<div align="center">
<br>
<p>
<a href="https://github.com/willard-yuan/awesome-cbir-papers" rel='nofollow' onclick='return false;'>CBIR in academia and industry</a>
</p>
</div>
# Awesome image retrieval papers
The main goal is to collect classical and solid works of image retrieval in academia and industry.
[](https://awesome.re)
- [Classical Local Feature](#classical-local-feature)
- [Deep Learning Feature (Global Feature)](#deep-learning-feature-global-feature)
- [Deep Learning Feature (Local Feature)](#deep-learning-feature-local-feature)
- [Deep Learning Feature (Instance Search)](#deep-learning-feature-instance-search)
- [ANN search](#ann-search)
- [CBIR Attack](#cbir-attack)
- [CBIR rank](#cbir-rank)
- [CBIR in Industry](#cbir-in-industry)
- [CBIR Competition and Challenge](#cbir-competition-and-challenge)
- [CBIR for Duplicate(copy) detection](#cbir-for-duplicatecopy-detection)
- [Feature Fusion](#feature-fusion)
- [Instance Matching](#instance-matching)
- [Semantic Matching](#semantic-matching)
- [Template Matching](#template-matching)
- [Image Identification](#image-identification)
- [Tutorials](#tutorials)
- [Slide](#slide)
- [Demo and Demo Online](#demo-and-demo-online)
- [Datasets](#datasets)
- [Useful Package](#useful-package)
## Classical Local Feature
- [Object retrieval with large vocabularies and fast spatial matching](https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf), CVPR 2007.
- [Visual Categorization with Bags of Keypoints](http://www.cs.princeton.edu/courses/archive/fall09/cos429/papers/csurka-eccv-04.pdf), ECCV 2004.
- [ORB: an efficient alternative to SIFT or SURF](https://www.willowgarage.com/sites/default/files/orb_final.pdf), ICCV 2011.
- [Object Recognition from Local Scale-Invariant Features](http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf), ICCV 1999.
- [Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval](https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf), ICCV 2007.
- [Three things everyone should know to improve object retrieval](https://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf), CVPR 2012.
- [On-the-fly learning for visual search of large-scale image and video datasets](https://www.robots.ox.ac.uk/~vgg/publications/2015/Chatfield15/chatfield15.pdf)
- [All about VLAD](), CVPR 2013.
- [Aggregating localdescriptors into a compact image representation](https://lear.inrialpes.fr/pubs/2010/JDSP10/jegou_compactimagerepresentation.pdf), CVPR 2010.
- [More About VLAD: A Leap from Euclidean to Riemannian Manifolds](https://paperswithcode.com/paper/more-about-vlad-a-leap-from-euclidean-to), CVPR 2015.
- [Hamming embedding and weak geometric consistency for large scale image search](https://lear.inrialpes.fr/pubs/2008/JDS08/jegou_hewgc08.pdf), CVPR 2008.
- [Revisiting the VLAD image representation](https://hal.inria.fr/hal-00840653v1/document), [project](https://github.com/jorjasso/VLAD/blob/master/VLADlib/VLAD.py)
- [Improving the Fisher Kernel for Large-Scale Image Classification](https://www.robots.ox.ac.uk/~vgg/rg/papers/peronnin_etal_ECCV10.pdf), ECCV 2010.
- [Image Classification with the Fisher Vector: Theory and Practice](https://hal.inria.fr/hal-00830491/document)
- [Democratic Diffusion Aggregation for ImageRetrieval]()
- [A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval](https://www.microsoft.com/en-us/research/uploads/prod/2019/09/accv_2016_schoenberger.pdf), ACCV 2016.
- [Triangulation embedding and democratic aggregation for image search](https://www.robots.ox.ac.uk/~vgg/publications/2014/Jegou14/jegou14.pdf), CVPR 2014.
- [Efficient Large-scale Image Search With a Vocabulary Tree](http://www.ipol.im/pub/art/2018/199/), IPOL 2015, [code](https://github.com/fragofer/voctree).
## Deep Learning Feature (Global Feature)
- [Online Invariance Selection for Local Feature Descriptors](https://arxiv.org/abs/2007.08988), ECCV 2020, [code](https://github.com/rpautrat/LISRD).
- [Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval](https://arxiv.org/pdf/2007.12163.pdf), ECCV 2020.
- [SOLAR: Second-Order Loss and Attention for Image Retrieval](https://arxiv.org/pdf/2001.08972.pdf), ECCV 2020.
