x47 h12 yfd ff2 fsa fc1 sc0 ls0 ws0">2 </div><div class="t m0 x48 h9 yfe ff2 fs6 fc1 sc0 ls0 ws0">illustrates the <span class="_ _4"></span>sum of <span class="_ _4"></span>the <span class="_ _4"></span>squared point-by-point <span class="_ _4"></span>differ-</div><div class="t m0 x6 h9 yff ff2 fs6 fc1 sc0 ls0 ws0">ence between samples of two patches which is centered on s <span class="_ _7"></span>and t. The </div><div class="t m0 x6 h9 y100 ff2 fs6 fc1 sc0 ls0 ws0">novelty <span class="_ _7"></span>of <span class="_ _c"></span>NLM <span class="_ _7"></span>is <span class="_ _7"></span>that <span class="_ _7"></span>the <span class="_ _c"></span>weighting <span class="_ _7"></span>w(s, <span class="_ _7"></span>t) <span class="_ _c"></span>depends <span class="_ _7"></span>on <span class="_ _7"></span>patch <span class="_ _7"></span>similarity, </div><div class="t m0 x6 h9 y101 ff2 fs6 fc1 sc0 ls0 ws0">not <span class="_ _8"> </span>on <span class="_ _8"> </span>the <span class="_ _8"> </span>physical <span class="_ _3"> </span>distance <span class="_ _8"> </span>between <span class="_ _3"> </span>the <span class="_ _8"> </span>points <span class="_ _8"> </span>s <span class="_ _8"> </span>and <span class="_ _3"> </span>t. <span class="_ _8"> </span>Averaging </div><div class="t m0 x6 h9 y102 ff2 fs6 fc1 sc0 ls0 ws0">similar patches help <span class="_ _4"></span>to keep edges, <span class="_ _4"></span>in contrast to <span class="_ _4"></span>more typical <span class="_ _4"></span>ltering </div><div class="t m0 x6 h9 y103 ff2 fs6 fc1 sc0 ls0 ws0">(cf., convolutions <span class="_ _7"></span>by <span class="_ _7"></span>a Gaussian <span class="_ _7"></span>smoothing kernel). <span class="_ _7"></span>A notable <span class="_ _7"></span>effort <span class="_ _7"></span>has </div><div class="t m0 x6 h9 y104 ff2 fs6 fc1 sc0 ls0 ws0">been <span class="_ _8"> </span>dedicated <span class="_ _8"> </span>to <span class="_ _8"> </span>fast <span class="_ _8"> </span>NLM <span class="_ _8"> </span>methods <span class="_ _3"> </span><span class="fc2">[51,47]</span>.In <span class="_ _8"> </span>this <span class="_ _8"> </span>study, <span class="_ _8"> </span>We <span class="_ _8"> </span>per-</div><div class="t m0 x6 h9 y105 ff2 fs6 fc1 sc0 ls0 ws0">formed local <span class="_ _4"></span>means (LM) <span class="_ _4"></span>ltering approach, <span class="_ _4"></span>which is <span class="_ _4"></span>a <span class="_ _4"></span><span class="ff6">“</span>local<span class="ff6">” <span class="_ _4"></span></span>form <span class="_ _4"></span>of </div><div class="t m0 x6 h9 y106 ff2 fs6 fc1 sc0 ls0 ws0">the <span class="_ _7"></span>NLM <span class="_ _7"></span>technique, <span class="_ _7"></span>proposed <span class="_ _7"></span>in <span class="_ _7"></span><span class="fc2">[48]<span class="fc1">, <span class="_ _7"></span>by <span class="_ _7"></span>adopting <span class="_ _7"></span>a <span class="_ _7"></span>fast <span class="_ _7"></span>NLM <span class="_ _7"></span>algorithm </span></span></div><div class="t m0 x6 h9 y107 ff2 fs6 fc1 sc0 ls0 ws0">employed in <span class="fc2">[46]</span>. This method signicantly speeds NLM by reordering </div><div class="t m0 x6 h9 y108 ff2 fs6 fc1 sc0 ls0 ws0">operations <span class="_ _7"></span>to <span class="_ _7"></span>get <span class="_ _7"></span>rid <span class="_ _7"></span>of <span class="_ _7"></span>a <span class="_ _7"></span>xed <span class="_ _7"></span>loop. <span class="_ _7"></span>For <span class="_ _7"></span>a <span class="_ _7"></span>1-D <span class="_ _c"></span>signal of <span class="_ _c"></span>dimension <span class="_ _7"></span>N, <span class="_ _7"></span>the </div><div class="t m0 x6 h9 y109 ff2 fs6 fc1 sc0 ls0 ws0">computational <span class="_ _7"></span>complexity of <span class="_ _7"></span><span class="fc2">[46] <span class="fc1">is <span class="_ _7"></span>O (2 <span class="_ _7"></span>NM) versus <span class="_ _7"></span>O (<span class="ff3">L</span></span></span></div><div class="t m0 x1f h13 y10a ff6 fsa fc1 sc0 ls0 ws0">Δ </div><div class="t m0 x49 h9 y10b ff2 fs6 fc1 sc0 ls0 ws0">NM) for <span class="_ _7"></span>the </div><div class="t m0 x6 h9 y10c ff2 fs6 fc1 sc0 ls0 ws0">Buades algorithm<span class="fc2">[44]</span>. </div><div class="t m0 x7 h9 y10d ff2 fs6 fc1 sc0 ls0 ws0">There <span class="_ _4"></span>are <span class="_ _4"></span>three <span class="_ _4"></span>criterias <span class="_ _2"></span>in <span class="_ _4"></span>the <span class="_ _4"></span>NLM <span class="_ _4"></span>method <span class="_ _2"></span>that <span class="_ _4"></span>need <span class="_ _4"></span>to <span class="_ _2"></span>be <span class="_ _4"></span>deter-</div><div class="t m0 x6 h9 y10e ff2 fs6 fc1 sc0 ls0 ws0">mined: <span class="_ _2"></span>The <span class="_ _6"></span>length <span class="_ _2"></span>N(s), <span class="_ _6"></span>dened <span class="_ _2"></span>as <span class="_ _2"></span>a <span class="_ _6"></span>neighborhood <span class="_ _6"></span>half-width <span class="_ _2"></span>M, <span class="_ _2"></span>the </div><div class="c x0 y35 w2 h0"><div class="t m0 x4a h3 y10f ff5 fs0 fc1 sc0 ls0 ws0">Fig. <span class="_ _4"></span>1.<span class="_ _d"> </span><span class="ff2">the <span class="_ _4"></span>structure <span class="_ _2"></span>of <span class="_ _4"></span>the <span class="_ _4"></span>proposed <span class="_ _4"></span>approach. </span></div></div><div class="t m0 x2 h7 y84 ff3 fs4 fc1 sc0 ls0 ws0">M. <span class="_ _4"></span>Sraitih <span class="_ _4"></span>and Y. <span class="_ _4"></span>Jabrane </div><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a><a class="l" rel='nofollow' onclick='return false;'><div class="d m2"></div></a></div><div class="pi" data-data='{"ctm":[1.612697,0.000000,0.000000,1.612697,0.000000,0.000000]}'></div></div>