<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta name="generator" content="pdf2htmlEX">
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1">
<link rel="stylesheet" href="https://static.pudn.com/base/css/base.min.css">
<link rel="stylesheet" href="https://static.pudn.com/base/css/fancy.min.css">
<link rel="stylesheet" href="https://static.pudn.com/prod/directory_preview_static/622bdb083d2fbb000796acd0/raw.css">
<script src="https://static.pudn.com/base/js/compatibility.min.js"></script>
<script src="https://static.pudn.com/base/js/pdf2htmlEX.min.js"></script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title></title>
</head>
<body>
<div id="sidebar" style="display: none">
<div id="outline">
</div>
</div>
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622bdb083d2fbb000796acd0/bg1.jpg"><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">图论算法及其<span class="_ _0"> </span><span class="ff2 ls1">MATLAB<span class="_"> </span></span>程序代码<span class="ff2 ws1"> </span></div><div class="t m0 x2 h2 y2 ff1 fs0 fc0 sc0 ls0 ws0">求赋权图<span class="_ _0"> </span><span class="ff3 ls2">G</span><span class="ff2 ws1"> <span class="ls3 ws0">=<span class="ls4 ws2"> (<span class="_ _1"></span></span><span class="ff3 ls5">V<span class="_ _2"></span><span class="ff2 ls6">, <span class="_ _2"></span><span class="ff3 ls5">E<span class="ls0 ws1"> <span class="_ _2"></span><span class="ff2 ls6 ws0">, <span class="_ _2"></span><span class="ff3 ls5 ws3">F <span class="ff2 ls7 ws0">)<span class="ff1 ls8">中任意两点间的最短路的<span class="_ _3"> </span></span><span class="ls9">Warshall</span>-<span class="lsa">F<span class="lsb">loyd<span class="_ _0"> </span><span class="ff1 ls0">算法:<span class="ff2 ws1"> </span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x2 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">设<span class="_ _4"> </span><span class="ff4 lsc ws4">A <span class="_"> </span><span class="ff2 lsd ws5">= (</span></span><span class="ff3">a</span></div><div class="t m0 x3 h3 y4 ff3 fs1 fc0 sc0 lse ws6">ij </div><div class="t m0 x4 h2 y3 ff2 fs0 fc0 sc0 ls7 ws0">)</div><div class="t m0 x5 h3 y4 ff3 fs1 fc0 sc0 ls6 ws0">n</div><div class="t m0 x6 h4 y5 ff1 fs2 fc0 sc0 ls0 ws0">×</div><div class="t m0 x7 h3 y4 ff3 fs1 fc0 sc0 ls6 ws0">n</div><div class="t m0 x8 h2 y3 ff1 fs0 fc0 sc0 ls0 ws0">为赋权图<span class="_ _4"> </span><span class="ff3 ls2">G</span><span class="ff2 ws1"> <span class="ls3 ws0">=<span class="ls4 ws2"> (<span class="_ _1"></span></span><span class="ff3 ls5">V<span class="_ _2"></span><span class="ff2 ls6">, <span class="_ _2"></span><span class="ff3 ls5">E<span class="ls0 ws1"> <span class="_ _2"></span><span class="ff2 ls6 ws0">, <span class="_ _2"></span><span class="ff3 ls5 ws3">F <span class="ff2 ls7 ws0">)<span class="ff1 ls0">的矩阵<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">当<span class="_ _4"> </span><span class="ff3 ls10">v</span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x9 h3 y4 ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 xa h5 y3 ff3 fs0 fc0 sc0 ls10 ws0">v</div><div class="t m0 xb h3 y4 ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 xc h5 y3 ff1 fs0 fc0 sc0 ls0 ws0">∈<span class="ff3 ls5">E<span class="_ _4"> </span></span>时<span class="_ _4"> </span><span class="ff3">a</span></div><div class="t m0 xd h6 y4 ff3 fs1 fc0 sc0 ls11 ws0">ij<span class="ff2 ls0 ws7"> </span></div><div class="t m0 xe h2 y3 ff2 fs0 fc0 sc0 ls3 ws0">=<span class="_ _2"></span><span class="ls0 ws1"> <span class="ff3 ls5 ws0">F</span><span class="ls4 ws2"> (<span class="_ _1"></span><span class="ff3 ls10 ws0">v</span></span></span></div><div class="t m0 xf h3 y4 ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x10 h5 y3 ff3 fs0 fc0 sc0 ls10 ws0">v</div><div class="t m0 x11 h3 y4 ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x12 h2 y3 ff2 fs0 fc0 sc0 ls12 ws8">), <span class="_ _3"> </span><span class="ff1 ls0 ws0">否则取<span class="_ _4"> </span><span class="ff3">a</span></span></div><div class="t m0 x13 h6 y4 ff3 fs1 fc0 sc0 ls13 ws0">ii<span class="_ _1"></span><span class="ff2 ls0 ws7"> </span></div><div class="t m0 x14 h2 y3 ff2 fs0 fc0 sc0 ls14 ws9">=0, <span class="ff3 ls0 ws0">a</span></div><div class="t m0 x15 h6 y4 ff3 fs1 fc0 sc0 ls11 ws0">ij<span class="_ _2"></span><span class="ff2 ls0 ws7"> </span></div><div class="t m0 x16 h2 y6 ff2 fs0 fc0 sc0 ls3 wsa">= +<span class="ff1 ls0 ws0">∞<span class="ff2 ls7">(<span class="ff3 ls15">i</span></span>≠<span class="ff3 ls16 wsb">j <span class="_ _1"></span></span></span><span class="ls17 wsc">), <span class="ff3 ls0 ws0">d</span></span></div><div class="t m0 x17 h3 y7 ff3 fs1 fc0 sc0 ls13 ws0">ij</div><div class="t m0 x18 h5 y6 ff1 fs0 fc0 sc0 ls0 ws0">表示从<span class="_ _4"> </span><span class="ff3 ls10">v</span></div><div class="t m0 x19 h3 y7 ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x1a h5 y6 ff1 fs0 fc0 sc0 ls0 ws0">到<span class="_ _4"> </span><span class="ff3 ls10">v</span></div><div class="t m0 x1b h3 y7 ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x1c h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">点的距离<span class="_ _2"></span><span class="ff2 ls6">, <span class="ff3 ls18">r</span></span></div><div class="t m0 x1d h3 y7 ff3 fs1 fc0 sc0 ls11 ws0">ij</div><div class="t m0 x1e h5 y6 ff1 fs0 fc0 sc0 ls19 ws0">表示从<span class="_ _3"> </span><span class="ff3 ls10">v</span></div><div class="t m0 x1f h3 y7 ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x20 h5 y6 ff1 fs0 fc0 sc0 ls0 ws0">到<span class="_ _4"> </span><span class="ff3 ls10">v</span></div><div class="t m0 x21 h3 y7 ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x22 h2 y6 ff1 fs0 fc0 sc0 ls0 ws0">点的最短路中一个点的编号<span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></div><div class="t m0 x2 h2 y8 ff1 fs0 fc0 sc0 ls0 ws0">①<span class="ff2 ws1"> <span class="_"> </span></span>赋初值<span class="ff2 lsf">. <span class="_ _3"> </span></span><span class="ls19">对所有<span class="_ _3"> </span><span class="ff3 ls15">i<span class="_ _2"></span><span class="ff2 ls6">, <span class="ff3 ls15">j<span class="_ _2"></span><span class="ff2 ls6">, <span class="ff3 ls0">d</span></span></span></span></span></span></div><div class="t m0 x1c h3 y9 ff3 fs1 fc0 sc0 ls11 wsd">ij </div><div class="t m0 x23 h2 y8 ff2 fs0 fc0 sc0 ls3 wsa">= <span class="ff3 ls0 ws0">a</span></div><div class="t m0 x24 h3 y9 ff3 fs1 fc0 sc0 ls11 ws0">ij</div><div class="t m0 x25 h2 y8 ff2 fs0 fc0 sc0 ls6 ws0">, <span class="ff3 ls18">r</span></div><div class="t m0 x26 h3 y9 ff3 fs1 fc0 sc0 ls11 wsd">ij </div><div class="t m0 x27 h2 y8 ff2 fs0 fc0 sc0 ls1a wsa">= <span class="_ _1"></span><span class="ff3 ls15 ws0">j<span class="ff2 lsf">. </span><span class="ls1b wse">k </span></span><span class="ls1c wsf">= 1. <span class="_ _3"> </span><span class="ff1 ls0 ws0">转向②<span class="ff2 ws1"> </span></span></span></div><div class="t m0 x2 h2 ya ff1 fs0 fc0 sc0 ls0 ws0">②<span class="ff2 ws1"> <span class="_"> </span></span>更新<span class="_ _0"> </span><span class="ff3">d</span></div><div class="t m0 x4 h3 yb ff3 fs1 fc0 sc0 ls11 ws0">ij</div><div class="t m0 x5 h2 ya ff2 fs0 fc0 sc0 ls6 ws0">, <span class="ff3 ls18">r</span></div><div class="t m0 x28 h3 yb ff3 fs1 fc0 sc0 lse ws6">ij </div><div class="t m0 x29 h2 ya ff2 fs0 fc0 sc0 lsf ws0">. <span class="_ _3"> </span><span class="ff1 ls0">对所有<span class="_ _0"> </span><span class="ff3 ls15">i<span class="_ _2"></span><span class="ff2 ls6">, <span class="ff3 ls15">j<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">若<span class="_ _0"> </span><span class="ff3">d</span></span></span></span></span></span></span></div><div