空间谱估计理论与算法-例子程序(上)_第2-7章.rar

  • O4_997588
    了解作者
  • matlab
    开发工具
  • 23.7MB
    文件大小
  • rar
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 2
    下载次数
  • 2022-02-22 10:26
    上传日期
第2章_空间谱估计基础 第3章_线性预测算法 第4章_多重信号分类算法 第5章_最大似然及子空间拟合算法 第6章_旋转不变子空间算法 第7章_子空间迭代与更新 第8章_宽带信号的空间谱估计算法 第10章 空间分布式信号源参数估计 第11章_特殊阵列结构的空间谱估计 第12章_基于高阶统计量的空间谱估计 第13章_空间谱估计中的阵列误差校正 第14章 多维空间谱估计
空间谱估计理论与算法_王永良_2-7章例程.rar
  • 第4章_多重信号分类算法
  • 求根MUSIC
  • str2poly.m
    3.4KB
  • Root_Music_con_Music.asv
    3KB
  • 20080127_rmu_1T.mat
    142.1KB
  • Root_Music_con_Music_1target.m
    4.8KB
  • 求根Music和常规Music算法的性能比较.doc
    261KB
  • str2poly_new.m
    3.4KB
  • Root_MUSIC.m
    2.3KB
  • Root_Music_con_Music.m
    3KB
  • Root_pmusic.m
    5.6KB
  • ~$Music和常规Music算法的性能比较.doc
    162B
  • 波束空间
  • 波束空间的各种不同算法
  • twoD_beamspcce_music.m
    6.1KB
  • 波束空间的超分辨算法及统计性能分析.pdf
    324.9KB
  • bushuxingcheng_page118.m
    2.1KB
  • Beam_Space_page_compare.m
    2.7KB
  • Untitled3.m
    2.4KB
  • Beam_Space_page118.m
    2.5KB
  • Beam_Space_page118.asv
    2.6KB
  • 波束域MUSIC算法的多处理器实时处理.pdf
    191.6KB
  • virtaul_array.m
    2.1KB
  • 空间波束MUSIC算法.doc
    545.5KB
  • Untitled2.m
    2.2KB
  • Beam_Space_page_compare1.m
    2.7KB
  • Untitled1.m
    2.5KB
  • Untitled1.asv
    2.5KB
  • Beam_Space_page_compare.asv
    2.7KB
  • 矩阵重构算法
  • Untitled.m
    1.9KB
  • Estimation DOAs of the Coherent Sources Based on Toeplitz Decorrelation.pdf
    372.6KB
  • juzhen_cgsvd_page108.m
    1.8KB
  • compare_svd_tdme.m
    2.7KB
  • Toeplitz_page110.m
    1.7KB
  • 矩阵重构类算法.doc
    190.5KB
  • compare_toeplitz_smoothing.m
    3.5KB
  • svd_m_sta.m
    1.9KB
  • Toeplitz_three_methods.m
    3.7KB
  • juzhen_cgsvd_page108_compare.m
    2KB
  • compare_md_smoothing.m
    3.5KB
  • juzhen_cgsvd_2T.m
    2.5KB
  • Toeplitz_snr.m
    2.3KB
  • md_m_sta.m
    2KB
  • svd_three_compare.m
    3.1KB
  • compare_svd_smoothing.m
    2.9KB
  • Untitled.m
    2.3KB
  • juzhen_cgsvd_page108.m
    1.8KB
  • Untitled3.m
    4.8KB
  • two_D_music.m
    4.4KB
  • lcmv.m
    1.6KB
  • 书本93页的仿真_MUSIC的性能.doc
    248KB
  • MUSIC_page93.asv
    2.1KB
  • modified_MUSIC.asv
    2.7KB
  • two_D_music1012.mat
    833B
  • 载波频率.m
    0B
  • fpinghua_MUSIC_page100.m
    2.5KB
  • two_D_music.asv
    4.4KB
  • 传统MUSIC算法和前向平滑MUSIC算法分辨力比较2007.5.26_page100.doc
    46KB
  • Untitled2.m
    8.2KB
  • modified_MUSIC.m
    2.7KB
  • Untitled.asv
    2.3KB
  • page92.m
    2KB
  • UCA_super_resolution.m
    1.6KB
  • MUSIC_page93.m
    2.4KB
  • three_subaperatures.m
    6.3KB
  • eight_cell.m
    3.7KB
  • page92.asv
    1.7KB
  • 第7章_子空间迭代与更新
  • SSPI_page227.m
    2.8KB
  • 用MPI算法进行空间信号的分辨page226.doc
    52.5KB
  • CGET_uncompleted.m
    2.3KB
  • 用SSPI算法进行空间信号的分辨.doc
    54KB
  • MPI_page226.m
    3.6KB
  • page229pictures.m
    3.6KB
  • 第6章_旋转不变子空间算法
  • 空间平滑Esprit-做不出来
  • Untitled.m
    2.5KB
  • simt30_150.mat
    6MB
  • jiexianggan_Esprit.m
    1.7KB
  • LS_ESPRIT_and_TLS_ESPRITpage189_190.m
    3KB
  • twoD_esprit_montecalo.m
    5.3KB
  • 面阵二维角度ESPRIT
  • twoD_esprit.m
    3.6KB
  • 2D_esprit20080121.mat
    125.4KB
  • twoD_esprit_montecalo.m
    5.3KB
  • Untitled.m
    1.6KB
  • beamspace_esprit_yxy.m
    3.2KB
  • LS-ESPRIT和TLS-ESPRIT算法性能比较_page189-190.doc
    64.5KB
  • ESPRIT算法,角度分辨力与信噪比的关系page189.doc
    41KB
  • R_ESPRIT.m
    2.6KB
  • Toeplitz_ESPRIT_page195.m
    2.6KB
  • TAM_page191.m
    1.9KB
  • TAM算法,角度分辨力与信噪比的关系_page195.doc
    40.5KB
  • RB_ESPRIT_error.m
    2.6KB
  • LS_ESPRIT_and_TLS_ESPRITpage189_190.m
    3KB
  • R_ESPRIT_error.m
    2.7KB
  • Untitled2.m
    3KB
  • LS_ESPRIT_page189.m
    2.1KB
  • juzhenshu_ESPRIT_page197.m
    2.7KB
内容介绍
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta charset="utf-8"> <meta name="generator" content="pdf2htmlEX"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css"> <link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css"> <link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/633a14722aaf6043c9e082e6/raw.css"> <script src="https://static.pudn.com/base/js/compatibility.min.js"></script> <script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script> <script> try{ pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({}); }catch(e){} </script> <title></title> </head> <body> <div id="sidebar" style="display: none"> <div id="outline"> </div> </div> <div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/633a14722aaf6043c9e082e6/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">Estim<span class="_ _0"></span>ation DO<span class="_ _0"></span>As <span class="_ _1"></span>o<span class="_ _0"></span>f t<span class="_ _1"></span>h<span class="_ _0"></span>e Coheren<span class="_ _0"></span>t Sources Based o<span class="_ _0"></span>n<span class="_ _0"></span> T<span class="_ _1"></span>o<span class="_ _0"></span>eplitz Deco<span class="_ _0"></span>rrelation </div><div class="t m0 x2 h3 y2 ff2 fs1 fc0 sc0 ls1 ws1"> </div><div class="t m0 x2 h3 y3 ff2 fs1 fc0 sc0 ls1 ws1"> </div><div class="t m0 x3 h3 y4 ff2 fs1 fc0 sc0 ls2 ws2">HU Xiao-q<span class="_ _1"></span>i<span class="_ _0"></span>n</div><div class="t m0 x4 h4 y5 ff2 fs2 fc0 sc0 ls3 ws3">1, 2</div><div class="t m0 x5 h3 y4 ff2 fs1 fc0 sc0 ls4 ws4">, CH<span class="_ _0"></span>EN J<span class="_ _0"></span>i<span class="_ _0"></span>an-w<span class="_ _0"></span>en</div><div class="t m0 x6 h4 y5 ff2 fs2 fc0 sc0 ls1 ws1">2</div><div class="t m0 x7 h3 y4 ff2 fs1 fc0 sc0 ls5 ws5">, CH<span class="_ _0"></span>EN H<span class="_ _0"></span>ui</div><div class="t m0 x8 h4 y5 ff2 fs2 fc0 sc0 ls1 ws1">2</div><div