- [Unifying Deep Local and Global Features for Image Search](https://arxiv.org/abs/2001.05027), arxiv 2020.
- [SOLAR: Second-Order Loss and Attention for Image Retrieval](https://arxiv.org/abs/2001.08972v2), arxiv 2020.
- [A Benchmark on Tricks for Large-scale Image Retrieval](https://arxiv.org/pdf/1907.11854.pdf),arxiv 2020.
- [Learning with Average Precision: Training Image Retrieval with a Listwise Loss](https://arxiv.org/pdf/1906.07589v1.pdf), ICCV 2019.
- [MultiGrain: a unified image embedding for classes and instances](https://arxiv.org/abs/1902.05509), arxiv 2019.
- [Deep Image Retrieval:Learning Global Representations for Image search](https://arxiv.org/abs/1604.01325).
- [End-to-end Learning of Deep Visual Representations for Image retrieval](https://arxiv.org/abs/1610.07940), DIR更详细的论文说明.
- [What Is the Best Practice for CNNs Applied to Visual Instance Retrieval?](https://arxiv.org/abs/1611.01640), 关于layer选取的问题.
- [Bags of Local Convolutional Features for Scalable Instance Search](https://arxiv.org/abs/1604.01325).
- [Faster R-CNN Features for Instance Search](https://github.com/imatge-upc/retrieval-2016-deepvision), CVPR workshop 2016.
- [Cross-dimensional Weighting for Aggregated Deep Convolutional Features](https://arxiv.org/abs/1512.04065), [project](https://github.com/yahoo/crow).
- [Class-Weighted Convolutional Features for Image Retrieval](https://github.com/imatge-upc/retrieval-2017-cam).
- [Multi-Scale Orderless Pooling of Deep Convolutional Activation Features](), VLAD coding.
- [Aggregating Deep Convolutional Features for Image Retrieval](https://arxiv.org/abs/1510.07493), [论文笔记](https://zhuanlan.zhihu.com/p/23136747), [基于深度学习的视觉实例搜索研究进展](https://zhuanlan.zhihu.com/p/22265265).
- [Particular object retrieval with integral max-pooling of CNN activations](https://arxiv.org/abs/1511.05879), [project](http://cmp.felk.cvut.cz/~toliageo/soft.html).
- [Particular object retrieval using CNN](https://github.com/AaltoVision/Object-Retrieval).
- [Learning to Match Aerial Images with Deep Attentive Architectures](https://vision.cornell.edu/se3/wp-content/uploads/2016/04/1204.pdf).
- [Siamese Network of Deep Fisher-Vector Descriptors for Image Retrieval](https://arxiv.org/pdf/1702.00338v1.pdf).
- [Combining Fisher Vector and Convolutional Neural Networks for Image Retrieval](http://ceur-ws.org/Vol-1653/paper_19.pdf), fv和cnn特征融合提升.
- [Selective Deep Convolutional Features for Image Retrieval](https://arxiv.org/pdf/1707.00809v1.pdf), ACM MM 2017.
- [Class-Weighted Convolutional Features for Image Retrieval](https://github.com/imatge-upc/retrieval-2017-cam).
- [Fine-tuning CNN Image Retrieval with No Human Annotation](https://arxiv.org/abs/1711.02512), TPAMI 2018.
- [An accurate retrieval through R-MAC+ descriptors for landmark recognition](https://arxiv.org/pdf/1806.08565.pdf).
- [Regional Attention Based Deep Feature for Image Retrieval](https://sglab.kaist.ac.kr/RegionalAttention/), [code](https://github.com/jaeyoon1603/Retrieval-RegionalAttention), BMVC 2018.
- [Detect-to-Retrieve: Efficient Regional Aggregation for Image Search](https://arxiv.org/pdf/1812.01584.pdf), CVPR 2019.
- [Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking](http://cmp.felk.cvut.cz/~toliageo/p/RadenovicIscenToliasAvrithisChum_CVPR2018_Revisiting%20Oxford%20and%20Paris:%20Large-Scale%20Image%20Retrieval%20Benchmarking.pdf), [project](http://cmp.felk.cvut.cz/revisitop/), CVPR 2018.
- [Guided Similarity Separation for Image Retrieval](https://github.com/layer6ai-labs/GSS), NeurIPS 2019.
## Deep Learning Feature (Local Feature)