class="t m0 x2a h3 yb ff3 fs1 fc0 sc0 ls1d ws10">ik </div><div class="t m0 x27 h2 ya ff2 fs0 fc0 sc0 ls3 ws0">+<span class="ff3 ls1e ws11"> d</span></div><div class="t m0 x2b h3 yb ff3 fs1 fc0 sc0 ls1f ws0">k j</div><div class="t m0 x2c h5 ya ff1 fs0 fc0 sc0 ls0 ws0"><<span class="ff3">d</span></div><div class="t m0 x2d h3 yb ff3 fs1 fc0 sc0 ls13 ws0">ij</div><div class="t m0 x2e h2 ya ff2 fs0 fc0 sc0 lsf ws0">, <span class="_ _3"> </span><span class="ff1 ls20">则令<span class="_ _3"> </span><span class="ff3 ls0">d</span></span></div><div class="t m0 xa h3 yb ff3 fs1 fc0 sc0 ls13 ws0">ij</div><div class="t m0 x2f h2 ya ff2 fs0 fc0 sc0 ls3 wsa"> =<span class="_ _2"></span><span class="ff3 ls1e ws11"> d</span></div><div class="t m0 x30 h3 yb ff3 fs1 fc0 sc0 ls1d ws10">ik </div><div class="t m0 x31 h2 ya ff2 fs0 fc0 sc0 ls3 ws0">+<span class="ff3 ls1e ws11"> d</span></div><div class="t m0 x32 h3 yb ff3 fs1 fc0 sc0 ls1f ws0">k j</div><div class="t m0 x33 h2 ya ff2 fs0 fc0 sc0 ls6 ws0">, <span class="ff3 ls18">r</span></div><div class="t m0 x34 h3 yb ff3 fs1 fc0 sc0 ls11 wsd">ij </div><div class="t m0 x35 h2 ya ff2 fs0 fc0 sc0 ls1a wsa">= <span class="_ _1"></span><span class="ff3 ls10 ws0">k<span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">转向③</span><span class="ls6">.</span></span><span class="ls0 ws1"> </span></span></div><div class="t m0 x2 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">③<span class="ff2 ws1"> <span class="_"> </span></span>终止判断<span class="ff2 lsf">. <span class="_ _0"> </span></span>若<span class="_ _0"> </span><span class="ff3">d</span></div><div class="t m0 x36 h3 yd ff3 fs1 fc0 sc0 ls13 ws0">ii</div><div class="t m0 x37 h2 yc ff1 fs0 fc0 sc0 ls0 ws0"><<span class="ff2 ls21 ws7">0, <span class="_ _3"> </span></span><span class="ls22">则存在一条含有顶点<span class="_ _3"> </span><span class="ff3 ls10">v</span></span></div><div class="t m0 x38 h3 yd ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x39 h2 yc ff1 fs0 fc0 sc0 ls0 ws0">的负回路<span class="ff2 lsf">, <span class="_ _3"> </span></span>终止<span class="ff2 ls16 wsb">; <span class="_ _3"> </span></span><span class="ls20">或者<span class="_ _3"> </span><span class="ff3 ls10 wse">k <span class="_ _5"></span><span class="ff2 ls1a wsa">= <span class="_ _1"></span></span></span></span><span class="ff3">n<span class="_ _0"> </span></span>终止<span class="ff2 ls16 wsb">; <span class="_ _3"> </span></span>否则</div><div class="t m0 x16 h2 ye ff1 fs0 fc0 sc0 ls0 ws0">令<span class="_ _0"> </span><span class="ff3 ls10">k<span class="ff2 ls3 wsa"> =</span><span class="wse"> k<span class="ff2 ls1c ws12"> + 1, <span class="_ _3"> </span></span></span></span>转向②<span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></div><div class="t m0 x2 h5 yf ff1 fs0 fc0 sc0 ls0 ws0">最短路线可由<span class="_ _0"> </span><span class="ff3 ls18">r</span></div><div class="t m0 x3a h3 y10 ff3 fs1 fc0 sc0 ls11 ws0">ij</div><div class="t m0 x3b h2 yf ff1 fs0 fc0 sc0 ls0 ws0">得到<span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></div><div class="t m0 x16 h2 y11 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x2 h7 y12 ff5 fs0 fc0 sc0 ls0 ws0">例<span class="_ _3"> </span><span class="ff6">1<span class="_ _2"></span><span class="ff2 ws13"> <span class="_ _1"></span><span class="ff1 ls20 ws0">求图<span class="_ _3"> </span></span><span class="ws0">6<span class="ls7">-<span class="_ _2"></span><span class="ls0">4<span class="_ _0"> </span><span class="ff1">中任意两点间的最短路</span><span class="ls6">.</span><span class="ws1"> </span></span></span></span></span></span></div><div class="t m0 x16 h2 y13 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x16 h2 y14 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x16 h2 y15 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x16 h2 y16 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x16 h2 y17 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x16 h2 y18 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x16 h2 y19 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x2 h2 y1a ff7 fs0 fc0 sc0 ls0 ws0">解<span class="ff1">:用<span class="_ _0"> </span><span class="ff2 ls9">Warshall<span class="ls7">-<span class="lsa">F<span class="lsb">loyd<span class="_ _0"> </span></span></span></span></span>算法<span class="ff2 ls23 ws14">, MATLAB<span class="_ _4"> </span></span>程序代码如下:<span class="ff2 ws1"> </span></span></div><div class="t m0 x16 h8 y1b ff8 fs3 fc0 sc0 ls24 ws0">n=8;<span class="_ _2"></span><span class="ls25">A=[0<span class="_ _5"> </span><span class="ls0 ws15"> <span class="_ _0"> </span></span><span class="ls24">2<span class="ls0 ws15"> <span class="_ _6"> </span></span>8<span class="ls0 ws15"> <span class="_ _6"> </span></span>1<span class="ls0 ws15"> <span class="_ _6"> </span></span><span class="ls26">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> </span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x2 h8 y1c ff8 fs3 fc0 sc0 ls24 ws0">2<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>6<span class="ls0 ws15"> <span class="_ _6"> </span></span><span class="ls26">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">1</span> <span class="_ _6"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls27 ws0">In<span class="_ _1"></span><span class="ls28">f</span></span> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> </span></span></span></span></span></span></div><div class="t m0 x2 h8 y1d ff8 fs3 fc0 sc0 ls24 ws0">8<span class="ls0 ws15"> <span class="_ _6"> </span></span>6<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>7<span class="ls0 ws15"> <span class="_ _6"> </span></span>5<span class="ls0 ws15"> <span class="_ _6"> </span></span>1<span class="ls0 ws15"> <span class="_ _6"> </span></span>2<span class="ls0 ws15"> <span class="_ _6"> </span></span><span class="ls26">Inf<span class="_ _2"></span><span class="ls0 ws15"> </span></span></div><div class="t m0 x2 h8 y1e ff8 fs3 fc0 sc0 ls24 ws0">1<span class="ls0 ws15"> <span class="_ _6"> </span></span><span class="ls26">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">7</span> <span class="_ _6"> </span><span class="ls24 ws0">0</span> <span class="_ _6"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">9</span> <span class="_ _6"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> </span></span></span></span></span></span></span></span></div><div class="t m0 x2 h8 y1f ff8 fs3 fc0 sc0 ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">1</span> <span class="_ _6"> </span><span class="ls24 ws0">5</span> <span class="_ _6"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">0</span> <span class="_ _6"> </span><span class="ls24 ws0">3</span> <span class="_ _6"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">8</span> </span></span></span></span></span></div><div class="t m0 x2 h8 y20 ff8 fs3 fc0 sc0 ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">1</span> <span class="_ _6"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">3</span> <span class="_ _6"> </span><span class="ls24 ws0">0</span> <span class="_ _6"> </span><span class="ls24 ws0">4</span> <span class="_ _6"> </span><span class="ls24 ws0">6</span> </span></span></span></span></span></div><div class="t m0 x2 h8 y21 ff8 fs3 fc0 sc0 ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">2</span> <span class="_ _6"> </span><span class="ls24 ws0">9</span> <span class="_ _6"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">4</span> <span class="_ _6"> </span><span class="ls24 ws0">0</span> <span class="_ _6"> </span><span class="ls24 ws0">3</span> </span></span></span></span></span></div><div class="t m0 x2 h9 y22 ff8 fs3 fc0 sc0 ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls26 