class="t m0 x9 h3 y4 ff2 fs1 fc0 sc0 ls6 ws6">, WANG Yong-<span class="_ _1"></span>li<span class="_ _0"></span>ang</div><div class="t m0 xa h4 y5 ff2 fs2 fc0 sc0 ls1 ws1">2</div><div class="t m0 xb h3 y4 ff2 fs1 fc0 sc0 ls1 ws1"> </div><div class="t m0 xc h5 y6 ff3 fs1 fc0 sc0 ls7 ws7">1. C<span class="_ _0"></span>ol<span class="_ _0"></span>le<span class="_ _0"></span>g<span class="_ _0"></span>e<span class="_ _0"></span> of<span class="_ _0"></span> El<span class="_ _0"></span>ectr<span class="_ _2"></span>onic<span class="_ _0"></span> S<span class="_ _0"></span>cie<span class="_ _0"></span>nce<span class="_ _0"></span> and<span class="_ _0"></span> <span class="_ _0"></span>Eng<span class="_ _0"></span>ineer<span class="_ _0"></span>ing<span class="_ _0"></span>, N<span class="_ _0"></span>ati<span class="_ _0"></span>onal<span class="_ _0"></span> U<span class="_ _0"></span>niv<span class="_ _3"></span>. <span class="_ _0"></span>of D<span class="_ _0"></span>efe<span class="_ _0"></span>nse<span class="_ _0"></span> <span class="_ _0"></span>T<span class="_ _3"></span>ec<span class="_ _0"></span>hno<span class="_ _0"></span>lo<span class="_ _0"></span>gy<span class="_ _2"></span>,<span class="_ _0"></span> 410<span class="_ _0"></span>07<span class="_ _0"></span>3, </div><div class="t m0 xd h6 y7 ff3 fs1 fc0 sc0 ls8 ws8">Chan<span class="_ _0"></span>gsh<span class="_ _0"></span>a Hu<span class="_ _0"></span>nan<span class="_ _0"></span>, C<span class="_ _0"></span>hi<span class="_ _0"></span>na;<span class="_ _0"></span> 2<span class="_ _0"></span>. K<span class="_ _2"></span>e<span class="_ _0"></span>y<span class="_ _0"></span> Lab<span class="_ _0"></span> <span class="_ _0"></span>of <span class="_ _0"></span>W<span class="_ _2"></span>uh<span class="_ _0"></span>an <span class="_ _0"></span>Ra<span class="_ _0"></span>dar<span class="_ _0"></span> I<span class="_ _0"></span>nst<span class="_ _0"></span>itute<span class="_ _2"></span>, 43<span class="_ _0"></span>0019<span class="_ _0"></span>, <span class="_ _0"></span>W<span class="_ _3"></span>uhan<span class="_ _0"></span> Hube<span class="_ _0"></span>i<span class="_ _0"></span>, Ch<span class="_ _0"></span>in<span class="_ _0"></span>a<span class="ff4 ls1 ws1"> </span></div><div class="t m0 xe h6 y8 ff4 fs1 fc0 sc0 ls1 ws9">Email: huxiaoqin-0529@s<span class="_ _0"></span>ohu.com </div><div class="t m0 x2 h3 y9 ff2 fs1 fc0 sc0 ls1 ws1"> </div><div class="t m0 xf h3 ya ff2 fs1 fc0 sc0 ls1 ws1"> </div><div class="t m0 x10 h7 yb ff1 fs1 fc0 sc0 ls9 ws1">Abstract </div><div class="t m0 xf h8 yc ff4 fs3 fc0 sc0 ls1 ws1"> </div><div class="t m0 x11 h8 yd ff4 fs3 fc0 sc0 ls1 wsa">In this pap<span class="_ _0"></span>er, a nov<span class="_ _0"></span>el method bas<span class="_ _0"></span>ed on<span class="_ _0"></span> Toepli<span class="_ _0"></span>tz </div><div class="t m0 xf h8 ye ff4 fs3 fc0 sc0 ls1 wsb">decorrelation <span class="_ _0"></span>is propos<span class="_ _0"></span>ed to est<span class="_ _0"></span>imate DOAs</div><div class="t m1 xf h9 yf ff5 fs4 fc0 sc0 ls1 ws1">&#65288;</div><div class="t m0 x11 h8 yf ff4 fs3 fc0 sc0 ls1 wsc">direction<span class="_ _0"></span> of ar<span class="_ _0"></span>rivals</div><div class="t m1 x12 h9 yf ff5 fs4 fc0 sc0 ls1 ws1">&#65289;</div><div class="t m0 x13 h8 yf ff4 fs3 fc0 sc0 ls1 wsc">of th<span class="_ _0"></span>e coh<span class="_ _0"></span>erent sourc<span class="_ _0"></span>es. </div><div class="t m0 xf h8 y10 ff4 fs3 fc0 sc0 ls1 wsd">Using the eigenv<span class="_ _0"></span>ector correspon<span class="_ _0"></span>ding to the largest<span class="_ _0"></span> </div><div class="t m0 xf h8 y11 ff4 fs3 fc0 sc0 lsa wse">eig<span class="_ _0"></span>enva<span class="_ _0"></span>lu<span class="_ _0"></span>e ob<span class="_ _0"></span>tain<span class="_ _0"></span>ed <span class="_ _0"></span>fro<span class="_ _0"></span>m th<span class="_ _0"></span>e r<span class="_ _0"></span>ece<span class="_ _0"></span>iv<span class="_ _0"></span>ed d<span class="_ _0"></span>ata <span class="_ _0"></span>co<span class="_ _0"></span>varia<span class="_ _0"></span>n<span class="_ _0"></span>ce </div><div class="t m0 xf h8 y12 ff4 fs3 fc0 sc0 lsb wsf">matr<span class="_ _0"></span>ix<span class="_ _0"></span>, th<span class="_ _0"></span>e <span class="_ _0"></span>pres<span class="_ _0"></span>en<span class="_ _0"></span>ted<span class="_ _0"></span> m<span class="_ _0"></span>etho<span class="_ _0"></span>d <span class="_ _0"></span>cons<span class="_ _0"></span>tru<span class="_ _0"></span>cts<span class="_ _2"></span> a n<span class="_ _0"></span>ew<span class="_ _2"></span> Toeplitz<span class="_ _2"></span> </div><div class="t m0 xf h8 y13 ff4 fs3 fc0 sc0 ls1 ws10">matrix w<span class="_ _2"></span>hose rank <span class="_ _0"></span>is equa<span class="_ _0"></span>l to<span class="_ _0"></span> the<span class="_ _0"></span> numb<span class="_ _0"></span>er of<span class="_ _0"></span> sourc<span class="_ _0"></span>es. </div><div class="t m0 xf h8 y14 ff4 fs3 fc0 sc0 ls1 ws11">The pres<span class="_ _0"></span>ented m<span class="_ _0"></span>ethod ful<span class="_ _0"></span>ly uses<span class="_ _0"></span> the prop<span class="_ _0"></span>erty o<span class="_ _0"></span>f the </div><div class="t m0 xf h8 y15 ff4 fs3 fc0 sc0 ls1 ws12">eigenvector corr<span class="_ _2"></span>e<span class="_ _1"></span>spondi<span class="_ _0"></span>ng to the larg<span class="_ _0"></span>est eig<span class="_ _0"></span>env<span class="_ _1"></span>a<span class="_ _0"></span>lue to </div><div class="t m0 xf h8 y16 ff4 fs3 fc0 sc0 ls1 ws13">estimate coh<span class="_ _0"></span>erent sour<span class="_ _0"></span>ces. Th<span class="_ _0"></span>is approach do<span class="_ _0"></span>esn&#8217;t lose<span class="_ _0"></span> </div><div class="t m0 xf h8 y17 ff4 fs3 fc0 sc0 ls1 ws14">the arra<span class="_ _0"></span>y<span class="_ _0"></span> aperture<span class="_ _0"></span> and<span class="_ _0"></span> can <span class="_ _0"></span>est<span class="_ _0"></span>imate m<span class="_ _0"></span>ore <span class="_ _0"></span>coherent<span class="_ _0"></span> </div><div class="t m0 xf h8 y18 ff4 fs3 fc0 sc0 ls1 ws11">sources w<span class="_ _2"></span>i<span class="_ _1"></span>thout spa<span class="_ _0"></span>tial<span class="_ _0"></span> smooth<span class="_ _0"></span>ing and<span class="_ _0"></span> w<span class="_ _0"></span>eighting. In<span class="_ _0"></span> </div><div class="t m0 xf h8 y19 ff4 fs3 fc0 sc0 ls1 ws15">comparison<span class="_ _0"></span> w<span class="_ _0"></span>ith the con<span class="_ _0"></span>ventional<span class="_ _0"></span> decorr<span class="_ _0"></span>elation<span class="_ _0"></span> </div><div class="t m0 xf h8 y1a ff4 fs3 fc0 sc0 ls1 ws16">algorithms,<span class="_ _0"></span> the<span class="_ _0"></span> method<span class="_ _0"></span> offers <span class="_ _0"></span>better<span class="_ _0"></span> estima<span class="_ _0"></span>tion </div><div class="t m0 xf h8 y1b ff4 fs3 fc0 sc0 lsc ws17">pe<span class="_ _1"></span>r<span class="_ _1"></span>f<span class="_ _1"></span>or<span class="_ _1"></span>ma<span class="_ _1"></span>nc<span class="_ _1"></span>e f<span class="_ _1"></span>o<span class="_ _1"></span>r c<span class="_ _1"></span>ohe<span class="_ _1"></span>r<span class="_ _1"></span>e<span class="_ _1"></span>nt<span class="_ _1"></span> sou<span class="_ _1"></span>rc<span class="_ _1"></span>e<span class="_ _1"></span>s,<span class="_ _1"></span> es<span class="_ _1"></span>pe<span class="_ _1"></span>ci<span class="_ _1"></span>al<span class="_ _1"></span>l<span class="_ _1"></span>y<span class="_ _1"></span> at l<span class="_ _1"></span>ow </div><div class="t m0 xf h8 y1c ff4 fs3 fc0 sc0 ls1 ws13">SNR. Th<span class="_ _0"></span>eoretical<span class="_ _0"></span> analyses<span class="_ _0"></span> and s<span class="_ _0"></span>imulat<span class="_ _0"></span>ion experim<span class="_ _0"></span>ents </div><div class="t m0 xf h8 y1d ff4 fs3 fc0 sc0 ls1 ws10">demonstra<span class="_ _0"></span>te t<span class="_ _1"></span>h<span class="_ _0"></span>e effectiveness of<span class="_ _0"></span> <span class="_ _1"></span>the propos<span class="_ _0"></span>ed method<span class="_ _0"></span> </div><div class="t m0 xf h8 y1e ff4 fs3 fc0 sc0 lsd ws18">for<span class="_ _0"></span> es<span class="_ _0"></span>tima<span class="_ _0"></span>tion<span class="_ _0"></span> D<span class="_ _0"></span>OAs<span class="_ _2"></span> of th<span class="_ _0"></span>e<span class="_ _0"></span> coh<span class="_ _0"></span>eren<span class="_ _2"></span>t so<span class="_ _0"></span>urces<span class="_ _2"></span>. </div><div class="t m0 xf ha y1f ff2 fs3 fc0 sc0 ls1 ws1"> </div><div class="t m0 xf h7 y20 ff1 fs1 fc0 sc0 lse ws19">1. Introduction </div><div class="t m0 xf ha y21 ff2 fs3 fc0 sc0 ls1 ws1"> </div><div class="t m0 x1 ha y22 ff2 fs3 fc0 sc0 lsf ws1a">Sub<span class="_ _2"></span>spac<span class="_ _0"></span>e-b<span class="_ _0"></span>ase<span class="_ _0"></span>d sp<span class="_ _0"></span>atial s<span class="_ _0"></span>pe<span class="_ _0"></span>ctru<span class="_ _0"></span>m es<span class="_ _0"></span>t<span class="_ _0"></span>imatio<span class="_ _2"></span>n met<span class="_ _0"></span>ho<span class="_ _0"></span>ds </div><div class="t m0 xf ha y23 ff2 fs3 fc0 sc0 ls10 ws1b">such<span class="_ _1"></span> as MUSIC ha<span class="_ _1"></span>ve w<span class="_ _0"></span>ide ap<span class="_ _1"></span>pli<span class="_ _1"></span>cation<span class="_ _1"></span>s. Th<span class="_ _1"></span>eir super<span class="_ _1"></span>-</div><div class="t m0 xf ha y24 ff2 fs3 fc0 sc0 ls11 ws1c">reso<span class="_ _2"></span>lution c<span class="_ _0"></span>apab<span class="_ _2"></span>ilities<span class="_ _0"></span> a<span class="_ _0"></span>re se<span class="_ _0"></span>v<span class="_ _0"></span>ere<span class="_ _0"></span>l<span class="_ _1"></span>y<span class="_ _2"></span> deg<span class="_ _0"></span>r<span class="_ _1"></span>ade<span class="_ _0"></span>d f<span class="_ _0"></span>o<span class="_ _0"></span>r </div><div class="t m0 xf ha y25 ff2 fs3 fc0 sc0 ls11 ws1d">co<span class="_ _2"></span>h<span class="_ _1"></span>ere<span class="_ _0"></span>nt s<span class="_ _0"></span>ig<span class="_ _0"></span>nals <span class="_ _0"></span>like<span class="_ _2"></span> mult<span class="_ _0"></span>ipa<span class="_ _0"></span>t<span class="_ _0"></span>h p<span class="_ _0"></span>ropag<span class="_ _2"></span>atio<span class="_ _0"></span>n ef<span class="_ _0"></span>f<span class="_ _0"></span>ect a<span class="_ _0"></span>nd </div><div class="t m0 xf ha y26 ff2 fs3 fc0 sc0 ls12 ws1e">inte<span class="_ _2"></span>n<span class="_ _1"></span>tio<span class="_ _0"></span>nal <span class="_ _0"></span>u<span class="_ _0"></span>nfrie<span class="_ _2"></span>n<span class="_ _1"></span>d<span class="_ _0"></span>ly<span class="_ _0"></span> j<span class="_ _0"></span>amming<span class="_ _0"></span>. T<span class="_ _0"></span>he e<span class="_ _0"></span>xis<span class="_ _2"></span>tence<span class="_ _0"></span> o<span class="_ _0"></span>f </div><div class="t m0 xf ha y27 ff2 fs3 fc0 sc0 ls13 ws1f">coh<span class="_ _1"></span>er<span class="_ _1"></span>ent sou<span class="_ _1"></span>r<span class="_ _1"></span>ces res<span class="_ _1"></span>ul<span class="_ _1"></span>t<span class="_ _1"></span>s<span class="_ _0"></span> in<span class="_ _1"></span> <span class="_ _0"></span>a ran<span class="_ _1"></span>k defici<span class="_ _1"></span>en<span class="_ _1"></span>cy in th<span class="_ _1"></span>e </div><div class="t m0 xf ha y28 ff2 fs3 fc0 sc0 ls13 ws20">si<span class="_ _1"></span>gn<span class="_ _1"></span>al covar<span class="_ _4"></span>ian<span class="_ _4"></span>ce matr<span class="_ _1"></span>i<span class="_ _1"></span>x and a di<span class="_ _1"></span>ver<span class="_ _1"></span>gence of t<span class="_ _1"></span>h<span class="_ _1"></span>e si<span class="_ _1"></span>gna<span class="_ _1"></span>l </div><div class="t m0 xf ha y29 ff2 fs3 fc0 sc0 ls13 ws21">eig<span class="_ _1"></span>en<span class="_ _1"></span>vector<span class="_ _1"></span> in<span class="_ _4"></span>to th<span class="_ _1"></span>e n<span class="_ _1"></span>oise s<span class="_ _1"></span>ubsp<span class="_ _1"></span>ace.<span class="_ _1"></span> T<span class="_ _1"></span>h<span class="_ _1"></span>erefor<span class="_ _1"></span>e,<span class="_ _1"></span> th<span class="_ _1"></span>e </div><div class="t m0 xf ha y2a ff2 fs3 fc0 sc0 ls12 ws22">es<span class="_ _0"></span>tima<span class="_ _0"></span>tion<span class="_ _0"></span> p<span class="_ _0"></span>ro<span class="_ _0"></span>b<span class="_ _0"></span>lem f<span class="_ _0"></span>o<span class="_ _0"></span>r the<span class="_ _0"></span> c<span class="_ _0"></span>o<span class="_ _0"></span>here<span class="_ _0"></span>nt so<span class="_ _2"></span>urce<span class="_ _0"></span>s <span class="ls14 ws23">DOAs ha<span class="_ _1"></span>s<span class="_ _0"></span> </span></div><div class="t m0 xf ha y2b ff2 fs3 fc0 sc0 lsf ws24">lo<span class="_ _0"></span>ng be<span class="_ _0"></span>e<span class="_ _0"></span>n of<span class="_ _0"></span> great<span class="_ _0"></span> <span class="_ _0"></span>rese<span class="_ _0"></span>arc<span class="_ _0"></span>h i<span class="_ _0"></span>nte<span class="_ _0"></span>rest,<span class="_ _0"></span> a<span class="_ _0"></span>nd lo<span class="_ _0"></span>ts o<span class="_ _2"></span>f </div><div class="t m0 xf ha y2c ff2 fs3 fc0 sc0 ls15 ws25">ef<span class="_ _1"></span>fe<span class="_ _1"></span>ct<span class="_ _1"></span>i<span class="_ _1"></span>ve<span class="_ _1"></span> m<span class="_ _1"></span>eth<span class="_ _1"></span>od<span class="_ _1"></span>s<span class="_ _1"></span> ha<span class="_ _1"></span>ve<span class="_ _1"></span> bee<span class="_ _1"></span>n<span class="_ _1"></span> pr<span class="_ _1"></span>op<span class="_ _1"></span>os<span class="_ _1"></span>ed<span class="_ _1"></span>,<span class="_ _1"></span> in<span class="_ _1"></span>cl<span class="_ _1"></span>ud<span class="_ _1"></span>in<span class="_ _4"></span>g </div><div class="t m0 xf ha y2d ff2 fs3 fc0 sc0 ls11 ws26">co<span class="_ _2"></span>n<span class="_ _1"></span>v<span class="_ _0"></span>entio<span class="_ _0"></span>nal sp<span class="_ _2"></span>atial s<span class="_ _2"></span>moo<span class="_ _0"></span>thing<span class="_ _0"></span> c<span class="_ _0"></span>lass <span class="_ _0"></span>al<span class="_ _0"></span>go<span class="_ _0"></span>rit<span class="_ _0"></span>hms</div><div class="t m0 x14 hb y2e ff2 fs5 fc0 sc0 ls16 ws1">[1<span class="_ _1"></span>]</div><div class="t m0 x15 ha y2f ff2 fs3 fc0 sc0 ls17 ws1">, </div><div class="t m0 xf ha y30 ff2 fs3 fc0 sc0 ls12 ws27">mat<span class="_ _0"></span>rix<span class="_ _0"></span> dec<span class="_ _0"></span>o<span class="_ _0"></span>mpo<span class="_ _0"></span>s<span class="_ _0"></span>ition <span class="_ _0"></span>met<span class="_ _0"></span>hod</div><div class="t m0 x16 hb y31 ff2 fs5 fc0 sc0 ls18 ws1">[2]</div><div class="t m0 x17 ha y32 ff2 fs3 fc0 sc0 ls19 ws28">, eig<span class="_ _1"></span>envect<span class="_ _1"></span>or s<span class="_ _1"></span>in<span class="_ _1"></span>gul<span class="_ _1"></span>ar </div><div class="t m0 xf ha y33 ff2 fs3 fc0 sc0 ls12 ws22">v<span class="_ _0"></span>alue<span class="_ _0"></span> dec<span class="_ _0"></span>o<span class="_ _0"></span>mpos<span class="_ _0"></span>itio<span class="_ _0"></span>n me<span class="_ _0"></span>tho<span class="_ _0"></span>d</div><div class="t m0 x18 hb y34 ff2 fs5 fc0 sc0 ls18 ws29"> [3]</div><div class="t m0 x19 ha y35 ff2 fs3 fc0 sc0 ls1a ws2a">, To<span class="_ _0"></span>ep<span class="_ _0"></span>litz me<span class="_ _0"></span>t<span class="_ _0"></span>hod</div><div class="t m0 x1a hb y34 ff2 fs5 fc0 sc0 ls18 ws1">[4]</div><div class="t m0 x1b ha y35 ff2 fs3 fc0 sc0 ls1b ws2b"> an<span class="_ _1"></span>d </div><div class="t m0 xf ha y36 ff2 fs3 fc0 sc0 ls1c ws2c">ML a<span class="_ _1"></span>lgor<span class="_ _1"></span>ith<span class="_ _1"></span>m</div><div class="t m0 x1c hb y37 ff2 fs5 fc0 sc0 ls18 ws1">[5]</div><div class="t m0 x1d ha y38 ff2 fs3 fc0 sc0 ls1d ws2d"> et<span class="_ _1"></span>c. Th<span class="_ _1"></span>e dr<span class="_ _1"></span>a<span class="_ _1"></span>wback <span class="_ _1"></span>wit<span class="_ _1"></span>h th<span class="_ _1"></span>e for<span class="_ _1"></span>m<span class="_ _1"></span>er </div><div class="t