Numerical Recipes Source C 2.02

  • X2_891946
    了解作者
  • Python
    开发工具
  • 833.1KB
    文件大小
  • zip
    文件格式
  • 0
    收藏次数
  • VIP专享
    资源类型
  • 0
    下载次数
  • 2022-03-02 17:49
    上传日期
这是《C语言数值算法程序大全》和《Fortran语言数值算法程序大全》 (电子工业出版社,1995.6,傅祖芸,赵梅娜,丁岩译)中的程序, 英文书名是 《Numerical Recipies in C/Fortran , the Art of Scientific Computing》, 2nd Edition,剑桥大学出版社,1992, W.H. Press, S. A. Teukolsky, W.T. Vetterling, B.P. Flannery著 几乎包含了数值算法的所有方面,是不可多得的使用算法程序库。 下面是主要章节的标题: 1 序言 2 线性代数方程组求解 3 内插法和外推法 4 函数数值积分 5 函数求值 6 特殊函数 7 随机数 8 排序 9 求根和非线性方程组 10 函数极值 11 特征系统 12 FFT 13 傅立叶谱的应用(含小波) 14 数据的统计分析 15 最小二乘法 16 常微分方程组 17 两点边界问题 18 积分方程与反演理论 19 偏微分方程 20 少数的数值算法 Front Matter, Contents, and Prefaces xi Legal Matters xvi Computer Programs by Chapter and Section xix 1 Preliminaries 1.0 Introduction 1 1.1 Program Organization and Control Structures 5 1.2 Some C Conventions for Scientific Computing 15 1.3 Error, Accuracy, and Stability 15 2 Solution of Linear Algebraic Equations 2.0 Introduction 32 2.1 Gauss-Jordan Elimination 36 2.2 Gaussian Elimination with Backsubstitution 41 2.3 LU Decomposition and Its Applications 43 2.4 Tridiagonal and Band Diagonal Systems of Equations 50 2.5 Iterative Improvement of a Solution to Linear Equations 55 2.6 Singular Value Decomposition 59 2.7 Sparse Linear Systems 71 2.8 Vandermonde Matrices and Toeplitz Matrices 90 2.9 Cholesky Decomposition 96 2.10 QR Decomposition 98 2.11 Is Matrix Inversion an $N^3$ Process? 102 3 Interpolation and Extrapolation 3.0 Introduction 105 3.1 Polynomial Interpolation and Extrapolation 108 3.2 Rational Function Interpolation and Extrapolation 111 3.3 Cubic Spline Interpolation 113 3.4 How to Search an Ordered Table 117 3.5 Coefficients of the Interpolating Polynomial 120 3.6 Interpolation in Two or More Dimensions 123 4 Integration of Functions 4.0 Introduction 129 4.1 Classical Formulas for Equally Spaced Abscissas 130 4.2 Elementary Algorithms 136 4.3 Romberg Integration 140 4.4 Improper Integrals 141 4.5 Gaussian Quadratures and Orthogonal Polynomials 147 4.6 Multidimensional Integrals 161 5 Evaluation of Functions 5.0 Introduction 165 5.1 Series and Their Convergence 165 5.2 Evaluation of Continued Fractions 169 5.3 Polynomials and Rational Functions 173 5.4 Complex Arithmetic 176 5.5 Recurrence Relations and Clenshaw's Recurrence Formula 178 5.6 Quadratic and Cubic Equations 183 5.7 Numerical Derivatives 186 5.8 Chebyshev Approximation 190 5.9 Derivatives or Integrals of a Chebyshev-approximated Function 195 5.10 Polynomial Approximation from Chebyshev Coefficients 197 5.11 Economization of Power Series 198 5.12 Pad\'e Approximants 200 5.13 Rational Chebyshev Approximation 204 5.14 Evaluation of Functions by Path Integration 208 6 Special Functions 6.0 Introduction 212 6.1 Gamma Function, Beta Function, Factorials, Binomial Coefficients 213 6.2 Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function 216 6.3 Exponential Integrals 222 6.4 Incomplete Beta Function, Student's Distribution, F-Distribution,Cumulative Binomial Distribution 226 6.5 Bessel Functions of Integer Order 230 6.6 Modified Bessel Functions of Integer Order 236 6.7 Bessel Functions of Fractional Order, Airy Functions, SphericalBessel Functions 240 6.8 