ws0">Inf<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _7"> </span><span class="ls24 ws0">8</span> <span class="_ _6"> </span><span class="ls24 ws0">6</span> <span class="_ _6"> </span><span class="ls24 ws0">3</span> <span class="_ _6"> </span><span class="ls24 ws0">0<span class="ls28">];</span></span> <span class="_"> </span> <span class="_ _8"> </span><span class="fc1 ls29 ws16">% MATLAB<span class="_ _0"> </span><span class="ff1 ls0 ws0">中</span><span class="ls2a ws17">, Inf<span class="_ _5"> </span><span class="ff1 ls0 ws0">表示∞</span></span></span> </span></span></span></span></span></span></span></div><div class="t m0 x16 h9 y23 ff8 fs3 fc0 sc0 ls2b ws0">D=A;<span class="_ _1"></span><span class="ls0 ws15"> <span class="_ _0"> </span> <span class="_ _9"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">赋初值<span class="ff8 fc2 ws15"> </span></span></span></div><div class="t m0 x16 h9 y24 ff8 fs3 fc2 sc0 ls2d ws0">for<span class="fc0 ls2e">(i<span class="ls2f">=1:n<span class="_ _1"></span><span class="ls30">)</span></span></span>for<span class="fc0 ls2e">(j<span class="ls2f">=1:n<span class="_ _1"></span><span class="ls31">)R(i,j)=j;<span class="_ _2"></span><span class="fc2 ls32">end<span class="fc0 ls28">;</span><span class="ls33">end<span class="fc0 ls0 ws15"> <span class="_ _a"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">赋路径初值</span></span><span class="ls0 ws15"> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y25 ff8 fs3 fc2 sc0 ls2d ws0">for<span class="fc0 ls34">(k<span class="ls2f">=1:n<span class="_ _1"></span><span class="ls30">)</span></span></span>for<span class="fc0 ls2e">(i<span class="ls2f">=1:n<span class="_ _1"></span><span class="ls30">)</span></span></span>for<span class="fc0 ls2e">(j<span class="ls35">=1:n<span class="_ _1"></span><span class="ls30">)</span></span></span><span class="ls6">if<span class="_ _2"></span><span class="fc0 ls2e">(D<span class="ls36">(i,k)+D(<span class="ls37">k,j)<D(i,j)<span class="ls0">)D(i,j)=D(i,k)+D(k,j);<span class="ws15"> <span class="_ _5"> </span> <span class="_ _b"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">更新<span class="_ _4"> </span></span><span class="ls38">dij</span></span><span class="fc2 ws15"> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y26 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="ls39 ws0">R(i,j)=k;<span class="fc2 ls24">end</span><span class="ls28">;<span class="fc2 ls32">end</span>;<span class="fc2 ls33">end</span></span></span> <span class="_ _1"></span> <span class="_ _c"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">更新<span class="_ _4"> </span></span><span class="ls3a">rij</span></span><span class="fc2"> </span></div><div class="t m0 x16 h9 y27 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="ws0">k</span> <span class="_ _d"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">显示迭代步数</span></span><span class="fc1"> </span></div><div class="t m0 x16 h9 y28 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="ls3b ws0">D</span> <span class="_ _e"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">显示每步迭代后的路长</span></span><span class="fc1"> </span></div><div class="t m0 x16 h9 y29 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="ls3b ws0">R</span> <span class="_ _e"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">显示每步迭代后的路径</span></span><span class="fc1"> </span></div><div class="t m0 x16 h9 y2a ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="ls24 ws0">pd=0;<span class="_ _2"></span><span class="fc2 ls2d ws18">for <span class="fc0 ls3c ws0">i=1:n<span class="ls0 ws15"> <span class="_ _f"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">含有负权时</span></span></span><span class="ls0 ws15"> </span></span></span></div><div class="t m0 x16 h9 y2b ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls6 ws0">if<span class="_ _2"></span><span class="fc0 ls3d">(D(i,i)<0)pd=1;<span class="_ _2"></span><span class="fc2 ls3e">break<span class="fc0 ls28">;</span><span class="ls24">end<span class="fc0 ls28">;</span><span class="ls32">end<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="_ _3"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">存在一条含有顶点<span class="_ _4"> </span></span><span class="ls3f">vi<span class="_ _0"> </span><span class="ff1 ls0">的负回路</span></span></span><span class="fc2"> </span></span></span></span></span></span></span></div><div class="t m0 x16 h9 y2c ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="fc2 ls6 ws0">if<span class="_ _2"></span><span class="fc0 ls40">(pd)<span class="fc2 ls3e">break</span><span class="ls28">;<span class="fc2 ls24">end<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="_ _c"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">存在一条负回路</span><span class="ls28">, <span class="_"> </span><span class="ff1 ls0">终止程序</span></span></span><span class="fc2"> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y2d ff8 fs3 fc2 sc0 ls24 ws0">end<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="_ _3"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">程序结束</span></span><span class="fc2"> </span></span></div><div class="t m0 x16 h2 y2e ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x3c h2 y2f ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x3d ha y30 ff1 fs3 fc0 sc0 ls0 ws0">图<span class="_ _4"> </span><span class="ff2">6<span class="ls30">-</span>4 </span></div><div class="c x3e y31 w2 hb"><div class="t m0 x0 h2 y32 ff2 fs0 fc0 sc0 ls0 ws1"> </div></div></div><div class="pi" data-data='{"ctm":[1.610738,0.000000,0.000000,1.610738,0.000000,0.000000]}'></div></div>
</body>
</html>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622bdb083d2fbb000796acd0/bg2.jpg"><div class="t m0 x16 h2 y33 ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x2 h2 y34 ff2 fs0 fc0 sc0 ls41 ws0">Kruskal<span class="_ _0"> </span><span class="ff1 ls0">避圈法:将图<span class="_ _3"> </span><span class="ff3 ls2">G<span class="_ _3"> </span></span>中的边按权数从小到大逐条考察</span><span class="ls6">, <span class="_"> </span><span class="ff1 ls0">按不构成圈的原则加入到<span class="_ _3"> </span><span class="ff3 lsa">T</span></span></span></div><div class="t m0 x16 hc y35 ff1 fs0 fc0 sc0 ls0 ws0">中<span class="ff2 ls7">(</span>若有选择时<span class="ff2 lsf">, <span class="_ _3"> </span></span>不同的选择可能会导致最后生成树的权数不同<span class="ff2 ls17 ws19">), <span class="_ _3"> </span></span><span class="ls20">直到<span class="_ _3"> </span></span><span class="ff3 ws1">q </span><span class="ff2 ls7">(<span class="ff3 ls42 ws1a">T <span class="_ _5"></span></span><span class="ls43 ws1b">) = <span class="_ _5"></span></span></span><span class="ff3 ws1">p </span><span class="ff2 ls7">(<span class="ff3 ls2 ws1c">G <span class="_ _5"></span></span>)<span class="ls0 ws1"> <span class="_ _1"></span></span><span class="ff9 ls44">−<span class="_ _2"></span><span class="ff2 ls0 ws1"> <span class="_ _1"></span><span class="ws0">1<span class="_ _0"> </span><span class="ff1">为</span></span></span></span></span></div><div class="t m0 x16 hc y36 ff1 fs0 fc0 sc0 ls0 ws0">止<span class="ff2 ls6">, <span class="_ _4"> </span></span>即<span class="_ _0"> </span><span class="ff3 lsa">T<span class="_ _2"></span><span class="ff2 ls0 ws1"> <span class="_"> </span><span class="ff1 ws0">的边数</span><span class="ls1a wsa">= <span class="_ _1"></span><span class="ff3 ls2 ws0">G<span class="_ _0"> </span><span class="ff1 ls0">的顶点数<span class="ff9 ls44">−</span></span></span></span> <span class="_ _2"></span><span class="ws0">1<span class="_ _0"> </span><span class="ff1">为止</span><span class="ls6">.