m0 xf ha y39 ff2 fs3 fc0 sc0 ls1e ws2e">thr<span class="_ _1"></span>ee m<span class="_ _1"></span>eth<span class="_ _1"></span>ods i<span class="_ _1"></span>s that th<span class="_ _1"></span>e effect<span class="_ _1"></span>ive a<span class="_ _1"></span>per<span class="_ _1"></span>tur<span class="_ _1"></span>e of th<span class="_ _1"></span>e arra<span class="_ _1"></span>y </div><div class="t m0 xf ha y3a ff2 fs3 fc0 sc0 ls13 ws2f">is<span class="_ _1"></span> <span class="_ _0"></span>r<span class="_ _1"></span>ed<span class="_ _1"></span>uced<span class="_ _1"></span>. Th<span class="_ _1"></span>e Toep<span class="_ _1"></span>li<span class="_ _1"></span>tz<span class="_ _1"></span> <span class="_ _0"></span>m<span class="_ _1"></span>eth<span class="_ _1"></span>od effe<span class="_ _1"></span>ct<span class="_ _1"></span>ivel<span class="_ _1"></span>y ma<span class="_ _1"></span>kes<span class="_ _1"></span> use<span class="_ _1"></span> </div><div class="t m0 xf ha y3b ff2 fs3 fc0 sc0 ls1f ws30">of<span class="_ _0"></span> the a<span class="_ _0"></span>rray<span class="_ _2"></span> ape<span class="_ _0"></span>rture<span class="_ _0"></span>, b<span class="_ _0"></span>ut t<span class="_ _0"></span>he e<span class="_ _0"></span>sti<span class="_ _0"></span>ma<span class="_ _0"></span>tion<span class="_ _0"></span> p<span class="_ _0"></span>recis<span class="_ _0"></span>io<span class="_ _0"></span>n is<span class="_ _0"></span> </div><div class="t m0 x1e ha y3c ff2 fs3 fc0 sc0 ls1 ws31">bad. The<span class="_ _0"></span> co<span class="_ _0"></span>mputational c<span class="_ _0"></span>os<span class="_ _0"></span>t of t<span class="_ _0"></span>h<span class="_ _1"></span>e ML<span class="_ _0"></span> algo<span class="_ _0"></span>rithm is </div><div class="t m0 x1e ha y3d ff2 fs3 fc0 sc0 ls20 ws32">lar<span class="_ _4"></span>ge an<span class="_ _1"></span>d <span class="_ _1"></span>can<span class="_ _1"></span> n<span class="_ _1"></span>ot r<span class="_ _1"></span>ea<span class="_ _1"></span>liz<span class="_ _1"></span>e r<span class="_ _1"></span>eal <span class="_ _1"></span>tim<span class="_ _1"></span>e <span class="_ _1"></span>pr<span class="_ _1"></span>ocessin<span class="_ _4"></span>g.<span class="_ _1"></span> </div><div class="t m0 x1f ha y3e ff2 fs3 fc0 sc0 ls21 ws33">Con<span class="_ _1"></span>si<span class="_ _1"></span>der<span class="_ _1"></span>in<span class="_ _1"></span>g<span class="_ _1"></span> <span class="_ _0"></span>th<span class="_ _1"></span>e ei<span class="_ _1"></span>gen<span class="_ _1"></span>vect<span class="_ _1"></span>or<span class="_ _1"></span> cor<span class="_ _1"></span>r<span class="_ _1"></span>espon<span class="_ _1"></span>din<span class="_ _1"></span>g<span class="_ _1"></span> <span class="_ _0"></span>t<span class="_ _1"></span>o th<span class="_ _1"></span>e </div><div class="t m0 x1e ha y3f ff2 fs3 fc0 sc0 ls21 ws34">lar<span class="_ _4"></span>gest<span class="_ _1"></span> ei<span class="_ _1"></span>gen<span class="_ _1"></span>val<span class="_ _1"></span>ue obta<span class="_ _1"></span>in<span class="_ _1"></span>ed<span class="_ _1"></span> fr<span class="_ _1"></span>om th<span class="_ _1"></span>e r<span class="_ _1"></span>eceiv<span class="_ _1"></span>ed d<span class="_ _1"></span>at<span class="_ _1"></span>a </div><div class="t m0 x1e ha y40 ff2 fs3 fc0 sc0 ls21 ws35">cova<span class="_ _1"></span>r<span class="_ _1"></span>i<span class="_ _1"></span>an<span class="_ _1"></span>ce<span class="_ _0"></span> ma<span class="_ _1"></span>tri<span class="_ _1"></span>x con<span class="_ _1"></span>tain<span class="_ _1"></span>s al<span class="_ _1"></span>l sign<span class="_ _1"></span>al in<span class="_ _1"></span>for<span class="_ _1"></span>mat<span class="_ _1"></span>i<span class="_ _1"></span>o<span class="_ _0"></span>n in<span class="_ _1"></span> <span class="_ _0"></span>th<span class="_ _1"></span>e </div><div class="t m0 x1e ha y41 ff2 fs3 fc0 sc0 ls21 ws21">pr<span class="_ _1"></span>es<span class="_ _1"></span>ent<span class="_ _1"></span> of co<span class="_ _0"></span>h<span class="_ _1"></span>er<span class="_ _1"></span>en<span class="_ _1"></span>t sour<span class="_ _1"></span>ces<span class="_ _1"></span>, in<span class="_ _1"></span> thi<span class="_ _1"></span>s paper<span class="_ _1"></span>, a novel<span class="_ _1"></span> </div><div class="t m0 x1e ha y42 ff2 fs3 fc0 sc0 ls12 ws1d">To<span class="_ _0"></span>ep<span class="_ _0"></span>litz <span class="_ _0"></span>ma<span class="_ _0"></span>trix<span class="_ _0"></span> w<span class="_ _0"></span>hos<span class="_ _0"></span>e <span class="_ _0"></span>rank<span class="_ _2"></span> is e<span class="_ _0"></span>qua<span class="_ _0"></span>l<span class="_ _0"></span> to<span class="_ _0"></span> t<span class="_ _0"></span>he <span class="_ _0"></span>numb<span class="_ _0"></span>e<span class="_ _0"></span>r o<span class="_ _0"></span>f </div><div class="t m0 x1e ha y43 ff2 fs3 fc0 sc0 ls1 ws36">so<span class="_ _0"></span>ur<span class="_ _1"></span>ce<span class="_ _0"></span>s is c<span class="_ _0"></span>onstructed <span class="_ _0"></span>usi<span class="_ _0"></span>n<span class="_ _1"></span>g t<span class="_ _0"></span>he e<span class="_ _0"></span>igenvec<span class="_ _0"></span>tor </div><div class="t m0 x1e ha y44 ff2 fs3 fc0 sc0 lsf ws37">co<span class="_ _2"></span>r<span class="_ _1"></span>resp<span class="_ _0"></span>ondi<span class="_ _0"></span>ng <span class="_ _0"></span>to<span class="_ _0"></span> t<span class="_ _0"></span>he la<span class="_ _0"></span>rg<span class="_ _0"></span>es<span class="_ _0"></span>t eig<span class="_ _0"></span>e<span class="_ _0"></span>nvalu<span class="_ _0"></span>e.