Spherical Harmonics 252 6.9 Fresnel Integrals, Cosine and Sine Integrals 255 6.10 Dawson's Integral 259 6.11 Elliptic Integrals and Jacobian Elliptic Functions 261 6.12 Hypergeometric Functions 271 7 Random Numbers 7.0 Introduction 274 7.1 Uniform Deviates 275 7.2 Transformation Method: Exponential and Normal Deviates 287 7.3 Rejection Method: Gamma, Poisson, Binomial Deviates 290 7.4 Generation of Random Bits 296 7.5 Random Sequences Based on Data Encryption 300 7.6 Simple Monte Carlo Integration 304 7.7 Quasi- (that is, Sub-) Random Sequences 309 7.8 Adaptive and Recursive Monte Carlo Methods 316 8 Sorting 8.0 Introduction 329 8.1 Straight Insertion and Shell's Method 330 8.2 Quicksort 332 8.3 Heapsort 336 8.4 Indexing and Ranking 338 8.5 Selecting the $M$th Largest 341 8.6 Determination of Equivalence Classes 345 9 Root Finding and Nonlinear Sets of Equations 9.0 Introduction 347 9.1 Bracketing and Bisection 350 9.2 Secant Method, False Position Method, and Ridders' Method 354 9.3 Van Wijngaarden--Dekker--Brent Method 359 9.4 Newton-Raphson Method Using Derivative 362 9.5 Roots of Polynomials 369 9.6 Newton-Raphson Method for Nonlinear Systems of Equations 379 9.7 Globally Convergent Methods for Nonlinear Systems of Equations 383 10 Minimization or Maximization of Functions 10.0 Introduction 394 10.1 Golden Section Search in One Dimension 397 10.2 Parabolic Interpolation and Brent's Method in One Dimension 402 10.3 One-Dimensional Search with First Derivatives 305 10.4 Downhill Simplex Method in Multidimensions 408 10.5 Direction Set (Powell's) Methods in Multidimensions 412 10.6 Conjugate Gradient Methods in Multidimensions 420 10.7 Variable Metric Methods in Multidimensions 425 10.8 Linear Programming and the Simplex Method 430 10.9 Simulated Annealing Methods 444 11 Eigensystems 11.0 Introduction 456 11.1 Jacobi Transformations of a Symmetric Matrix 463 11.2 Reduction of a Symmetric Matrix to Tridiagonal Form: Givens and Householder Reductions 469 11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix 475 11.4 Hermitian Matrices 481 11.5 Reduction of a General Matrix to Hessenberg Form 482 11.6 The QR Algorithm for Real Hessenberg Matrices 486 11.7 Improving Eigenvalues and/or Finding Eigenvectors by Inverse Iteration 493 12 Fast Fourier Transform 12.0 Introduction 496 12.1 Fourier Transform of Discretely Sampled Data 500 12.2 Fast Fourier Transform (FFT) 504 12.3 FFT of Real Functions, Sine and Cosine Transforms 510 12.4 FFT in Two or More Dimensions 521 12.5 Fourier Transforms of Real Data in Two and Three Dimensions 525 12.6 External Storage or Memory-Local FFTs 532 13 Fourier and Spectral Applications 13.0 Introduction 537 13.1 Convolution and Deconvolution Using the FFT 538 13.2 Correlation and Autocorrelation Using the FFT 545 13.3 Optimal (Wiener) Filtering with the FFT 547 13.4 Power Spectrum Estimation Using the FFT 549 13.5 Digital Filtering in the Time Domain 558 13.6 Linear Prediction and Linear Predictive Coding 564 13.7 Power Spectrum Estimation by the Maximum Entropy (All Poles) Method 572 13.8 Spectral Analysis of Unevenly Sampled Data 575 13.9 Computing Fourier Integrals Using the FFT 584 13.10 Wavelet Transforms 591 13.11 Numerical Use of the Sampling Theorem 606 14 Statistical Description of Data 14.0 Introduction 609 14.1 Moments of a Distribution: Mean, Variance, Skewness, and So Forth 610 14.2 Do Two Distributions Have the Same Means or Variances? 