hls-design-files.zip

  • nick8484
    了解作者
  • Vivado
    开发工具
  • 314.3KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • 5 积分
    下载积分
  • 0
    下载次数
  • 2022-01-06 21:02
    上传日期
HLS高层次综合典型开发例程,采用C\C++开发FPGA代码。
hls-design-files.zip
内容介绍
complex<coeff_t>( 1, -0 ), complex<coeff_t>( 0.99998118, -0.0061358846 ), complex<coeff_t>( 0.9999247, -0.012271538 ), complex<coeff_t>( 0.99983058, -0.01840673 ), complex<coeff_t>( 0.99969882, -0.024541229 ), complex<coeff_t>( 0.99952942, -0.030674803 ), complex<coeff_t>( 0.99932238, -0.036807223 ), complex<coeff_t>( 0.99907773, -0.042938257 ), complex<coeff_t>( 0.99879546, -0.049067674 ), complex<coeff_t>( 0.99847558, -0.055195244 ), complex<coeff_t>( 0.99811811, -0.061320736 ), complex<coeff_t>( 0.99772307, -0.06744392 ), complex<coeff_t>( 0.99729046, -0.073564564 ), complex<coeff_t>( 0.9968203, -0.079682438 ), complex<coeff_t>( 0.99631261, -0.085797312 ), complex<coeff_t>( 0.99576741, -0.091908956 ), complex<coeff_t>( 0.99518473, -0.09801714 ), complex<coeff_t>( 0.99456457, -0.10412163 ), complex<coeff_t>( 0.99390697, -0.11022221 ), complex<coeff_t>( 0.99321195, -0.11631863 ), complex<coeff_t>( 0.99247953, -0.12241068 ), complex<coeff_t>( 0.99170975, -0.12849811 ), complex<coeff_t>( 0.99090264, -0.13458071 ), complex<coeff_t>( 0.99005821, -0.14065824 ), complex<coeff_t>( 0.98917651, -0.14673047 ), complex<coeff_t>( 0.98825757, -0.15279719 ), complex<coeff_t>( 0.98730142, -0.15885814 ), complex<coeff_t>( 0.9863081, -0.16491312 ), complex<coeff_t>( 0.98527764, -0.17096189 ), complex<coeff_t>( 0.98421009, -0.17700422 ), complex<coeff_t>( 0.98310549, -0.18303989 ), complex<coeff_t>( 0.98196387, -0.18906866 ), complex<coeff_t>( 0.98078528, -0.19509032 ), complex<coeff_t>( 0.97956977, -0.20110463 ), complex<coeff_t>( 0.97831737, -0.20711138 ), complex<coeff_t>( 0.97702814, -0.21311032 ), complex<coeff_t>( 0.97570213, -0.21910124 ), complex<coeff_t>( 0.97433938, -0.22508391 ), complex<coeff_t>( 0.97293995, -0.23105811 ), complex<coeff_t>( 0.97150389, -0.23702361 ), complex<coeff_t>( 0.97003125, -0.24298018 ), complex<coeff_t>( 0.96852209, -0.24892761 ), complex<coeff_t>( 0.96697647, -0.25486566 ), complex<coeff_t>( 0.96539444, -0.26079412 ), complex<coeff_t>( 0.96377607, -0.26671276 ), complex<coeff_t>( 0.9621214, -0.27262136 ), complex<coeff_t>( 0.96043052, -0.27851969 ), complex<coeff_t>( 0.95870347, -0.28440754 ), complex<coeff_t>( 0.95694034, -0.29028468 ), complex<coeff_t>( 0.95514117, -0.29615089 ), complex<coeff_t>( 0.95330604, -0.30200595 ), complex<coeff_t>( 0.95143502, -0.30784964 ), complex<coeff_t>( 0.94952818, -0.31368174 ), complex<coeff_t>( 0.94758559, -0.31950203 ), complex<coeff_t>( 0.94560733, -0.32531029 ), complex<coeff_t>( 0.94359346, -0.33110631 ), complex<coeff_t>( 0.94154407, -0.33688985 ), complex<coeff_t>( 0.93945922, -0.34266072 ), complex<coeff_t>( 0.93733901, -0.34841868 ), complex<coeff_t>( 0.93518351, -0.35416353 ), complex<coeff_t>( 0.9329928, -0.35989504 ), complex<coeff_t>( 0.93076696, -0.365613 ), complex<coeff_t>( 