<span class="_ _0"></span> Th<span class="_ _0"></span>is <span class="_ _0"></span>met<span class="_ _0"></span>ho<span class="_ _0"></span>d </div><div class="t m0 x1e ha y45 ff2 fs3 fc0 sc0 ls22 ws38">doesn&#8217;<span class="_ _1"></span>t lose the array apertur<span class="_ _1"></span>e <span class="_ _0"></span>an<span class="_ _1"></span>d ca<span class="_ _0"></span>n solve th<span class="_ _1"></span>e<span class="_ _0"></span> DOAs </div><div class="t m0 x1e ha y46 ff2 fs3 fc0 sc0 lsf ws39">es<span class="_ _0"></span>tima<span class="_ _0"></span>tion<span class="_ _0"></span> o<span class="_ _0"></span>f t<span class="_ _0"></span>he c<span class="_ _0"></span>o<span class="_ _0"></span>he<span class="_ _0"></span>rent<span class="_ _0"></span> so<span class="_ _0"></span>urc<span class="_ _0"></span>es<span class="_ _0"></span> w<span class="_ _0"></span>ithou<span class="_ _0"></span>t s<span class="_ _0"></span>p<span class="_ _0"></span>atial<span class="_ _0"></span> </div><div class="t m0 x1e ha y47 ff2 fs3 fc0 sc0 ls23 ws3a">sm<span class="_ _1"></span>oot<span class="_ _1"></span>h<span class="_ _1"></span>i<span class="_ _1"></span>n<span class="_ _1"></span>g<span class="_ _1"></span> <span class="_ _0"></span>an<span class="_ _4"></span>d wei<span class="_ _1"></span>g<span class="_ _1"></span>h<span class="_ _1"></span>tin<span class="_ _4"></span>g.<span class="_ _1"></span> In<span class="_ _1"></span> com<span class="_ _1"></span>pa<span class="_ _1"></span>r<span class="_ _1"></span>i<span class="_ _1"></span>son<span class="_ _1"></span> wi<span class="_ _1"></span>th<span class="_ _1"></span> th<span class="_ _1"></span>e<span class="_ _1"></span> </div><div class="t m0 x1e ha y48 ff2 fs3 fc0 sc0 ls13 ws34">con<span class="_ _1"></span>ven<span class="_ _1"></span>ti<span class="_ _1"></span>on<span class="_ _1"></span>al<span class="_ _1"></span> decorr<span class="_ _1"></span>el<span class="_ _1"></span>a<span class="_ _1"></span>tion<span class="_ _1"></span> al<span class="_ _1"></span>gor<span class="_ _1"></span>ith<span class="_ _1"></span>ms,<span class="_ _1"></span> th<span class="_ _1"></span>e pr<span class="_ _1"></span>oposed<span class="_ _1"></span> </div><div class="t m0 x1e ha y49 ff2 fs3 fc0 sc0 ls13 ws3b">meth<span class="_ _4"></span>od has<span class="_ _1"></span> bett<span class="_ _1"></span>er esti<span class="_ _1"></span>ma<span class="_ _1"></span>tion<span class="_ _1"></span> per<span class="_ _1"></span>form<span class="_ _1"></span>an<span class="_ _1"></span>ce, esp<span class="_ _1"></span>ecia<span class="_ _1"></span>l<span class="_ _1"></span>ly </div><div class="t m0 x1e ha y4a ff2 fs3 fc0 sc0 lsf ws3c">fo<span class="_ _0"></span>r the<span class="_ _0"></span> lo<span class="_ _0"></span>w<span class="_ _0"></span> SN<span class="_ _0"></span>R<span class="_ _0"></span> situ<span class="_ _0"></span>atio<span class="_ _0"></span>ns,<span class="_ _0"></span> an<span class="_ _0"></span>d ca<span class="_ _0"></span>n e<span class="_ _0"></span>sti<span class="_ _0"></span>ma<span class="_ _0"></span>te mo<span class="_ _2"></span>re </div><div class="t m0 x1e ha y4b ff2 fs3 fc0 sc0 ls1b wse">coh<span class="_ _1"></span>er<span class="_ _1"></span>ent<span class="_ _1"></span> sour<span class="_ _1"></span>ces<span class="_ _1"></span>. </div><div class="t m0 x1e ha y4c ff2 fs3 fc0 sc0 ls1 ws1"> </div><div class="t m0 x1e h7 y4d ff1 fs1 fc0 sc0 ls24 ws3d">2. Signal<span class="_ _0"></span> model<span class="_ _0"></span> </div><div class="t m0 x1e ha y4e ff2 fs3 fc0 sc0 ls1 ws1"> </div><div class="t m0 x1f ha y4f ff2 fs3 fc0 sc0 ls1e ws3e">Con<span class="_ _1"></span>si<span class="_ _1"></span>der a uni<span class="_ _1"></span>for<span class="_ _1"></span>m lin<span class="_ _1"></span>ear ar<span class="_ _1"></span>ra<span class="_ _1"></span>y o<span class="_ _0"></span>f</div><div class="t m0 xb ha y50 ff4 fs6 fc0 sc0 ls1 ws1">M<span class="_ _5"> </span><span class="ff2 fs3 ls1b wse"> elem<span class="_ _1"></span>en<span class="_ _1"></span>t<span class="_ _1"></span>s <span class="_ _4"></span>an<span class="_ _4"></span>d </span></div><div class="t m0 x20 hc y51 ff4 fs7 fc0 sc0 ls1 ws1">N</div><div class="t m0 x21 ha y52 ff2 fs3 fc0 sc0 ls15 ws3f"> <span class="_ _6"></span>n<span class="_ _1"></span>ar<span class="_ _1"></span>r<span class="_ _4"></span>owban<span class="_ _4"></span>d<span class="_ _1"></span> sou<span class="_ _1"></span>r<span class="_ _1"></span>ce<span class="_ _1"></span>s.