</span><span class="ws1"> </span></span></span></span></div><div class="t m0 x2 h2 y37 ff2 fs0 fc0 sc0 ls41 ws0">Kruskal<span class="_ _4"> </span><span class="ff1 ls0">避圈法的<span class="_ _0"> </span></span><span class="ls45">MATLAB<span class="_ _0"> </span><span class="ff1 ls38">程序代码如下<span class="_ _2"></span><span class="ls0">:<span class="ff2 ws1"> </span></span></span></span></div><div class="t m0 x16 h8 yb ff8 fs3 fc0 sc0 ls46 ws0">n=8;A=[0<span class="_ _5"> </span><span class="ls0 ws15"> <span class="_ _0"> </span></span><span class="ls24">2<span class="ls0 ws15"> <span class="_ _6"> </span></span>8<span class="ls0 ws15"> <span class="_ _6"> </span></span>1<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> </span></span></div><div class="t m0 x2 h8 y38 ff8 fs3 fc0 sc0 ls24 ws0">2<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>6<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>1<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> </span></div><div class="t m0 x2 h8 y39 ff8 fs3 fc0 sc0 ls24 ws0">8<span class="ls0 ws15"> <span class="_ _6"> </span></span>6<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>7<span class="ls0 ws15"> <span class="_ _6"> </span></span>5<span class="ls0 ws15"> <span class="_ _6"> </span></span>1<span class="ls0 ws15"> <span class="_ _6"> </span></span>2<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> </span></div><div class="t m0 x2 h8 y3a ff8 fs3 fc0 sc0 ls24 ws0">1<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>7<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>9<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> </span></div><div class="t m0 x2 h8 y3b ff8 fs3 fc0 sc0 ls24 ws0">0<span class="ls0 ws15"> <span class="_ _6"> </span></span>1<span class="ls0 ws15"> <span class="_ _6"> </span></span>5<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>3<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>8<span class="ls0 ws15"> </span></div><div class="t m0 x2 h8 y3c ff8 fs3 fc0 sc0 ls24 ws0">0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>1<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>3<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>4<span class="ls0 ws15"> <span class="_ _6"> </span></span>6<span class="ls0 ws15"> </span></div><div class="t m0 x2 h8 y3d ff8 fs3 fc0 sc0 ls24 ws0">0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>2<span class="ls0 ws15"> <span class="_ _6"> </span></span>9<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>4<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>3<span class="ls0 ws15"> </span></div><div class="t m0 x2 h8 y3e ff8 fs3 fc0 sc0 ls24 ws0">0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>0<span class="ls0 ws15"> <span class="_ _6"> </span></span>8<span class="ls0 ws15"> <span class="_ _6"> </span></span>6<span class="ls0 ws15"> <span class="_ _6"> </span></span>3<span class="ls0 ws15"> <span class="_ _6"> </span><span class="ls47 ws1d">0]; <span class="_"> </span></span> </span></div><div class="t m0 x16 h9 y3f ff8 fs3 fc0 sc0 ls48 ws0">k=1;<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _5"> </span> <span class="_ _c"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">记录<span class="_ _4"> </span></span><span class="ls49">A<span class="_ _5"> </span><span class="ff1 ls0">中不同正数的个数</span></span></span> </span></div><div class="t m0 x16 h9 y40 ff8 fs3 fc2 sc0 ls2d ws0">for<span class="fc0 ls2e">(i<span class="ls2f">=1:n<span class="_ _1"></span><span class="ls30">-<span class="ls40">1)</span></span></span></span>for<span class="fc0 ls2e">(j<span class="ls4a">=<span class="_ _2"></span><span class="ls4b">i+<span class="ls4c">1:n<span class="_ _1"></span><span class="ls30">)<span class="ls0 ws15"> <span class="_ _5"> </span> <span class="_ _10"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls6">此循环是查找<span class="_ _4"> </span></span><span class="ls49">A<span class="_ _5"> </span><span class="ff1 ls0">中所有不同的正数<span class="ff8 fc2 ws15"> </span></span></span></span></span></span></span></span></span></div><div class="t m0 x16 h9 y41 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="fc2 ls6 ws0">if<span class="_ _2"></span><span class="fc0 ls30">(<span class="ls4d">A(i,j)>0</span>)<span class="ls4e">x(k)=A(i,j);<span class="_ _1"></span><span class="ls0 ws15"> <span class="_ _5"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">数组<span class="_ _4"> </span><span class="ff8">x<span class="_ _5"> </span></span>记录<span class="_ _0"> </span></span><span class="ls49">A<span class="_ _5"> </span><span class="ff1 ls0">中不同的正数</span></span></span><span class="ls0 ws15"> </span></span></span></span></div><div class="t m0 x16 h9 y42 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="ls4f ws0">kk=1;<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _b"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">临时变量</span></span> </span></span></div><div class="t m0 x16 h9 y43 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls2d ws0">for<span class="fc0 ls34">(s<span class="_ _1"></span><span class="ls49">=1:k<span class="ls30">-<span class="ls24">1</span>)<span class="_ _2"></span><span class="fc2 ls6">if<span class="_ _2"></span><span class="fc0 ls50">(x(k)==x(s))kk=0<span class="ls28">;<span class="fc2 ls51">break</span>;<span class="fc2 ls32">end</span>;<span class="fc2 ls24">end<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="_ _11"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">排除相同的正数</span></span><span class="fc2"> </span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x16 h8 y44 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="ls52 ws0">k=k+kk;<span class="fc2 ls24">end</span><span class="ls28">;<span class="fc2 ls24">end</span>;<span class="fc2 ls32">end</span></span></span> </div><div class="t m0 x16 h9 y45 ff8 fs3 fc0 sc0 ls53 ws0">k=k<span class="ls30">-<span class="ls24">1<span class="ls0 ws15"> <span class="_ _12"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">显示<span class="_ _4"> </span></span><span class="ls49">A<span class="_ _5"> </span><span class="ff1 ls0">中所有不同正数的个数</span></span></span><span class="ls0 ws15"> </span></span></span></div><div class="t m0 x16 h9 y46 ff8 fs3 fc2 sc0 ls2d ws0">for<span class="fc0 ls2e">(i<span class="ls24">=1:<span class="_ _2"></span><span class="ls0">k<span class="ls30">-<span class="ls40">1)<span class="fc2 ls2d">for</span><span class="ls2e">(j<span class="ls4a">=<span class="ls4b">i+<span class="_ _2"></span><span class="ls54">1:<span class="_ _2"></span><span class="ls34">k)<span class="ls0 ws15"> <span class="_"> </span> <span class="_ _a"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">将<span class="_ _4"> </span><span class="ff8">x<span class="_ _5"> </span></span>中不同的正数从小到大排序<span class="ff8 fc2 ws15"> </span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x16 h8 y47 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="fc2 ls6 ws0">if<span class="_ _2"></span><span class="fc0 ls55">(x(j)<x(i))xx=x(j);x(j)=x(i);x(i)=xx;<span class="_ _1"></span><span class="fc2 ls24">end</span><span class="ls28">;<span class="fc2 ls24">end</span>;<span class="fc2 ls24">end</span><span class="ls0 ws15"> </span></span></span></span></div><div class="t m0 x16 h9 y48 ff8 fs3 fc0 sc0 ls56 ws0">T(n,n)=0;<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _0"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">将矩阵<span class="_ _4"> </span></span><span class="ls57">T<span class="_"> </span><span class="ff1 ls0">中所有的元素赋值为<span class="_ _4"> </span></span><span class="ls24">0</span></span></span> </span></div><div class="t m0 x16 h9 y49 ff8 fs3 fc0 sc0 ls24 ws0">q=0;<span class="_ _2"></span><span class="ls0 ws15"> <span class="_ _1"></span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">记录加入到树<span class="_ _4"> </span></span><span class="ls57">T<span class="_"> </span><span class="ff1 ls0">中的边数</span></span></span> </span></div><div class="t m0 x16 h9 y4a ff8 fs3 fc2 sc0 ls2d ws0">for<span class="fc0 ls30">(<span class="ls4f">s=1:k</span>)</span><span class="ls6">if<span class="_ _2"></span><span class="fc0 ls58">(q==n)<span class="fc2 ls3e">break<span class="ls59">;end<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="_ _d"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">获得最小生成树<span class="_ _4"> </span></span><span class="ls5a ws1e">T, <span class="_"> </span></span><span class="ff1 ls0">算法终止</span></span><span class="fc2"> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y4b ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span><span class="fc2 ls2d ws0">for<span class="fc0 ls2e">(i<span class="ls2f">=1:n<span class="_ _1"></span><span class="ls30">-<span class="ls40">1)</span></span></span></span>for<span class="fc0 ls2e">(j<span class="ls4a">=<span class="_ _2"></span><span class="ls4b">i+<span class="ls4c">1:n<span class="_ _1"></span><span class="ls30">)<span class="fc2 ls6">if<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="ls30 ws0">(<span class="ls5b">A(i,j)==x(s)<span class="_ _2"></span><span class="ls30">)<span class="ls5c">T(i,j)=x(s);T(j,i)=x(s);<span class="ls0 ws15"> <span class="_"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">加入边到树<span class="_ _4"> </span></span><span class="ls57">T<span class="_"> </span><span class="ff1 ls0">中</span></span></span><span class="ls0 ws15"> </span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x16 h9 y4c ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="ls5d ws0">TT=T;<span class="_ _5"> </span></span> <span class="_ _13"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">临时记录<span class="_ _4"> </span></span><span class="ls57">T</span></span> </div><div class="t m0 x16 h9 y4d ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls5e ws0">while<span class="_ _1"></span><span class="fc0 ls5f">(1)<span class="ls60">pd=1;<span class="_ _14"></span><span class="ls0 ws15"> <span class="_ _15"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">砍掉<span class="_ _4"> </span></span><span class="ls57">TT<span class="_"> </span><span class="ff1 ls0">中所有的树枝</span></span></span><span class="fc2"> </span></span></span></span></span></div><div class="t m0 x16 h8 y4e ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls2d ws0">for<span class="fc0 ls30">(<span class="ls61">y=1:n<span class="_ _1"></span></span>)<span class="ls4f">kk=0;<span class="_ _2"></span><span class="ls0 ws15"> </span></span></span></span></div><div class="t m0 x16 h9 y4f ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls2d ws0">for<span class="fc0 ls30">(<span class="ls61">z=1:n<span class="_ _1"></span></span>)</span><span class="ls6">if<span class="_ _2"></span><span class="fc0 ls62">(TT(y,z)>0)kk=kk+1;zz=z;<span class="_ _1"></span><span class="fc2 ls24">end</span><span class="ls28">;<span class="fc2 ls24">end<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="_ _11"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">寻找<span class="_ _4"> </span></span><span class="ls57">TT<span class="_"> </span><span class="ff1 ls0">中的树枝</span></span></span> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y50 ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls6 ws0">if<span class="_ _2"></span><span class="fc0 ls63">(kk==1)TT(y,zz)=0;TT(zz,y)=0;<span class="ls24">pd=0;<span class="_ _2"></span><span class="fc2 ls33">end<span class="_ _1"></span><span class="fc0 ls28">;</span><span class="ls24">end<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="_ _f"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">砍掉<span class="_ _4"> </span></span><span class="ls57">TT<span class="_"> </span><span class="ff1 ls0">中的树枝</span></span></span> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y1b ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls6 ws0">if<span class="_ _2"></span><span class="fc0 ls40">(pd)<span class="fc2 ls3e">break</span><span class="ls28">;<span class="fc2 ls24">end</span>;<span class="fc2 ls32">end<span class="_ _2"></span><span class="fc0 ls0 ws15"> <span class="_ _3"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">已砍掉了<span class="_ _4"> </span></span><span class="ls57">TT<span class="_"> </span><span class="ff1 ls0">中所有的树枝</span></span></span><span class="fc2"> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y1c ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="ls24 ws0">pd=0;<span class="_ _14"></span><span class="ls0 ws15"> <span class="_ _12"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">判断<span class="_ _4"> </span></span><span class="ls57">TT<span class="_"> </span><span class="ff1 ls0">中是否有圈</span></span></span> </span></span></div><div class="t m0 x16 h8 y1d ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls2d ws0">for<span class="fc0 ls30">(<span class="ls61">y=1:n<span class="_ _1"></span></span>-<span class="ls24">1</span>)</span>for<span class="fc0 ls30">(<span class="ls64">z=y+1:n<span class="_ _1"></span></span>)</span><span class="ls6">if<span class="_ _2"></span><span class="fc0 ls65">(TT(y,z)>0)pd=1;<span class="_ _2"></span><span class="fc2 ls51">break<span class="fc0 ls28">;</span><span class="ls24">end<span class="fc0 ls28">;</span><span class="ls32">end<span class="fc0 ls28">;</span></span>en<span class="_ _2"></span>d<span class="fc0 ls0 ws15"> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y1e ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls6 ws0">if<span class="_ _2"></span><span class="fc0 ls30">(<span class="ls24">pd</span>)<span class="ls66">T(i,j)=0;T(j,i)=0;<span class="_ _14"></span><span class="ls0 ws15"> <span class="_ _c"> </span><span class="fc1 ls2c ws0">%<span class="ff1 ls0">假如<span class="_ _4"> </span></span><span class="ls57">TT<span class="_"> </span><span class="ff1 ls0">中有圈</span></span></span> </span></span></span></span></div><div class="t m0 x16 h8 y1f ff8 fs3 fc0 sc0 ls0 ws15"> <span class="_ _c"> </span> <span class="_ _c"> </span><span class="fc2 ls11 ws0">else<span class="_ _2"></span><span class="fc0 ls67 ws1f"> q=q+1;<span class="_ _2"></span><span class="fc2 ls24 ws0">end<span class="fc0 ls28">;</span><span class="ls32">end<span class="fc0 ls28">;</span></span>end<span class="fc0 ls28">;</span><span class="ls32">end<span class="fc0 ls28">;</span><span class="ls33">end<span class="_ _1"></span><span class="ls0 ws15"> </span></span></span></span></span></span></div><div class="t m0 x16 h9 y20 ff8 fs3 fc0 sc0 ls57 ws0">T<span class="ls0 ws15"> <span class="_ _6"> </span></span><span class="fc1 ls2c">%<span class="ff1 ls0">显示近似最小生成树<span class="_ _4"> </span></span><span class="ls5a ws1e">T, <span class="_"> </span></span><span class="ff1 ls0">程序结束</span></span><span class="ls0 ws15"> </span></div><div class="t m0 x16 h2 y51 ff2 fs0 fc0 sc0 ls0 ws1"> </div></div><div class="pi" data-data='{"ctm":[1.610738,0.000000,0.000000,1.610738,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src="https://static.pudn.com/prod/directory_preview_static/622bdb083d2fbb000796acd0/bg3.jpg"><div class="t m0 x2 h2 y33 ff1 fs0 fc0 sc0 ls0 ws0">求二部图<span class="_ _0"> </span><span class="ff3 ls2">G<span class="_ _0"> </span></span>的最大匹配的算法<span class="ff2 ls7">(</span>匈牙利算法<span class="ff2 ls17 ws19">), <span class="_ _3"> </span></span>其基本思想是:<span class="_ _2"></span>从<span class="_ _0"> </span><span class="ff3 ls2">G<span class="_ _0"> </span></span>的任意匹配<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_"> </span></span>开始<span