0.92850608, -0.37131719 ), complex<coeff_t>( 0.92621024, -0.37700741 ), complex<coeff_t>( 0.92387953, -0.38268343 ), complex<coeff_t>( 0.92151404, -0.38834505 ), complex<coeff_t>( 0.91911385, -0.39399204 ), complex<coeff_t>( 0.91667906, -0.3996242 ), complex<coeff_t>( 0.91420976, -0.40524131 ), complex<coeff_t>( 0.91170603, -0.41084317 ), complex<coeff_t>( 0.90916798, -0.41642956 ), complex<coeff_t>( 0.9065957, -0.42200027 ), complex<coeff_t>( 0.90398929, -0.42755509 ), complex<coeff_t>( 0.90134885, -0.43309382 ), complex<coeff_t>( 0.89867447, -0.43861624 ), complex<coeff_t>( 0.89596625, -0.44412214 ), complex<coeff_t>( 0.8932243, -0.44961133 ), complex<coeff_t>( 0.89044872, -0.45508359 ), complex<coeff_t>( 0.88763962, -0.46053871 ), complex<coeff_t>( 0.8847971, -0.4659765 ), complex<coeff_t>( 0.88192126, -0.47139674 ), complex<coeff_t>( 0.87901223, -0.47679923 ), complex<coeff_t>( 0.87607009, -0.48218377 ), complex<coeff_t>( 0.87309498, -0.48755016 ), complex<coeff_t>( 0.87008699, -0.49289819 ), complex<coeff_t>( 0.86704625, -0.49822767 ), complex<coeff_t>( 0.86397286, -0.50353838 ), complex<coeff_t>( 0.86086694, -0.50883014 ), complex<coeff_t>( 0.85772861, -0.51410274 ), complex<coeff_t>( 0.85455799, -0.51935599 ), complex<coeff_t>( 0.85135519, -0.52458968 ), complex<coeff_t>( 0.84812034, -0.52980362 ), complex<coeff_t>( 0.84485357, -0.53499762 ), complex<coeff_t>( 0.84155498, -0.54017147 ), complex<coeff_t>( 0.83822471, -0.54532499 ), complex<coeff_t>( 0.83486287, -0.55045797 ), complex<coeff_t>( 0.83146961, -0.55557023 ), complex<coeff_t>( 0.82804505, -0.56066158 ), complex<coeff_t>( 0.8245893, -0.56573181 ), complex<coeff_t>( 0.82110251, -0.57078075 ), complex<coeff_t>( 0.81758481, -0.57580819 ), complex<coeff_t>( 0.81403633, -0.58081396 ), complex<coeff_t>( 0.8104572, -0.58579786 ), complex<coeff_t>( 0.80684755, -0.5907597 ), complex<coeff_t>( 0.80320753, -0.5956993 ), complex<coeff_t>( 0.79953727, -0.60061648 ), complex<coeff_t>( 0.7958369, -0.60551104 ), complex<coeff_t>( 0.79210658, -0.61038281 ), complex<coeff_t>( 0.78834643, -0.61523159 ), complex<coeff_t>( 0.7845566, -0.62005721 ), complex<coeff_t>( 0.78073723, -0.62485949 ), complex<coeff_t>( 0.77688847, -0.62963824 ), complex<coeff_t>( 0.77301045, -0.63439328 ), complex<coeff_t>( 0.76910334, -0.63912444 ), complex<coeff_t>( 0.76516727, -0.64383154 ), complex<coeff_t>( 0.76120239, -0.6485144 ), complex<coeff_t>( 0.75720885, -0.65317284 ), complex<coeff_t>( 0.7531868, -0.65780669 ), complex<coeff_t>( 0.74913639, -0.66241578 ), complex<coeff_t>( 0.74505779, -0.66699992 ), complex<coeff_t>( 0.74095113, -0.67155895 ), complex<coeff_t>( 0.73681657, -0.6760927 ), complex<coeff_t>( 0.73265427, -0.680601 ), complex<coeff_t>( 0.72846439, -0.68508367 ), complex<coeff_t>( 0.72424708, -0.68954054 ), complex<coeff_t>( 0.72000251, -0.69397146 ), complex<coeff_t>( 0.71573083, -0.69837625 ), complex<coeff_t>( 0.7114322, -0.70275474 ), complex<coeff_t>( 0.70710678, -0.70710678 ), complex<coeff_t>( 0.70275474, -0.7114322 ), complex<coeff_t>( 0.69837625, -0.71573083 ), complex<coeff_t>( 0.69397146, -0.72000251 ), complex<coeff_t>( 0.68954054, -0.72424708 ), complex<coeff_t>( 0.68508367, -0.72846439 ), complex<coeff_t>( 0.680601, -0.73265427 ), complex<coeff_t>( 0.6760927, -0.73681657 ), complex<coeff_t>( 0.67155895, -0.74095113 ), complex<coeff_t>( 0.66699992, -0.74505779 ), complex<coeff_t>( 0.66241578, -0.74913639 ), complex<coeff_t>( 0.65780669, -0.7531868 ), complex<coeff_t>( 0.65317284, -0.75720885 ), complex<coeff_t>( 0.6485144, -0.76120239 ), complex<coeff_t>( 0.64383154, -0.76516727 ), complex<coeff_t>( 0.63912444, -0.76910334 ), complex<coeff_t>( 0.63439328, -0.77301045 ), complex<coeff_t>( 0.62963824, -0.77688847 ), complex<coeff_t>( 0.62485949, -0.78073723 ), complex<coeff_t>( 0.62005721, -0.7845566 ), complex<coeff_t>( 0.61523159, -0.78834643 ), complex<coeff_t>( 0.61038281, -0.79210658 ), complex<coeff_t>( 0.60551104, -0.7958369 ), complex<coeff_t>( 0.60061648, -0.79953727 ), complex<coeff_t>( 0.5956993, -0.80320753 ), complex<coeff_t>( 0.5907597, -0.80684755 ), complex<coeff_t>( 0.58579786, -0.8104572 ), complex<coeff_t>( 0.58081396, -0.81403633 ), complex<coeff_t>( 0.57580819, -0.81758481 ), complex<coeff_t>( 0.57078075, -0.82110251 ), complex<coeff_t>( 0.56573181, -0.8245893 ), complex<coeff_t>( 0.56066158, -0.82804505 ), complex<coeff_t>( 0.55557023, -0.83146961 ), complex<coeff_t>( 0.55045797, -0.83486287 ), complex<coeff_t>( 0.54532499, -0.83822471 ), complex<coeff_t>( 0.54017147, -0.84155498 ), complex<coeff_t>( 0.53499762, -0.84485357 ), complex<coeff_t>( 0.52980362, -0.84812034 ), complex<coeff_t>( 0.52458968, -0.85135519 ), complex<coeff_t>( 0.51935599, -0.85455799 ), complex<coeff_t>( 0.51410274, -0.85772861 ), complex<coeff_t>( 0.50883014, -0.86086694 ), complex<coeff_t>( 0.50353838, -0.86397286 ), complex<coeff_t>( 0.49822767, -0.86704625 ), complex<coeff_t>( 0.49289819, -0.87008699 ), complex<coeff_t>( 0.48755016, -0.87309498 ), complex<coeff_t>( 0.48218377, -0.87607009 ), complex<coeff_t>( 0.47679923, -0.87901223 ), complex<coeff_t>( 0.47139674, -0.88192126 ), complex<coeff_t>( 0.4659765, -0.8847971 ), complex<coeff_t>( 0.46053871, -0.
评论
    相关推荐
    • 层次分析算法.rar
      A good program that can be used by testing
    • 集成测试综合文档
      我费了好大的劲才从网上找到的阿。。。大家看看有用就下吧。。。。
    • Verilog高层次综合Java源码
      Verilog高层次综合的Java版本代码(力导向算法),可将C语言的行为描述(支持分支、循环、顺序)转换为Verilog语言的一段式状态机。
    • 网络综合布线系统与施工技术一.zip
      建筑物综合布线系统(Premises Distribution System, PDS)的兴起与发展,是在计算机技 术和通信技术发展的基础上进一步适应社会信息化和经济国际化的需要,也是办公自动化进一 步发展的结果。它也是建筑技术与信息...
    • 综合布线类
      综合布线,让你没有基础学会综合布线的所有知识。
    • 层次分析法matlab
      基于matlab层次分析法,用矩阵计算的,大家快快下载
    • 智能建筑综合布线系统案例:星海名城智能系统设计方案.doc
      只有综合考虑这些因素才能设计出令消费者在价格、功能等方面都能够接受的智能化系统。良好的销售业绩不管是对设计者还是开发者来说都应该是最高的目标。相反,如果刻意追求新技术,追求智能系统的等级,不仅会造成...
    • 高层次综合hls例程
      多达20多个hls的例程,让你一次性学会hls高层次综合,用FPGA完成图像处理或者深度学习的项目。
    • 电子综合创新教案
      本课程是在前导验证性认知实验基础上,进行更高层次的命题设计实验,是在教师指导下独立查阅资料、设计、安装和调试特定功能的电子电路。 综合设计实验对于提高学生的电子工程素质和科学实验能力非常重要,是电子...
    • VHDL数字系统设计与高层次综合
      国内关于FPGA高层次综合方面写得比较好的书了,详细介绍计算机系统的VHDL设计,通过本书可以了解芯片的设计流程