<span class="_ _1"></span> Th<span class="_ _4"></span>e ar<span class="_ _1"></span>r<span class="_ _1"></span>a<span class="_ _1"></span>y out<span class="_ _1"></span>pu<span class="_ _1"></span>t<span class="_ _1"></span> ve<span class="_ _1"></span>ct<span class="_ _1"></span>or<span class="_ _4"></span> i<span class="_ _1"></span>s </div><div class="t m0 x1e ha y53 ff2 fs3 fc0 sc0 ls1 ws40">obtained as </div><div class="t m0 x22 hd y54 ff2 fs8 fc0 sc0 ls25 ws1">()<span class="_ _7"> </span>()<span class="_ _8"> </span>()<span class="_ _9"></span><span class="ff4 ls26">tt<span class="_ _a"></span>t<span class="_ _b"></span><span class="ff6 ls27">=&#8901;<span class="_ _c"> </span>+<span class="_ _d"></span><span class="ff7 ls28">XA<span class="_ _e"></span>S<span class="_ _f"></span>N</span></span></span></div><div class="t m0 x23 he y55 ff8 fs3 fc0 sc0 ls17 ws1"> (1) </div><div class="t m0 x1e hf y56 ff2 fs3 fc0 sc0 ls29 ws1">wh<span class="_ _1"></span>e<span class="_ _1"></span>r<span class="_ _1"></span>e<span class="_ _1"></span><span class="ff5 ls1"> <span class="_ _0"></span> <span class="_ _0"></span> <span class="ff2"> </span></span></div><div class="t m2 x24 h10 y57 ff6 fs9 fc0 sc0 ls2a ws1">()<span class="_ _10"> </span>()<span class="_ _11"> </span>()<span class="_ _12"> </span>()</div><div class="t m3 x25 h11 y58 ff2 fsa fc0 sc0 ls1 ws1">T</div><div class="t m3 x26 h11 y59 ff2 fsa fc0 sc0 ls2b ws1">12</div><div class="t m3 x27 h12 y5a ff2 fsb fc0 sc0 ls2c ws1">,,<span class="_ _13"></span>,</div><div class="t m3 x28 h13 y5b ff4 fsa fc0 sc0 ls1 ws1">M</div><div class="t m3 x29 h14 y5a ff4 fsb fc0 sc0 ls2d ws1">tx<span class="_ _14"></span>t<span class="_ _a"></span>x<span class="_ _15"></span>t<span class="_ _16"> </span>x<span class="_ _17"></span>t<span class="_ _18"></span><span class="ff6 ls1">=</span></div><div class="c x2a y5c w2 h15"><div class="t m3 x0 h16 y5d ff9 fsb fc0 sc0 ls1 ws1">&#63726;</div></div><div class="t m3 x2b h16 y5a ff9 fsb fc0 sc0 ls1 ws1">&#63737;</div><div class="c x2a y5e w2 h15"><div class="t m3 x0 h16 y5f ff9 fsb fc0 sc0 ls1 ws1">&#63728;</div></div><div class="t m3 x2b h16 y60 ff9 fsb fc0 sc0 ls1 ws1">&#63739;</div><div class="t m3 x8 h17 y61 ff7 fsb fc0 sc0 ls1 ws1">X<span class="_ _19"> </span><span class="ffa">"</span></div><div class="t m4 x24 h10 y62 ff6 fs9 fc0 sc0 ls2e ws1">()<span class="_ _1a"> </span>()<span class="_ _1b"> </span>()<span class="_ _1c"> </span>(<span class="_ _0"></span>)</div><div class="t m3 x2c h11 y63 ff2 fsa fc0 sc0 ls1 ws1">T</div><div class="t m3 x26 h11 y64 ff2 fsa fc0 sc0 ls2f ws1">12</div><div class="t m3 x27 h12 y65 ff2 fsb fc0 sc0 ls30 ws1">,,<span class="_ _14"></span>,</div><div class="t m3 x2d h13 y66 ff4 fsa fc0 sc0 ls1 ws1">N</div><div class="t m3 x29 h14 y65 ff4 fsb fc0 sc0 ls31 ws1">ts<span class="_ _1d"></span>t<span class="_ _a"></span>s<span class="_ _1e"></span>t<span class="_ _16"> </span>s<span class="_ _1f"></span>t<span class="_ _20"></span><span class="ff6 ls1">=</span></div><div class="c x2a y67 w3 h15"><div class="t m3 x0 h16 y5d ff9 fsb fc0 sc0 ls1 ws1">&#63726;</div></div><div class="t m3 x23 h16 y65 ff9 fsb fc0 sc0 ls1 ws1">&#63737;</div><div class="c x2a y68 w3 h15"><div class="t m3 x0 h16 y5d ff9 fsb fc0 sc0 ls1 ws1">&#63728;</div></div><div class="t m3 x23 h16 y69 ff9 fsb fc0 sc0 ls1 ws1">&#63739;</div><div class="t m3 x2e h17 y6a ff7 fsb fc0 sc0 ls1 ws1">S<span class="_ _21"> </span><span class="ffa">"</span></div><div class="t m3 x2f ha y65 ff2 fs3 fc0 sc0 ls1 ws1"> </div><div class="t m4 x24 h10 y6b ff6 fs9 fc0 sc0 ls2e ws1">()<span class="_ _22"> </span>()<span class="_ _23"> </span>(<span class="_ _0"></span>)<span class="_ _24"> </span>(<span class="_ _0"></span>)</div><div class="t m3 x25 h11 y6c ff2 fsa fc0 sc0 ls1 ws1">T</div><div class="t m3 x26 h11 y6d ff2 fsa fc0 sc0 ls2b ws1">12</div><div class="t m3 x27 h12 y6e ff2 fsb fc0 sc0 ls2c ws1">,,<span class="_ _13"></span>,</div><div class="t m3 x28 h13 y6f ff4 fsa fc0 sc0 ls1 ws1">M</div><div class="t m3 x29 h14 y6e ff4 fsb fc0 sc0 ls32 ws1">tn<span class="_ _1d"></span>t<span class="_ _a"></span>n<span class="_ _a"></span>t<span class="_ _25"> </span>n<span class="_ _26"></span>t<span class="_ _27"></span><span class="ff6 ls1">=</span></div><div class="c x2a y70 w4 h15"><div class="t m3 x0 h16 y5f ff9 fsb fc0 sc0 ls1 ws1">&#63726;</div></div><div class="t m3 x2b h16 y6e ff9 fsb fc0 sc0 ls1 ws1">&#63737;</div><div class="c x2a y71 w4 h15"><div class="t m3 x0 h16 y5f ff9 fsb fc0 sc0 ls1 ws1">&#63728;</div></div><div class="t m3 x2b h16 y72 ff9 fsb fc0 sc0 ls1 ws1">&#63739;</div><div class="t m3 x8 h17 y73 ff7 fsb fc0 sc0 ls1 ws1">N<span class="_ _19"> </span><span class="ffa">"</span></div><div class="t m3 x30 ha y6e ff2 fs3 fc0 sc0 ls1 ws1"> </div><div class="t m5 x31 h18 y74 ff6 fsc fc0 sc0 ls33 ws1">()<span class="_ _28"> </span>(<span class="_ _29"></span>)</div><div class="t m6 x2d h19 y74 ff6 fsd fc0 sc0 ls34 ws1">()</div><div class="t m0 x32 h1a y75 ff2 fse fc0 sc0 ls35 ws1">12</div><div class="t m0 x33 h1b y76 ff2 fsf fc0 sc0 ls36 ws1">,,<span class="_ _2a"></span>,</div><div class="t m0 x34 h1c y75 ff4 fse fc0 sc0 ls1 ws1">N</div><div class="t m7 x35 h1d y76 ff6 fs10 fc0 sc0 ls37 ws1">&#952;&#952;<span class="_ _2b"> </span>&#952;</div><div class="c x36 y77 w5 h15"><div class="t m0 x0 h1e y5d ff9 fsf fc0 sc0 ls1 ws1">&#63726;</div></div><div class="t m0 x37 h1e y76 ff9 fsf fc0 sc0 ls1 ws1">&#63737;<span class="_ _2c"></span><span class="ff6">=</span></div><div class="c x36 y78 w5 h15"><div class="t m0 x0 h1e y5f ff9 fsf fc0 sc0 ls1 ws1">&#63728;</div></div><div class="t m0 x37 h1e y79 ff9 fsf fc0 sc0 ls1 ws1">&#63739;</div><div class="t m0 x38 h1f y7a ff7 fsf fc0 sc0 ls38 ws1">Aa<span class="_ _2d"> </span>a<span class="_ _2e"> </span>a<span class="_ _2f"></span><span class="ffa ls1">"</span></div><div class="t m0 x25 ha y76 ff2 fs3 fc0 sc0 ls1 ws1"> </div><div class="t m0 x1e ha y7b ff2 fs3 fc0 sc0 ls1b ws1">wher<span class="_ _4"></span>e,<span class="_ _1"></span> </div><div class="t m8 x39 h20 y7c ff6 fs11 fc0 sc0 ls39 ws1">()(<span class="_ _30"> </span>)</div><div class="t m3 x24 h21 y7d ff2 fs12 fc0 sc0 ls3a ws1">,1<span class="_ _31"></span>,<span class="_ _32"></span>2<span class="_ _33"></span>,<span class="_ _15"></span>,</div><div class="t m3 x3a h22 y7e ff4 fs13 fc0 sc0 ls1 ws1">m</div><div