615 14.3 Are Two Distributions Different? 620 14.4 Contingency Table Analysis of Two Distributions 628 14.5 Linear Correlation 636 14.6 Nonparametric or Rank Correlation 639 14.7 Do Two-Dimensional Distributions Differ? 645 14.8 Savitzky-Golay Smoothing Filters 650 15 Modeling of Data 15.0 Introduction 656 15.1 Least Squares as a Maximum Likelihood Estimator 657 15.2 Fitting Data to a Straight Line 661 15.3 Straight-Line Data with Errors in Both Coordinates 666 15.4 General Linear Least Squares 671 15.5 Nonlinear Models 681 15.6 Confidence Limits on Estimated Model Parameters 689 15.7 Robust Estimation 699 16 Integration of Ordinary Differential Equations 16.0 Introduction 707 16.1 Runge-Kutta Method 710 16.2 Adaptive Stepsize Control for Runge-Kutta 714 16.3 Modified Midpoint Method 722 16.4 Richardson Extrapolation and the Bulirsch-Stoer Method 724 16.5 Second-Order Conservative Equations 732 16.6 Stiff Sets of Equations 734 16.7 Multistep, Multivalue, and Predictor-Corrector Methods 747 17 Two Point Boundary Value Problems 17.0 Introduction 753 17.1 The Shooting Method 757 17.2 Shooting to a Fitting Point 760 17.3 Relaxation Methods 762 17.4 A Worked Example: Spheroidal Harmonics 772 17.5 Automated Allocation of Mesh Points 783 17.6 Handling Internal Boundary Conditions or Singular Points 784 18 Integral Equations and Inverse Theory 18.0 Introduction 788 18.1 Fredholm Equations of the Second Kind 791 18.2 Volterra Equations 794 18.3 Integral Equations with Singular Kernels 797 18.4 Inverse Problems and the Use of A Priori Information 804 18.5 Linear Regularization Methods 808 18.6 Backus-Gilbert Method 815 18.7 Maximum Entropy Image Restoration 818 19 Partial Differential Equations 19.0 Introduction 827 19.1 Flux-Conservative Initial Value Problems 834 19.2 Diffusive Initial Value Problems 847 19.3 Initial Value Problems in Multidimensions 853 19.4 Fourier and Cyclic Reduction Methods for Boundary Value Problems 857 19.5 Relaxation Methods for Boundary Value Problems 863 19.6 Multigrid Methods for Boundary Value Problems 871 20 Less-Numerical Algorithms 20.0 Introduction 889 20.1 Diagnosing Machine Parameters 889 20.2 Gray Codes 894 20.3 Cyclic Redundancy and Other Checksums 896 20.4 Huffman Coding and Compression of Data 903 20.5 Arithmetic Coding 910 20.6 Arithmetic at Arbitrary Precision 915 References and Program Dependencies 926 General Index 965
评论
    相关推荐
    • VB数值算法
      VB科学与工程数值算法 文档 代码 可以直接运行
    • C语言 数值算法大全
      一本描述算法的好书,详细介绍了各种算法。是一本难得的好书。
    • C++数值算法头文件
      Numerical Recipes的头文件大全,需要的同学可以下载看看
    • java常用数值算法
      java常用数值算法,希望对你的开发有所帮助。
    • VC常用数值算法
      VC开发的,常用数值算法,有算法说明很不错的,数值算法学习资料
    • 常用数值算法
      含:二分法 复化辛卜生公式 改进欧拉法 高斯-赛德尔迭代法 拉格郎日插值多项式 列主元高斯消去法 龙贝格算法 龙格-库塔算法 幂法牛顿迭代法 牛顿值多项式 四阶阿当姆斯预测-校正公式 雅可比迭代法 自适应梯形公式...
    • c++数值算法源码
      国外经典教材的配套软件源码
    • c数值算法
      国外经典算法书pdf版
    • fortran 数值算法
      FORTRAN 数值算法,经典的fortran 77 数值算法,涵盖了常用数值算法
    • C++数值算法
      包含了当代科学计算过程中涉及的大量内容:求特殊函数值、随机数、排序、最优化、快速傅里叶变换、谱分析、小波变换、统计描述和数据建模、偏微分方程数值解、若干编码算法和任意精度计算等。