class="ff2 lsf">, </span></div><div class="t m0 x16 hc y34 ff1 fs0 fc0 sc0 ls0 ws0">对<span class="_ _4"> </span><span class="ff3 ls5">X<span class="_ _4"> </span></span>中所有<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_ _4"> </span></span>的非饱和点<span class="ff2 ls6">, <span class="_"> </span></span>寻找<span class="_ _4"> </span><span class="ff3 ls7">M</span><span class="ff2 ws1"> </span><span class="ff9 ls44">−</span>增广路<span class="_ _2"></span><span class="ff2 lsf">. <span class="_ _3"> </span><span class="ff1 ls0">若不存在<span class="_ _4"> </span><span class="ff3 ls7">M</span><span class="ff2 ws1"> </span><span class="ff9 ls44">−</span>增广路</span>, <span class="_ _3"> </span><span class="ff1 ls0">则<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_ _4"> </span></span>为最大匹配</span><span class="ls16 wsb">; <span class="_ _3"> </span></span><span class="ff1 ls0">若存</span></span></div><div class="t m0 x16 hc y35 ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _0"> </span><span class="ff3 ls7">M<span class="_ _2"></span><span class="ff2 ls0 ws1"> <span class="_ _1"></span><span class="ff9 ls44 ws0">−<span class="ff1 ls0">增广路<span class="_ _4"> </span><span class="ff3 ls5">P<span class="ff2 lsf">, <span class="_ _3"> </span></span></span><span class="ls20">则将<span class="_ _0"> </span><span class="ff3 ls5">P<span class="_"> </span></span></span>中<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_"> </span></span>与非<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_ _0"> </span></span><span class="ls68">的边互换得到比<span class="_ _3"> </span><span class="ff3 ls7">M<span class="_ _0"> </span></span><span class="ls69">多一边的匹配<span class="_ _3"> </span><span class="ff3 ls7">M</span></span></span></span></span></span></span></div><div class="t m0 x3f h6 y52 ff2 fs1 fc0 sc0 ls6 ws0">1<span class="ls0 ws7"> </span></div><div class="t m0 x40 h2 y35 ff2 fs0 fc0 sc0 lsf ws0">, <span class="_ _3"> </span><span class="ff1 ls0">再对<span class="_ _4"> </span><span class="ff3 ls7">M</span></span></div><div class="t m0 x41 h6 y52 ff2 fs1 fc0 sc0 ls6 ws0">1</div><div class="t m0 x13 hd y35 ff1 fs0 fc0 sc0 ls0 ws0">重复上</div><div class="t m0 x16 h2 y36 ff1 fs0 fc0 sc0 ls0 ws0">述过程<span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></div><div class="t m0 x2 h2 y37 ff1 fs0 fc0 sc0 ls0 ws0">设<span class="_ _0"> </span><span class="ff3 ls2">G<span class="ff2 ls43 ws20"> = ( <span class="_ _1"></span></span><span class="ls5">X<span class="ff2 lsf">, <span class="_ _1"></span></span><span class="lsa">Y<span class="ff2 lsf">, <span class="_ _1"></span></span></span>E<span class="ls0 ws1"> <span class="_ _2"></span><span class="ff2 ls7 ws0">)<span class="ff1 ls0">为二部图</span><span class="lsf">, <span class="_ _3"> </span><span class="ff1 ls20">其中<span class="_ _3"> </span><span class="ff3 ls5">X</span></span><span class="ls0 ws1"> <span class="ls6a ws21">= {</span></span><span class="ff3 ls10">x</span></span></span></span></span></span></div><div class="t m0 x42 h6 y53 ff2 fs1 fc0 sc0 ls6 ws0">1</div><div class="t m0 x43 h2 y37 ff2 fs0 fc0 sc0 ls6 ws0">,<span class="ls0 ws1"> </span><span class="ff3 ls10">x</span></div><div class="t m0 x44 h6 y53 ff2 fs1 fc0 sc0 ls6 ws0">2</div><div class="t m0 x45 h2 y37 ff2 fs0 fc0 sc0 ls6 ws0">,<span class="_ _2"></span><span class="ls0 ws1"> <span class="ff1 ws0">…</span><span class="lsf"> , <span class="_ _1"></span><span class="ff3 ls10 ws0">x</span></span></span></div><div class="t m0 x46 h3 y53 ff3 fs1 fc0 sc0 ls6 ws0">n<span class="ls0 ws7"> </span></div><div class="t m0 xa h2 y37 ff2 fs0 fc0 sc0 ls6b ws22">}, <span class="_ _2"></span><span class="ff3 lsa ws0">Y<span class="ff2 ls0 ws1"> <span class="ls3 ws0">=<span class="ls6c ws23"> { <span class="_ _1"></span></span></span></span><span class="ls10">y</span></span></div><div class="t m0 x47 h6 y53 ff2 fs1 fc0 sc0 ls6 ws0">1</div><div class="t m0 x48 h2 y37 ff2 fs0 fc0 sc0 ls6 ws0">,<span class="_ _2"></span><span class="ls0 ws1"> <span class="ff3 ls10 ws0">y</span></span></div><div class="t m0 x49 h6 y53 ff2 fs1 fc0 sc0 ls6 ws0">2</div><div class="t m0 x4a h2 y37 ff2 fs0 fc0 sc0 ls6 ws0">,<span class="ls0 ws1"> <span class="ff1 ws0">…<span class="_ _2"></span><span class="ff2 ls6"> , <span class="ff3 ls10">y</span></span></span></span></div><div class="t m0 x4b h3 y53 ff3 fs1 fc0 sc0 ls6 ws0">n</div><div class="t m0 x4c h2 y37 ff2 fs0 fc0 sc0 ls6d ws24">}. <span class="_ _3"> </span><span class="ff1 ls20 ws0">任取<span class="_ _3"> </span><span class="ff3 ls2">G<span class="_ _0"> </span></span><span class="ls0">的一初</span></span></div><div class="t m0 x16 h2 y54 ff1 fs0 fc0 sc0 ls0 ws0">始匹配<span class="_ _0"> </span><span class="ff3 ls7">M<span class="ff2 ls4 ws2"> (<span class="_ _1"></span></span></span>如任取<span class="_ _0"> </span><span class="ff3 ls10">e</span>∈<span class="ff3 ls5">E<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">则<span class="_ _4"> </span><span class="ff3 ls7 ws2">M </span></span><span class="ls6a ws21">= {</span><span class="ff3 ls10">e</span><span class="ls6e">}<span class="ff1 ls0">是一个匹配</span><span class="ls12">).<span class="_ _1"></span><span class="ls0 ws1"> </span></span></span></span></span></div><div class="t m0 x2 he y55 ff1 fs0 fc0 sc0 ls0 ws0">①<span class="ff2 ws1"> <span class="_"> </span></span>令<span class="_ _0"> </span><span class="ff3">S<span class="_ _2"></span><span class="ff2 ls1a ws25"> = <span class="_ _1"></span><span class="ffa ls6f ws0">φ</span><span class="lsf ws1"> , <span class="_ _1"></span><span class="ff3 lsa ws0">T</span><span class="ls3 ws26"> = <span class="_ _2"></span><span class="ffa ls6f ws0">φ<span class="_ _1"></span><span class="ff2 lsf"> , <span class="_ _3"> </span><span class="ff1 ls0">转向②</span><span class="ls6">.<span class="ls0 ws1"> </span></span></span></span></span></span></span></span></div><div class="t m0 x2 h2 y56 ff1 fs0 fc0 sc0 ls0 ws0">②<span class="ff2 ws1"> <span class="_"> </span></span>若<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_"> </span></span><span class="ls20">饱和<span class="_ _3"> </span><span class="ff3 ls5 ws3">X <span class="_ _1"></span></span><span class="ff2 ls15">\<span class="_ _2"></span><span class="ff3 ls70 ws11"> S<span class="_ _5"></span><span class="ff1 ls0 ws0">的所有点<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">则<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_"> </span></span>是二部图<span class="_ _4"> </span><span class="ff3 ls2">G<span class="_ _0"> </span></span>的最大匹配</span>. <span class="_ _3"> </span><span class="ff1 ls0">否则<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">任取<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_ _0"> </span></span>的非饱和点</span></span></span></span></span></span></span></span></div><div class="t m0 x16 h2 y57 ff3 fs0 fc0 sc0 ls0 ws0">u<span class="ff1">∈</span><span class="ls5 ws3">X </span><span class="ff2 ls15">\<span class="_ _2"></span><span class="ff3 ls0 ws1"> S <span class="_ _2"></span><span class="ff2 lsf ws0">, <span class="_ _3"> </span><span class="ff1 ls0">令<span class="_ _0"> </span><span class="ff3">S<span class="_ _2"></span><span class="ff2 ls3 wsa"> =<span class="ff3 ls20 ws27"> S <span class="_ _3"> </span><span class="ff1 ls0 ws0">∪</span></span><span class="ls6c ws28">{ <span class="_ _1"></span><span class="ff3 ls0 ws1">u <span class="_ _2"></span><span class="ff2 ls6d ws24">}, <span class="_ _3"> </span><span class="ff1 ls0 ws0">转向③<span class="_ _2"></span><span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x2 hc y58 ff1 fs0 fc0 sc0 ls0 ws0">③<span class="ff2 ws1"> <span class="_"> </span></span>记<span