class="c x3b y7f w6 h23"><div class="t m3 x0 h24 y80 ff4 fs12 fc0 sc0 ls1 ws1">x</div></div><div class="t m3 x3c h25 y7d ff4 fs12 fc0 sc0 ls3b ws1">tm<span class="_ _10"> </span>M<span class="_ _34"></span><span class="ff6 ls1">=<span class="_ _35"> </span><span class="ffa">"<span class="_ _36"> </span><span class="ff2 fs3 ws41"> <span class="_ _f"></span>i<span class="_ _1"></span>s<span class="_ _0"></span> the<span class="_ _0"></span> input<span class="_ _0"></span> of<span class="_ _0"></span> the<span class="_ _0"></span> <span class="ff4 ws1">m<span class="ff2 ls1c">th </span></span></span></span></span></div><div class="t m3 x1e ha y81 ff2 fs3 fc0 sc0 ls21 ws1">elem<span class="_ _1"></span>en<span class="_ _1"></span>t,<span class="_ _1"></span> </div><div class="t m9 x3d h20 y82 ff6 fs11 fc0 sc0 ls3c ws1">()</div><div class="t ma x31 h26 y82 ff6 fs14 fc0 sc0 ls3d ws1">()</div><div class="t m0 x8 h22 y83 ff4 fs13 fc0 sc0 ls3e ws1">nn<span class="_ _37"></span>n</div><div class="t m0 x3e h24 y84 ff4 fs12 fc0 sc0 ls3f ws1">st</div><div class="t mb x35 h27 y84 ff6 fs15 fc0 sc0 ls40 ws1">&#952;&#952;</div><div class="t m3 x3f h28 y84 ff7 fs12 fc0 sc0 ls1 ws1">a<span class="_ _2a"></span><span class="ffb ls41">&#12289;&#12289;</span></div><div class="t mc x40 h20 y82 ff6 fs11 fc0 sc0 ls42 ws1">()</div><div class="t m3 x41 h25 y84 ff2 fs12 fc0 sc0 ls43 ws1">1,<span class="_ _28"> </span>2<span class="_ _29"></span>,<span class="_ _38"> </span>,<span class="_ _39"></span><span class="ff4 ls44">nN<span class="_ _3a"></span><span class="ff6 ls1">=<span class="_ _35"> </span><span class="ffa">"<span class="_ _3b"> </span><span class="ff2 fs3 ls45 ws2b"> ar<span class="_ _4"></span>e <span class="_ _3c"> </span>th<span class="_ _4"></span>e </span></span></span></span></div><div class="t m3 x1e ha y85 ff2 fs3 fc0 sc0 ls14 ws42">complex a<span class="_ _1"></span>mpli<span class="_ _1"></span>tude, st<span class="_ _1"></span>eering vec<span class="_ _0"></span>t<span class="_ _1"></span>or<span class="_ _1"></span>, DOA of t<span class="_ _0"></span>h<span class="_ _1"></span>e <span class="ff4 ls1 ws1">n<span class="ff2 ls1c">th </span></span></div><div class="t m3 x1e ha y86 ff2 fs3 fc0 sc0 ls1b ws43">sour<span class="_ _1"></span>ces<span class="_ _1"></span> r<span class="_ _1"></span>espect<span class="_ _1"></span>i<span class="_ _1"></span>vel<span class="_ _1"></span>y<span class="_ _0"></span>.<span class="_ _1"></span> </div><div class="t md x42 h20 y87 ff6 fs11 fc0 sc0 ls46 ws1">()</div><div class="t m0 x33 h22 y88 ff4 fs13 fc0 sc0 ls1 ws1">m</div><div class="t m0 x43 ha y89 ff4 fs12 fc0 sc0 ls47 ws1">nt<span class="_ _3d"></span><span class="ff2 fs3 lsa ws44"> <span class="_ _3d"></span>is t<span class="_ _0"></span>he no<span class="_ _0"></span>ise<span class="_ _0"></span> of<span class="_ _0"></span> th<span class="_ _1"></span>e<span class="_ _0"></span> <span class="_ _1"></span><span class="ff4 ls1 ws1">m<span class="ff2 ls1c">th </span></span></span></div><div class="t m0 x1e ha y8a ff2 fs3 fc0 sc0 ls1d ws45">elem<span class="_ _1"></span>en<span class="_ _1"></span>t, an<span class="_ _1"></span>d ass<span class="_ _1"></span>um<span class="_ _1"></span>ed be zer<span class="_ _1"></span>o <span class="_ _0"></span>m<span class="_ _1"></span>ean Ga<span class="_ _1"></span>u<span class="_ _1"></span>ssian wh<span class="_ _1"></span>it<span class="_ _1"></span>e </div><div class="t m0 x1e ha y8b ff2 fs3 fc0 sc0 ls21 ws46">n<span class="_ _1"></span>ois<span class="_ _1"></span>e with<span class="_ _1"></span> equa<span class="_ _1"></span>l power<span class="_ _1"></span>.<span class="_ _1"></span> <span class="_ _0"></span>Th<span class="_ _1"></span>e st<span class="_ _1"></span>eerin<span class="_ _1"></span>g vect<span class="_ _1"></span>or<span class="_ _1"></span> can be<span class="_ _1"></span> </div><div class="t m0 x1e ha y8c ff2 fs3 fc0 sc0 ls1 ws47">expresse<span class="_ _0"></span>d as </div><div class="t m0 x44 h29 y8d ffc fs16 fc0 sc0 ls1 ws1"><span class="fc1 sc0">2008 Congress on Image and Signal Processing</span></div><div class="t m0 x45 h2a y8e ffc fs17 fc0 sc0 ls1 ws1"><span class="fc1 sc0">978-0-7695-3119-9/08 $25.00 &#169; 2008 IEEE</span></div><div class="t m0 x45 h2a y8f ffc fs17 fc0 sc0 ls1 ws1"><span class="fc1 sc0">DOI 10.1109/CISP.2008.521</span></div><div class="t m0 x46 h2a y8e ffc fs17 fc0 sc0 ls1 ws1"><span class="fc1 sc0">54</span></div><div class="t m0 x44 h29 y8d ffd fs16 fc0 sc0 ls1 ws1">2008 Congress on Image and Signal Processing</div><div class="t m0 x45 h2a y8e ffd fs17 fc0 sc0 ls1 ws1">978-0-7695-3119-9/08 $25.00 &#169; 2008 IEEE</div><div class="t m0 x45 h2a y8f ffd fs17 fc0 sc0 ls1 ws1">DOI 10.1109/CISP.2008.521</div><div class="t m0 x46 h2a y8e ffd fs17 fc0 sc0 ls1 ws1">54</div></div><div class="pi" data-data='{"ctm":[1.568627,0.000000,0.000000,1.568627,0.000000,0.000000]}'></div></div> </body> </html>
评论
    相关推荐
    • Matlab合集
      冈萨雷斯数字图像处理MATLAB版.中文版+数字图像处理第二版中文版(冈萨雷斯)+MATLAB-R2014a完全自学一本通+MATLAB R2016a完全自学一本通 素材文件+[模式识别与智能计算:MATLAB技术实现(第2版)].杨淑莹.扫描版
    • Matlab教程
      MatlaB经典ppt,主要讲解了MatlaB的入门知识,图形编程以及仿真。
    • matlab 课件
      matlab 功能很强大,本课件详细的介绍了matlab在科学计算中的应用。
    • matlab编译器
      matlab编译为exe文件所需要的文件; 使用时解压,将解压后文件拖入至matlab命令行即可
    • matlab
      matlab的基础知识进行介绍
    • MatLab
      “#MatLab
    • MATLAB编译器
      基于MATLAB 2018b版本介绍MATLAB编译器。介绍如何利用编译器将MATLAB代码编译为独立应用程序或组件,并在没有安装MATLAB的计算机上进行部署。
    • matlab入门
      matlab的入门教程,很值得仔细看看,对提高matlab能力有帮助
    • matlab
      matlab经典课堂讲义
    • matlab
      matlab