class="_ _0"> </span><span class="ff3 ls71 ws4">N </span><span class="ff2 ls7">(</span><span class="ff3 ws1">S <span class="ff2 ls7 ws2">) <span class="ls3 ws0">=<span class="_ _2"></span><span class="ls6e ws28"> {<span class="_ _2"></span><span class="ff3 ls10 ws0">v<span class="_ _1"></span><span class="ls0 ws1"> </span><span class="ff2 ls72">|<span class="ls0 ws1"> <span class="_ _2"></span><span class="ff9"> <span class="ff3 ws0">u<span class="ff1">∈</span>S<span class="ff2 ls6">,<span class="_ _2"></span><span class="ls0 ws1"> <span class="ff3 ls2 ws0">uv<span class="_ _1"></span><span class="ff1 ls0">∈<span class="_ _2"></span><span class="ff3 ls5">E</span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x4d h3 y59 ff3 fs1 fc0 sc0 ls0 ws7"> </div><div class="t m0 x4e hc y58 ff2 fs0 fc0 sc0 ls6d ws24">}. <span class="_ _0"> </span><span class="ff1 ls0 ws0">若<span class="_ _0"> </span><span class="ff3 ls71 ws4">N <span class="_ _1"></span></span><span class="ff2 ls7">(</span><span class="ff3 ws1">S </span></span><span class="ls4 ws2">) <span class="_ _1"></span><span class="ls3 ws0">=<span class="ls0 ws1"> </span><span class="ff3 lsa">T<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">转向②</span>. <span class="_ _3"> </span><span class="ff1 ls19">否则取<span class="_ _3"> </span><span class="ff3 ls10">y</span><span class="ls0">∈<span class="ff3 ls71 ws4">N <span class="_ _1"></span></span></span></span><span class="ls7">(<span class="ff3 ls0 ws1">S </span><span class="ws2">) </span><span class="ls15">\<span class="_ _2"></span><span class="ff9 ls0 ws1"> <span class="ff3 lsa ws0">T<span class="_ _2"></span><span class="ff2 lsf">. <span class="_ _3"> </span><span class="ff1 ls0">若<span class="_ _0"> </span><span class="ff3 ls10">y<span class="_"> </span></span>是<span class="_ _0"> </span><span class="ff3 ls7">M</span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x16 h2 y5a ff1 fs0 fc0 sc0 ls0 ws0">的饱和点<span class="ff2 ls6">, <span class="_"> </span></span>转向④<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">否则转向⑤</span><span class="ls6">.<span class="ls0 ws1"> </span></span></span></div><div class="t m0 x2 h2 y5b ff1 fs0 fc0 sc0 ls0 ws0">④<span class="ff2 ws1"> <span class="_"> </span></span>设<span class="_ _0"> </span><span class="ff3 ls10 ws29">x y<span class="_ _2"></span><span class="ff1 ls0 ws0">∈<span class="ff3 ls7">M<span class="ff2 lsf">, <span class="_ _3"> </span></span></span><span class="ls20">则令<span class="_ _3"> </span></span><span class="ff3">S<span class="ff2 ls3 wsa"> =<span class="_ _2"></span><span class="ff3 ls20 ws27"> S <span class="_ _3"> </span><span class="ff1 ls0 ws0">∪<span class="ff2 ls6c ws28">{ <span class="_ _1"></span></span></span><span class="ls10 wse">x <span class="_ _1"></span><span class="ff2 ls73 ws0">},</span><span class="lsa ws1a"> T<span class="ff2 ls3 wsa"> =<span class="_ _2"></span><span class="ff3 ls42 ws1a"> T <span class="_ _3"> </span><span class="ff1 ls0 ws0">∪<span class="ff2 ls6e ws28">{ </span></span><span class="ls74 wse">y <span class="_"> </span><span class="ff2 ls6d ws24">}, <span class="_ _3"> </span><span class="ff1 ls0 ws0">转向③<span class="_ _2"></span><span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x2 hc y5c ff1 fs0 fc0 sc0 ls0 ws0">⑤<span class="ff2 ws1"> <span class="_"> </span><span class="ff3">u <span class="_ _1"></span></span></span><span class="ff9 ls44">−</span><span class="ff2 ws1"> </span><span class="ff3 ls10">y<span class="_ _0"> </span></span>路是<span class="_ _0"> </span><span class="ff3 ls7">M<span class="ff9 ls44">−</span></span>增广路<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">设为<span class="_ _4"> </span><span class="ff3 ls5">P</span></span>, <span class="_ _3"> </span><span class="ff1 ls0">并令<span class="_ _2"></span><span class="ff2 ws1"> <span class="_ _4"> </span><span class="ff3 ls7 ws2">M <span class="_ _1"></span></span><span class="ls3 wsa">= <span class="ff3 ls7 ws0">M<span class="ff1 ls0">⊕</span><span class="ls5">P<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">转向①</span>. <span class="_ _3"> </span><span class="ff1 ls20">这里<span class="_ _3"> </span><span class="ff3 ls7">M</span><span class="ls0">⊕<span class="ff3 ls5">P<span class="_ _2"></span><span class="ff2 ls3 ws25"> = <span class="_ _1"></span><span class="ff3 ls7 ws0">M<span class="ff1 ls0">∪<span class="_ _2"></span><span class="ff3 ls5">P<span class="ff2 ls0 ws1"> <span class="_ _1"></span><span class="ls15 ws0">\<span class="_ _2"></span><span class="ff9 ls0 ws1"> <span class="ff3 ls7 ws0">M<span class="ff1 ls0">∩</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></div><div class="t m0 x16 h2 y5d ff3 fs0 fc0 sc0 ls5 ws0">P<span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">是对称差</span><span class="ls6">.<span class="ls0 ws1"> </span></span></span></div><div class="t m0 x2 hc y5e ff1 fs0 fc0 sc0 ls0 ws0">由于计算<span class="_ _0"> </span><span class="ff3 ls7">M<span class="ff9 ls44">−</span></span>增广路<span class="_ _4"> </span><span class="ff3 ls5">P<span class="_"> </span></span>比较麻烦<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">因此将迭代步骤改为:<span class="ff2 ws1"> </span></span></span></div><div class="t m0 x2 h2 y4b ff1 fs0 fc0 sc0 ls0 ws0">①<span class="ff2 ws1"> <span class="_"> </span></span>将<span class="_ _4"> </span><span class="ff3 ls5">X<span class="_ _4"> </span></span>中<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_"> </span></span>的所有非饱和点<span class="ff2 ls7">(</span><span class="ls20">不是<span class="_ _3"> </span><span class="ff3 ls7">M<span class="_"> </span></span></span>中某条边的端点<span class="_ _2"></span><span class="ff2 ls7">)<span class="ff1 ls0">都给以标号<span class="_ _4"> </span><span class="ff2">0<span class="_ _0"> </span></span>和标记</span><span class="ls21 ws7">*, <span class="_ _3"> </span></span><span class="ff1 ls0">转向②<span class="_ _2"></span><span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></span></span></div><div class="t m0 x2 h2 y5f ff1 fs0 fc0 sc0 ls0 ws0">②<span class="ff2 ws1"> <span class="_"> </span></span>若<span class="_ _0"> </span><span class="ff3 ls5">X<span class="_"> </span></span>中所有有标号的点都已去掉了标记<span class="ff2 ls75 ws2a">*, <span class="_ _3"> </span></span>则<span class="_ _0"> </span><span class="ff3 ls7">M<span class="_"> </span></span>是<span class="_ _0"> </span><span class="ff3 ls2">G<span class="_ _0"> </span></span>的最大匹配<span class="_ _2"></span><span class="ff2 lsf">. <span class="_ _3"> </span><span class="ff1 ls0">否则任取<span class="_ _0"> </span><span class="ff3 ls5">X<span class="_"> </span></span>中一</span></span></div><div class="t m0 x16 h2 y31 ff1 fs0 fc0 sc0 ls0 ws0">个既有标号又有标记<span class="ff2">*</span>的点<span class="_ _0"> </span><span class="ff3 ls10">x</span></div><div class="t m0 x1b h3 y4f ff3 fs1 fc0 sc0 ls11 wsd">i </div><div class="t m0 x1c h2 y31 ff2 fs0 fc0 sc0 lsf ws0">, <span class="_ _3"> </span><span class="ff1 ls0">去掉<span class="_ _0"> </span><span class="ff3 ls10">x</span></span></div><div class="t m0 x4f h3 y4f ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x50 h2 y31 ff1 fs0 fc0 sc0 ls0 ws0">的标记<span class="ff2 ls75 ws2a">*, <span class="_ _3"> </span></span>转向③<span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></div><div class="t m0 x2 h2 y60 ff1 fs0 fc0 sc0 ls0 ws0">③<span class="ff2 ws1"> <span class="_"> </span></span>找出在<span class="_ _4"> </span><span class="ff3 ls2">G<span class="_ _4"> </span></span>中所有与<span class="_ _4"> </span><span class="ff3 ls10">x</span></div><div class="t m0 x51 h3 y1b ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x52 h5 y60 ff1 fs0 fc0 sc0 ls0 ws0">邻接的点<span class="_ _4"> </span><span class="ff3 ls10">y</span></div><div class="t m0 x53 h3 y1b ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x54 h2 y60 ff2 fs0 fc0 sc0 ls7 ws2"> (<span class="ff1 ls0 ws0">即<span class="_ _4"> </span><span class="ff3 ls10">x</span></span></div><div class="t m0 x55 h3 y1b ff3 fs1 fc0 sc0 ls11 wsd">i </div><div class="t m0 x56 h5 y60 ff3 fs0 fc0 sc0 ls10 ws0">y</div><div class="t m0 x57 h3 y1b ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x58 h2 y60 ff1 fs0 fc0 sc0 ls0 ws0">∈<span class="ff3 ls5">E<span class="_ _2"></span><span class="ff2 ls12 wsc"> ), <span class="_ _3"> </span><span class="ff1 ls0 ws0">若所有这样的<span class="_ _4"> </span><span class="ff3 ls10">y</span></span></span></span></div><div class="t m0 x59 h3 y1b ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x5a h2 y60 ff1 fs0 fc0 sc0 ls0 ws0">都已有标号<span class="ff2 lsf">, <span class="_ _3"> </span></span>则转向</div><div class="t m0 x16 h2 y61 ff1 fs0 fc0 sc0 ls0 ws0">②<span class="ff2 ls6">, <span class="_"> </span></span>否则转向④<span class="_ _2"></span><span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></div><div class="t m0 x2 h2 y62 ff1 fs0 fc0 sc0 ls0 ws0">④<span class="ff2 ws1"> <span class="_"> </span></span>对与<span class="_ _5"></span><span class="ff3 ls10">x</span></div><div class="t m0 x5b h3 y63 ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x5c h5 y62 ff1 fs0 fc0 sc0 ls0 ws0">邻接且尚未给标号的<span class="_ _5"></span><span class="ff3 ls10">y</span></div><div class="t m0 x5d h3 y63 ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x5e h2 y62 ff1 fs0 fc0 sc0 ls0 ws0">都给定标号<span class="_ _5"></span><span class="ff3 ls15">i<span class="ff2 lsf">. <span class="_ _3"> </span></span></span>若所有的<span class="_ _5"></span><span class="ff3 ls10">y</span></div><div class="t m0 x5f h3 y63 ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x47 h2 y62 ff1 fs0 fc0 sc0 ls0 ws0">都是<span class="_ _5"></span><span class="ff3 ls7">M<span class="_ _5"></span></span>的饱和点<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">则转向⑤</span>, </span></div><div class="t m0 x16 h2 y64 ff1 fs0 fc0 sc0 ls0 ws0">否则逆向返回<span class="ff2 ls6">. <span class="_"> </span></span><span class="lsf">即由其中<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_ _5"></span></span></span>的任一个非饱和点<span class="_ _5"></span><span class="ff3 ls10">y</span></div><div class="t m0 x60 h3 y65 ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x61 h5 y64 ff1 fs0 fc0 sc0 ls0 ws0">的标号<span class="_ _1"></span><span class="ff3 ls15">i<span class="_ _5"></span></span>找到<span class="_ _5"></span><span class="ff3 ls10">x</span></div><div class="t m0 x62 h3 y65 ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x63 h2 y64 ff2 fs0 fc0 sc0 lsf ws0">, <span class="_ _3"> </span><span class="ff1 ls0">再由<span class="_ _5"></span><span class="ff3 ls10">x</span></span></div><div class="t m0 x64 h3 y65 ff3 fs1 fc0 sc0 ls11 ws0">i</div><div class="t m0 x65 h5 y64 ff1 fs0 fc0 sc0 ls0 ws0">的标号<span class="_ _1"></span><span class="ff3 ls10">k<span class="_"> </span></span>找到<span class="_ _5"></span><span class="ff3 ls10">y</span></div><div class="t m0 x66 h3 y65 ff3 fs1 fc0 sc0 ls30 ws2b">k </div><div class="t m0 x67 h2 y64 ff2 fs0 fc0 sc0 lsf ws0">, <span class="_ _3"> </span><span class="ff1 ls0">…<span class="_ _2"></span><span class="ff2 ls76 ws2c"> ,<span class="ls0 ws2d"> </span></span></span></div><div class="t m0 x16 h5 y66 ff1 fs0 fc0 sc0 ls0 ws0">最后由<span class="_ _4"> </span><span class="ff3 ls10">y</span></div><div class="t m0 x68 h3 y67 ff3 fs1 fc0 sc0 ls11 ws0">t</div><div class="t m0 x69 h2 y66 ff1 fs0 fc0 sc0 ls0 ws0">的标号<span class="_ _4"> </span><span class="ff3 ls18">s<span class="_"> </span></span>找到标号为<span class="_ _4"> </span><span class="ff2">0<span class="_ _4"> </span></span>的<span class="_ _4"> </span><span class="ff3 ls10">x</span></div><div class="t m0 x6a h3 y67 ff3 fs1 fc0 sc0 ls77 ws0">s</div><div class="t m0 x6b hc y66 ff1 fs0 fc0 sc0 ls0 ws0">时结束<span class="ff2 lsf">, <span class="_ _3"> </span></span>获得<span class="_ _5"></span><span class="ff3 ls7">M</span><span class="ff2 ws1"> </span><span class="ff9 ls44">−</span>增广路<span class="_ _4"> </span><span class="ff3 ls10">x</span></div><div class="t m0 x63 h3 y67 ff3 fs1 fc0 sc0 ls77 ws2e">s </div><div class="t m0 x6c h5 y66 ff3 fs0 fc0 sc0 ls10 ws0">y</div><div class="t m0 x48 h3 y67 ff3 fs1 fc0 sc0 ls11 ws0">t</div><div class="t m0 x6d h2 y66 ff2 fs0 fc0 sc0 ls0 ws1"> <span class="_"> </span><span class="ff1 ws0">…<span class="_ _2"></span><span class="ff2 ws1"> <span class="_"> </span><span class="ff3 ls10 ws0">x</span></span></span></div><div class="t m0 x6e h3 y67 ff3 fs1 fc0 sc0 ls11 wsd">i </div><div class="t m0 x6f h5 y66 ff3 fs0 fc0 sc0 ls10 ws0">y</div><div class="t m0 x70 h3 y67 ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x71 h2 y66 ff2 fs0 fc0 sc0 lsf ws0">, <span class="_ _3"> </span><span class="ff1 ls0">记<span class="_ _5"></span><span class="ff3 ls5">P</span></span><span class="ls6a ws21"> = {</span><span class="ff3 ls10">x</span></div><div class="t m0 x72 h3 y67 ff3 fs1 fc0 sc0 ls77 ws2e">s </div><div class="t m0 x73 h5 y66 ff3 fs0 fc0 sc0 ls10 ws0">y</div><div class="t m0 x66 h3 y67 ff3 fs1 fc0 sc0 ls11 ws0">t</div><div class="t m0 x74 h2 y66 ff2 fs0 fc0 sc0 lsf ws0">, <span class="_ _3"> </span><span class="ff1 ls0">…</span><span class="ls78"> ,<span class="_ _16"></span><span class="ff3 ls0 ws1"> </span></span></div><div class="t m0 x16 h5 y68 ff3 fs0 fc0 sc0 ls10 ws0">x</div><div class="t m0 x75 h3 y69 ff3 fs1 fc0 sc0 ls11 wsd">i </div><div class="t m0 x76 h5 y68 ff3 fs0 fc0 sc0 ls10 ws0">y</div><div class="t m0 x77 h3 y69 ff3 fs1 fc0 sc0 ls11 wsd">j </div><div class="t m0 x78 h2 y68 ff2 fs0 fc0 sc0 ls6b ws22">}, <span class="_"> </span><span class="ff1 ls19 ws0">重新记<span class="_ _0"> </span><span class="ff3 ls7">M<span class="_"> </span></span><span class="ls0">为<span class="_ _4"> </span><span class="ff3 ls7">M</span>⊕<span class="ff3 ls5">P<span class="_ _2"></span><span class="ff2 lsf">, <span class="_ _3"> </span><span class="ff1 ls0">转向①</span><span class="ls6">.<span class="ls0 ws1"> </span></span></span></span></span></span></div><div class="t m0 x2 h2 y6a ff1 fs0 fc0 sc0 ls0 ws0">⑤<span class="ff2 ws1"> <span class="_"> </span></span>将<span class="_ _0"> </span><span class="ff3 ls10">y</span></div><div class="t m0 x79 h3 y6b ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x7a h5 y6a ff1 fs0 fc0 sc0 ls0 ws0">在<span class="_ _4"> </span><span class="ff3 ls7">M<span class="_"> </span></span>中与之邻接的点<span class="_ _0"> </span><span class="ff3 ls10">x</span></div><div class="t m0 x2a h3 y6b ff3 fs1 fc0 sc0 ls30 ws2b">k </div><div class="t m0 x4f h2 y6a ff2 fs0 fc0 sc0 ls7 ws0">(<span class="ff1 ls0">即<span class="_ _0"> </span><span class="ff3 ls10">x</span></span></div><div class="t m0 x7b h3 y6b ff3 fs1 fc0 sc0 ls30 ws2b">k </div><div class="t m0 x7c h5 y6a ff3 fs0 fc0 sc0 ls10 ws0">y</div><div class="t m0 x7d h3 y6b ff3 fs1 fc0 sc0 ls11 ws0">j</div><div class="t m0 x7e h2 y6a ff1 fs0 fc0 sc0 ls0 ws0">∈<span class="ff3 ls7">M<span class="ff2 ls12 ws8">), <span class="_ _3"> </span></span></span>给以标号<span class="_ _4"> </span><span class="ff3 ls15">j<span class="_ _0"> </span></span>和标记<span class="ff2 ls21 ws7">*, <span class="_ _3"> </span></span>转向②<span class="_ _2"></span><span class="ff2 ls6">.<span class="ls0 ws1"> </span></span></div><div class="t m0 x16 h2 y6c ff2 fs0 fc0 sc0 ls0 ws1"> </div><div class="t m0 x16 h2 y6d ff2 fs0 fc0 sc0 ls0 ws1"> </div></div><div class="pi" data-data='{"ctm":[1.610738,0.000000,0.000000,1.610738,0.000000,0.000000]}'></div></div>